1
|
Wessels HJCT, de Almeida NM, Kartal B, Keltjens JT. Bacterial Electron Transfer Chains Primed by Proteomics. Adv Microb Physiol 2016; 68:219-352. [PMID: 27134025 DOI: 10.1016/bs.ampbs.2016.02.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Electron transport phosphorylation is the central mechanism for most prokaryotic species to harvest energy released in the respiration of their substrates as ATP. Microorganisms have evolved incredible variations on this principle, most of these we perhaps do not know, considering that only a fraction of the microbial richness is known. Besides these variations, microbial species may show substantial versatility in using respiratory systems. In connection herewith, regulatory mechanisms control the expression of these respiratory enzyme systems and their assembly at the translational and posttranslational levels, to optimally accommodate changes in the supply of their energy substrates. Here, we present an overview of methods and techniques from the field of proteomics to explore bacterial electron transfer chains and their regulation at levels ranging from the whole organism down to the Ångstrom scales of protein structures. From the survey of the literature on this subject, it is concluded that proteomics, indeed, has substantially contributed to our comprehending of bacterial respiratory mechanisms, often in elegant combinations with genetic and biochemical approaches. However, we also note that advanced proteomics offers a wealth of opportunities, which have not been exploited at all, or at best underexploited in hypothesis-driving and hypothesis-driven research on bacterial bioenergetics. Examples obtained from the related area of mitochondrial oxidative phosphorylation research, where the application of advanced proteomics is more common, may illustrate these opportunities.
Collapse
Affiliation(s)
- H J C T Wessels
- Nijmegen Center for Mitochondrial Disorders, Radboud Proteomics Centre, Translational Metabolic Laboratory, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N M de Almeida
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - B Kartal
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands; Laboratory of Microbiology, Ghent University, Ghent, Belgium
| | - J T Keltjens
- Institute of Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands.
| |
Collapse
|
2
|
Vergara-Barberán M, Lerma-García MJ, Simó-Alfonso EF, Herrero-Martínez JM. Solid-phase extraction based on ground methacrylate monolith modified with gold nanoparticles for isolation of proteins. Anal Chim Acta 2016; 917:37-43. [PMID: 27026598 DOI: 10.1016/j.aca.2016.02.043] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 02/24/2016] [Accepted: 02/26/2016] [Indexed: 01/25/2023]
Abstract
In this study, a novel polymeric material functionalized with gold nanoparticles (AuNPs) was prepared as solid-phase extraction (SPE) sorbent for isolation of proteins. The sorbent was synthesized from a powdered poly(glycidyl-co-ethylene dimethacrylate) monolith, and modified with ammonia, followed by immobilization of AuNPs on the pore surface of the material. To evaluate the performance of this SPE support, proteins were selected as test solutes, being the extraction conditions and other parameters (loading capacity and regenerative ability of sorbent) established. The results indicated that this sorbent could be employed to selectively capture proteins according to their pI, on the basis of the strong affinity of these biomacromolecules towards to AuNPs surface. The applicability of this sorbent was demonstrated by isolating protein species of interest (bovine serum albumin, cytochrome c and lectins in European mistletoe leaves), followed by SDS-PAGE analysis.
Collapse
Affiliation(s)
- María Vergara-Barberán
- Department of Analytical Chemistry, University of Valencia, C. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain.
| | - María Jesús Lerma-García
- Department of Analytical Chemistry, University of Valencia, C. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain
| | | | - José Manuel Herrero-Martínez
- Department of Analytical Chemistry, University of Valencia, C. Doctor Moliner 50, E-46100 Burjassot, Valencia, Spain.
| |
Collapse
|
3
|
Si Ahmed Zennia S, Mati A, Saulnier F, Verdier Y, Chiappetta G, Mulliert G, Miclo L, Vinh J, Girardet JM. Identification by FT-ICR-MS of Camelus dromedarius α-lactalbumin variants as the result of nonenzymatic deamidation of Asn-16 and Asn-45. Food Chem 2015; 187:305-13. [DOI: 10.1016/j.foodchem.2015.04.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 04/10/2015] [Accepted: 04/15/2015] [Indexed: 01/29/2023]
|
4
|
Shirasuka Y, Nakajima KI, Asakura T, Yamashita H, Yamamoto A, Hata S, Nagata S, Abo M, Sorimachi H, Abe K. Neoculin as a New Taste-modifying Protein Occurring in the Fruit ofCurculigo latifolia. Biosci Biotechnol Biochem 2014; 68:1403-7. [PMID: 15215616 DOI: 10.1271/bbb.68.1403] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A unique taste-modifying activity that converts the sense of sourness to the sense of sweetness occurs in the fruit of the plant Curculigo latifolia, intrinsic to West Malaysia. The active component, known as curculin, is a protein consisting of two identical subunits. We have found a new taste-modifying protein, named neoculin, of the same origin. Both chemical analysis and cDNA cloning characterized neoculin as a heterodimeric protein consisting of an acidic, glycosylated subunit of 113 amino acid residues and a basic subunit that is the monomeric curculin itself.
Collapse
Affiliation(s)
- Yukako Shirasuka
- Laboratory of Biological Function, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Robertson GH, Cao TK, Gregorski KS, Hurkman WJ, Tanaka CK, Chiou BS, Glenn GM, Orts WJ. Modification of vital wheat gluten with phosphoric acid to produce high free swelling capacity. J Appl Polym Sci 2013. [DOI: 10.1002/app.39440] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- George H. Robertson
- United States Department of Agriculture; Agricultural Research Service, Pacific West Area, Bioproduct Chemistry and Engineering, Western Regional Research Center; 800 Buchanan Street Albany California 94710
| | - Trung K. Cao
- United States Department of Agriculture; Agricultural Research Service, Pacific West Area, Bioproduct Chemistry and Engineering, Western Regional Research Center; 800 Buchanan Street Albany California 94710
| | - Kay S. Gregorski
- United States Department of Agriculture; Agricultural Research Service, Pacific West Area, Bioproduct Chemistry and Engineering, Western Regional Research Center; 800 Buchanan Street Albany California 94710
| | - William J. Hurkman
- United States Department of Agriculture; Agricultural Research Service, Pacific West Area, Bioproduct Chemistry and Engineering, Western Regional Research Center; 800 Buchanan Street Albany California 94710
| | - Charlene K. Tanaka
- United States Department of Agriculture; Agricultural Research Service, Pacific West Area, Bioproduct Chemistry and Engineering, Western Regional Research Center; 800 Buchanan Street Albany California 94710
| | - Bor-Sen Chiou
- United States Department of Agriculture; Agricultural Research Service, Pacific West Area, Bioproduct Chemistry and Engineering, Western Regional Research Center; 800 Buchanan Street Albany California 94710
| | - Gregory M. Glenn
- United States Department of Agriculture; Agricultural Research Service, Pacific West Area, Bioproduct Chemistry and Engineering, Western Regional Research Center; 800 Buchanan Street Albany California 94710
| | - William J. Orts
- United States Department of Agriculture; Agricultural Research Service, Pacific West Area, Bioproduct Chemistry and Engineering, Western Regional Research Center; 800 Buchanan Street Albany California 94710
| |
Collapse
|
6
|
Mikkat S, Kischstein T, Kreutzer M, Glocker MO. Mass spectrometric peptide analysis of 2DE-separated mouse spinal cord and rat hippocampus proteins suggests an NGxG motif of importance for in vivo deamidation. Electrophoresis 2013; 34:1610-8. [DOI: 10.1002/elps.201200682] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2012] [Revised: 02/11/2013] [Accepted: 02/20/2013] [Indexed: 12/16/2022]
Affiliation(s)
| | - Timo Kischstein
- Oscar Langendorff Institute of Physiology; University Medicine Rostock; Rostock; Germany
| | - Michael Kreutzer
- Proteome Center Rostock; University Medicine Rostock; Rostock; Germany
| | | |
Collapse
|
7
|
Tsai WY, Jheng YJ, Chen KH, Lin KW, Ho YP, Yang CC, Lin KC. Molecular cloning, structural analysis and mass spectrometric identification of native dioscorins of various yam species. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2013; 93:761-770. [PMID: 22806688 DOI: 10.1002/jsfa.5789] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2012] [Revised: 05/15/2012] [Accepted: 06/01/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND Dioscorins are the major storage proteins of yam tubers. However, the molecular nature of their heterogeneity in tubers has not been fully elucidated. In this study the authors isolated the dioscorin gene families of Dioscorea japonica and Dioscorea pseudojaponica, performed matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry (MALDI-TOF-MS) and elucidated which dioscorin isoforms are the major constituents in tubers. RESULTS The dioscorin gene families of D. japonica (Dj-dioA1-Dj-dioA4, Dj-dioB1 and Dj-dioB2) and D. pseudojaponica (Dp-dioA1-Dp-dioA5 and Dp-dioB1) were cloned from cDNA libraries of yam tubers. The dioscorins isolated from Dioscorea alata (Da-dioscorins), D. japonica (Dj-dioscorins) and D. pseudojaponica (Dp-dioscorins) were mainly monomers, with a few dimers. The monomers contained one intramolecular disulfide bond (Cys(28)-Cys(187)) and belonged to Class A dioscorins with two cysteine residues. The dimers consisted of Class B dioscorins with one intermolecular disulfide bond (Cys(40)-Cys(40)). Results of MALDI-TOF-MS revealed that the Da-dioscorins were mainly encoded by Da-dioA2, Da-dioA3 and Da-dioA4. The majority of the Dj-dioscorins were encoded by Dj-dioA1, Dj-dioA2, Dj-dioA3 and Dj-dioB2. The Dp-dioscorins mainly comprised proteins encoded by Dp-dioA1, Dp-dioA3, Dp-dioA4, Dp-dioB1 and Dp-dioB2. CONCLUSION Determination of the constituents of dioscorin isoforms in yam tubers provides a basis for future studies of their physiological and biomedical functions.
Collapse
Affiliation(s)
- Wei-Yi Tsai
- Department of Life Science and Institute of Biotechnology, National Dong Hwa University, Hualien County 974, Taiwan
| | | | | | | | | | | | | |
Collapse
|
8
|
Potthoff SA, Sitek B, Stegbauer J, Schulenborg T, Marcus K, Quack I, Rump LC, Meyer HE, Stühler K, Vonend O. The glomerular proteome in a model of chronic kidney disease. Proteomics Clin Appl 2012; 2:1127-39. [PMID: 21136910 DOI: 10.1002/prca.200800010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Adequate kidney function is crucial in sustaining vertebrate homeostasis. Certain diseases can diminish renal function and lead to end-stage renal disease. Diabetes mellitus and hypertension are the main causes of glomerulosclerosis and albuminuria in adults. The molecular mechanisms that trigger these maladaptive changes are still unsatisfyingly described. We previously introduced 2-D DIGE in combination with focused tissue isolation methods to analyze protein expression in glomeruli. Glomeruli, the crucial compartments in albuminuric renal diseases, were extracted using magnetic particles from subtotally nephrectomized FVB mice (n = 6); this 5/6 nephrectomy in FVB mice is a model of chronic kidney disease. Analysis of protein expression levels from glomerular protein lysates was performed using 2-D DIGE and compared with glomerular protein lysates from mice that underwent sham surgery. The comparison of about 2100 detectable spots between both groups revealed 48 protein spots that showed significant differential expression. Of those, 33 proteins could be identified using nanoLC-ESI MS. The metalloproteinase meprin 1 alpha, the beta galactoside-binding-lectin galectin-1 and dimethylarginine dimethylaminohydrolase 1, a key enzyme in NO metabolism, were found to be differentially regulated, thus implying a role in the pathogenesis and pathophysiology of progressive kidney disease. In conclusion, 2-D DIGE protein analysis of smallest sample sizes from specific organ compartments provides focused protein expression results, which help in gaining an understanding of the molecular mechanisms of chronic kidney disease.
Collapse
Affiliation(s)
- Sebastian A Potthoff
- Marienhospital Herne, Klinikum der Ruhr-Universität Bochum, Bochum, Germany; Department of Pathology, Vanderbilt University, Nashville, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Hare NJ, Solis N, Harmer C, Marzook NB, Rose B, Harbour C, Crossett B, Manos J, Cordwell SJ. Proteomic profiling of Pseudomonas aeruginosa AES-1R, PAO1 and PA14 reveals potential virulence determinants associated with a transmissible cystic fibrosis-associated strain. BMC Microbiol 2012; 12:16. [PMID: 22264352 PMCID: PMC3398322 DOI: 10.1186/1471-2180-12-16] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2011] [Accepted: 01/22/2012] [Indexed: 11/15/2022] Open
Abstract
Background Pseudomonas aeruginosa is an opportunistic pathogen that is the major cause of morbidity and mortality in patients with cystic fibrosis (CF). While most CF patients are thought to acquire P. aeruginosa from the environment, person-person transmissible strains have been identified in CF clinics worldwide. The molecular basis for transmissibility and colonization of the CF lung remains poorly understood. Results A dual proteomics approach consisting of gel-based and gel-free comparisons were undertaken to analyse protein profiles in a transmissible, early (acute) isolate of the Australian epidemic strain 1 (AES-1R), the virulent burns/wound isolate PA14, and the poorly virulent, laboratory-associated strain PAO1. Over 1700 P. aeruginosa proteins were confidently identified. AES-1R protein profiles revealed elevated abundance of proteins associated with virulence and siderophore biosynthesis and acquisition, antibiotic resistance and lipopolysaccharide and fatty acid biosynthesis. The most abundant protein in AES-1R was confirmed as a previously hypothetical protein with sequence similarity to carbohydrate-binding proteins and database search revealed this gene is only found in the CF-associated strain PA2192. The link with CF infection may suggest that transmissible strains have acquired an ability to rapidly interact with host mucosal glycoproteins. Conclusions Our data suggest that AES-1R expresses higher levels of proteins, such as those involved in antibiotic resistance, iron acquisition and virulence that may provide a competitive advantage during early infection in the CF lung. Identification of novel proteins associated with transmissibility and acute infection may aid in deciphering new strategies for intervention to limit P. aeruginosa infections in CF patients.
Collapse
Affiliation(s)
- Nathan J Hare
- School of Molecular Bioscience, The University of Sydney, Sydney 2006, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Deng X, Hahne T, Schröder S, Redweik S, Nebija D, Schmidt H, Janssen O, Lachmann B, Wätzig H. The challenge to quantify proteins with charge trains due to isoforms or conformers. Electrophoresis 2011; 33:263-9. [DOI: 10.1002/elps.201100321] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2011] [Revised: 07/30/2011] [Accepted: 08/05/2011] [Indexed: 11/09/2022]
Affiliation(s)
- Xi Deng
- Institute of Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Thomas Hahne
- Institute of Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Simone Schröder
- Institute of Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sabine Redweik
- Institute of Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| | - Dashnor Nebija
- Department of Medicinal and Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Hendrik Schmidt
- Laboratory for Molecular Immunology, Institute for Immunology, University Hospital Schleswig‐Holstein, Kiel, Germany
| | - Ottmar Janssen
- Laboratory for Molecular Immunology, Institute for Immunology, University Hospital Schleswig‐Holstein, Kiel, Germany
| | - Bodo Lachmann
- Department of Medicinal and Pharmaceutical Chemistry, University of Vienna, Vienna, Austria
| | - Hermann Wätzig
- Institute of Pharmaceutical Chemistry, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
11
|
Schieb H, Kratzin H, Jahn O, Möbius W, Rabe S, Staufenbiel M, Wiltfang J, Klafki HW. Beta-amyloid peptide variants in brains and cerebrospinal fluid from amyloid precursor protein (APP) transgenic mice: comparison with human Alzheimer amyloid. J Biol Chem 2011; 286:33747-58. [PMID: 21795681 DOI: 10.1074/jbc.m111.246561] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In this study, we report a detailed analysis of the different variants of amyloid-β (Aβ) peptides in the brains and the cerebrospinal fluid from APP23 transgenic mice, expressing amyloid precursor protein with the Swedish familial Alzheimer disease mutation, at different ages. Using one- and two-dimensional gel electrophoresis, immunoblotting, and mass spectrometry, we identified the Aβ peptides Aβ(1-40), -(1-42), -(1-39), -(1-38), -(1-37), -(2-40), and -(3-40) as well as minor amounts of pyroglutamate-modified Aβ (Aβ(N3pE)) and endogenous murine Aβ in brains from 24-month-old mice. Chemical modifications of the N-terminal amino group of Aβ were identified that had clearly been introduced during standard experimental procedures. To address this issue, we additionally applied amyloid extraction in ultrapure water. Clear differences between APP23 mice and Alzheimer disease (AD) brain samples were observed in terms of the relative abundance of specific variants of Aβ peptides, such as Aβ(N3pE), Aβ(1-42), and N-terminally truncated Aβ(2/3-42). These differences to human AD amyloid were also noticed in a related mouse line transgenic for human wild type amyloid precursor protein. Taken together, our findings suggest different underlying molecular mechanisms driving the amyloid deposition in transgenic mice and AD patients.
Collapse
Affiliation(s)
- Heinke Schieb
- Department of Psychiatry and Psychotherapy, LVR-Klinikum, Essen, University of Duisburg-Essen, D-45147 Essen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Dupont FM, Vensel WH, Tanaka CK, Hurkman WJ, Altenbach SB. Deciphering the complexities of the wheat flour proteome using quantitative two-dimensional electrophoresis, three proteases and tandem mass spectrometry. Proteome Sci 2011; 9:10. [PMID: 21314956 PMCID: PMC3238214 DOI: 10.1186/1477-5956-9-10] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 02/11/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Wheat flour is one of the world's major food ingredients, in part because of the unique end-use qualities conferred by the abundant glutamine- and proline-rich gluten proteins. Many wheat flour proteins also present dietary problems for consumers with celiac disease or wheat allergies. Despite the importance of these proteins it has been particularly challenging to use MS/MS to distinguish the many proteins in a flour sample and relate them to gene sequences. RESULTS Grain from the extensively characterized spring wheat cultivar Triticum aestivum 'Butte 86' was milled to white flour from which proteins were extracted, then separated and quantified by 2-DE. Protein spots were identified by separate digestions with three proteases, followed by tandem mass spectrometry analysis of the peptides. The spectra were used to interrogate an improved protein sequence database and results were integrated using the Scaffold program. Inclusion of cultivar specific sequences in the database greatly improved the results, and 233 spots were identified, accounting for 93.1% of normalized spot volume. Identified proteins were assigned to 157 wheat sequences, many for proteins unique to wheat and nearly 40% from Butte 86. Alpha-gliadins accounted for 20.4% of flour protein, low molecular weight glutenin subunits 18.0%, high molecular weight glutenin subunits 17.1%, gamma-gliadins 12.2%, omega-gliadins 10.5%, amylase/protease inhibitors 4.1%, triticins 1.6%, serpins 1.6%, purinins 0.9%, farinins 0.8%, beta-amylase 0.5%, globulins 0.4%, other enzymes and factors 1.9%, and all other 3%. CONCLUSIONS This is the first successful effort to identify the majority of abundant flour proteins for a single wheat cultivar, relate them to individual gene sequences and estimate their relative levels. Many genes for wheat flour proteins are not expressed, so this study represents further progress in describing the expressed wheat genome. Use of cultivar-specific contigs helped to overcome the difficulties of matching peptides to gene sequences for members of highly similar, rapidly evolving storage protein families. Prospects for simplifying this process for routine analyses are discussed. The ability to measure expression levels for individual flour protein genes complements information gained from efforts to sequence the wheat genome and is essential for studies of effects of environment on gene expression.
Collapse
Affiliation(s)
- Frances M Dupont
- USDA Agricultural Research Service, Western Regional Research Center, Albany CA 94710, USA
| | - William H Vensel
- USDA Agricultural Research Service, Western Regional Research Center, Albany CA 94710, USA
| | - Charlene K Tanaka
- USDA Agricultural Research Service, Western Regional Research Center, Albany CA 94710, USA
| | - William J Hurkman
- USDA Agricultural Research Service, Western Regional Research Center, Albany CA 94710, USA
| | - Susan B Altenbach
- USDA Agricultural Research Service, Western Regional Research Center, Albany CA 94710, USA
| |
Collapse
|
13
|
Scott NE, Marzook NB, Deutscher A, Falconer L, Crossett B, Djordjevic SP, Cordwell SJ. Mass spectrometric characterization of the Campylobacter jejuni
adherence factor CadF reveals post-translational processing that removes immunogenicity while retaining fibronectin binding. Proteomics 2009; 10:277-88. [DOI: 10.1002/pmic.200900440] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
14
|
Liefhebber JMP, Hensbergen PJ, Deelder AM, Spaan WJM, van Leeuwen HC. Characterization of hepatitis C virus NS3 modifications in the context of replication. J Gen Virol 2009; 91:1013-8. [PMID: 19923258 DOI: 10.1099/vir.0.016881-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Post-translational modifications (PTMs) of viral proteins regulate various stages of infection. With only 10 proteins, hepatitis C virus (HCV) can orchestrate its complete viral life cycle. HCV non-structural protein 3 (NS3) has many functions. It has protease and helicase activities, interacts with several host-cell proteins and plays a role in translation, replication and virus-particle formation. Organization of all these functions is necessary and could be regulated by PTMs. We therefore searched for modifications of the NS3 protein in the subgenomic HCV replicon. When performing a tag-capture approach coupled with two-dimensional gel electrophoresis analyses, we observed that isolated His6-NS3 yielded multiple spots. Individual protein spots were digested in gel and analysed by mass spectrometry. Differences observed between the individual peptide mass fingerprints suggested the presence of modified peptides and allowed us to identify N-terminal acetylation and an adaptive mutation of NS3 (Q1067R). Further analysis of other NS3 variants revealed phosphorylation of NS3.
Collapse
Affiliation(s)
- Jolanda M P Liefhebber
- Department of Medical Microbiology, Center of Infectious Diseases, Leiden University Medical Center, 2300 RC Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
15
|
Encheva V, Shah HN, Gharbia SE. Proteomic analysis of the adaptive response of Salmonella enterica serovar Typhimurium to growth under anaerobic conditions. MICROBIOLOGY-SGM 2009; 155:2429-2441. [PMID: 19389776 DOI: 10.1099/mic.0.026138-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In order to survive in the host and initiate infection, Salmonella enterica needs to undergo a transition between aerobic and anaerobic growth by modulating its central metabolic pathways. In this study, a comparative analysis of the proteome of S. enterica serovar Typhimurium grown in the presence or absence of oxygen was performed. The most prominent changes in expression were measured in a semiquantitative manner using difference in-gel electrophoresis (DIGE) to reveal the main protein factors involved in the adaptive response to anaerobiosis. A total of 38 proteins were found to be induced anaerobically, while 42 were repressed. The proteins of interest were in-gel digested with trypsin and identified by MALDI TOF mass spectrometry using peptide mass fingerprinting. In the absence of oxygen, many fermentative enzymes catalysing reactions in the mixed-acid or arginine fermentations were overexpressed. In addition, the enzyme fumarate reductase, which is known to provide an alternative electron acceptor for the respiratory chains in the absence of oxygen, was shown to be induced. Increases in expression of several glycolytic and pentose phosphate pathway enzymes, as well as two malic enzymes, were detected, suggesting important roles for these in anaerobic metabolism. Substantial decreases in expression were observed for a large number of periplasmic transport proteins. The majority of these are involved in the uptake of amino acids and peptides, but permeases transporting iron, thiosulphate, glucose/galactose, glycerol 3-phosphate and dicarboxylic acids were also repressed. Decreases in expression were also observed for a superoxide dismutase, ATP synthase, inositol monophosphatase, and several chaperone and hypothetical proteins. The changes were monitored in two different isolates, and despite their very similar expression patterns, some variability in the adaptive response to anaerobiosis was also observed.
Collapse
Affiliation(s)
- Vesela Encheva
- Department for Bioanalysis and Horizon Technologies, Centre for Infections, Health Protection Agency, London, UK
| | - Haroun N Shah
- Department for Bioanalysis and Horizon Technologies, Centre for Infections, Health Protection Agency, London, UK
| | - Saheer E Gharbia
- Department for Bioanalysis and Horizon Technologies, Centre for Infections, Health Protection Agency, London, UK
| |
Collapse
|
16
|
Rockwell KR, Huber BT. Biologically distinct conformations of Bcl-x can be resolved using 2D isoelectric focusing. Mol Immunol 2009; 46:1605-12. [PMID: 19328553 DOI: 10.1016/j.molimm.2009.02.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2009] [Accepted: 02/25/2009] [Indexed: 11/18/2022]
Abstract
Bcl-x, a potent regulator of cellular decisions of life and death, has multiple survival-enhancing activities that rely on distinct protein regions. Evidence suggests that depending on the local environment and the binding of protein or peptide partners, Bcl-x can take on several conformations that expose different protein regions. However, biological occurrence of conformational forms has been very difficult to study, because structure determination techniques use large quantities of protein, purified under conditions that change Bcl-x conformation. We show here that standard 2D isoelectric focusing techniques can be used to distinguish conformationally distinct forms of Bcl-x in cell lysates. Conformational isoelectric forms were manipulated through the use of detergents and buffers of differing pH. Our data indicate that post-translational modifications are not needed for or associated with conformational changes, distinguishing the dominant isoelectric forms of Bcl-x. We found that Bcl-x conformational isoelectric forms have preferred subcellular localization patterns. Moreover, conformational forms are differently regulated in certain locations during cytokine starvation of IL-3-dependent cells. Therefore, we provide evidence that 2DIEF can be used to view biologically distinct conformational differences in Bcl-x on minute quantities of unpurified protein from cells or lysates.
Collapse
Affiliation(s)
- Karen R Rockwell
- Tufts Sackler School of Graduate Biomedical Sciences, Pathology Department, Jaharis 906, 150 Harrison Avenue, Boston, MA 02111, USA
| | | |
Collapse
|
17
|
Paton LN, Gerrard JA, Bryson WG. Investigations into charge heterogeneity of wool intermediate filament proteins. J Proteomics 2008; 71:513-29. [DOI: 10.1016/j.jprot.2008.08.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2008] [Revised: 08/10/2008] [Accepted: 08/28/2008] [Indexed: 10/21/2022]
|
18
|
Zhang Y, Wu JF, Zeyer J, Meng B, Liu L, Jiang CY, Liu SQ, Liu SJ. Proteomic and molecular investigation on the physiological adaptation of Comamonas sp. strain CNB-1 growing on 4-chloronitrobenzene. Biodegradation 2008; 20:55-66. [PMID: 18509595 DOI: 10.1007/s10532-008-9199-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 05/07/2008] [Indexed: 11/25/2022]
Abstract
Comamonas sp. strain CNB-1 can utilize 4-chloronitrobenzene (4CNB) as sole carbon and nitrogen source for growth. Previous studies were focused on 4CNB degradative pathway and have showed that CNB-1 contained a plasmid pCNB1 harboring the genes (cnbABCaCbDEFGH, cnbZ) for the enzymes involving in 4CNB degradation, but only three gene products (CnbCa, CnbCb, and CnbZ) were identified in CNB-1 cells. Comamonas strain CNB-2 that lost pCNB1 was not able to grow on 4CNB. In this study, physiological adaptation to 4CNB by CNB-1 was investigated with proteomic and molecular tools. Comparative proteomes of strains CNB-1 and CNB-2 grown on 4CNB and/or succinate revealed that adaptation to 4CNB by CNB-1 included specific degradative pathway and general physiological responses: (1) Seven gene products (CnbA, CnbCa, CnbCb, CnbD, CnbE, CnbF, and CnbZ) for 4CNB degradation were identified in 4CNB-grown cells, and they were constitutively synthesized in CNB-1. Two genes cnbE and cnbF were cloned and simultaneously expressed in E. coli. The CnbE and CnbF together catalyzed the conversion of 2-oxohex-4-ene-5-chloro-1,6-dioate into 2-oxo-4-hydroxy-5-chloro-valeric acid; (2) Enzymes involving in glycolysis, tricarboxylic acid cycle, and synthesis of glutamate increased their abundances in 4CNB-grown cells.
Collapse
Affiliation(s)
- Yun Zhang
- State Key Laboratory of Microbial Resource, Institute of Microbiology, Chinese Academy of Sciences, Chaoyang, Beijing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Hajtò T, Krisztina F, Ildikò A, Zsolt P, Pèter B, Pèter N, Pàl P. Unexpected Different Binding of Mistletoe Lectins from Plant Extracts to Immobilized Lactose and N-acetylgalactosamine. ANALYTICAL CHEMISTRY INSIGHTS 2007. [DOI: 10.4137/117739010700200004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Mistletoe Extracts (ME) are of growing interest to pharmacological research because of their apoptosis-inducing/cytostatic and immunomodulatory effects. The standardization of the three different groups of Mistletoe Isolectins (ML-I, II and III) is often rendered more difficult since the primary structures are nearly identical. Their classification is based on their Galactose- and N-acetyl-D-galactosamine (GalNAc)-specificity which was measured by various inhibitory assays. The aim of the present study was to improve the characterization of the direct binding activity of the isolectins from ME to immobilized lactose, GalNAc and to the oligosaccharide asialofetuin. After careful ultrafiltration of fresh ME, affinity chromatography was carried out using lactose-agarose, GalNAc—agarose and asialofetuin—affigel 15 columns. MLs were further purified by Sephadex G-100 or by cation exchange chromatography which was adapted to a Fast Protein Liquid Chromatography (FPLC) system. Proteins from both fresh plants and commercial ME were able to bind immobilized lactose to a considerable extent. The majority of this lectin has a B-chain with a Molecular Weight (MW) of 34kD and an A-chain with a MW of 29 kD (ML-I). Only a minor part of the lactose-binding proteins has a lower MW, namely 32kD and 27kD (MLII). However, neither MLs which were eluted from lactose columns, nor the proteins from fresh plant or ME showed a direct binding to the immobilized GalNAc. In spite of this deficiency, GalNAc was able to induce a considerable (25% and 32%) inhibitory effect on their binding to immobilized asialofetuin indicating a discrepancy between the lectin binding and inhibiting effects of GalNAC. Consequently, for an improved standardization of ME more specific sugar molecules are necessary.
Collapse
Affiliation(s)
- Tibor Hajtò
- Department of Immunology and Biotechnology, Faculty of Medicine, University of Pècs, Hungary
| | - Fodor Krisztina
- Department of Medical Chemistry, University Medical School of Pécs
| | - Aponyi Ildikò
- Department of Medical Chemistry, University Medical School of Pécs
| | | | - Balogh Pèter
- Department of Immunology and Biotechnology, Faculty of Medicine, University of Pècs, Hungary
| | - Németh Pèter
- Department of Immunology and Biotechnology, Faculty of Medicine, University of Pècs, Hungary
| | - Perjési Pàl
- Department of Medical Chemistry, University Medical School of Pécs
| |
Collapse
|
20
|
Fang XK, Huang DF, Wang ZX, Wan CL, Sun T, Xu WJ, Liu CY, Zhou P, Qiao ZD. Identification of the proteins related to cytochrome P450 induced by fenvalerate in a Trichoplusia ni cell line. Cell Biol Toxicol 2007; 23:445-57. [PMID: 17484068 DOI: 10.1007/s10565-007-9006-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 03/07/2007] [Indexed: 10/23/2022]
Abstract
In order to reveal the metabolic reaction to the presence of fenvalerate mediated by P450 in insects, we used the trypan blue exclusion technique and 3-(4,5-dimethylthiazol)-2,5-diphenyltrazolium bromide (MTT) reduction assay to assess the vitality of Trichoplusia ni (Tn) cells treated with fenvalerate, and observed dose- and time-dependent changes in total cellular P450s. In addition, two-dimensional electrophoresis (2-DE) and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) were used to identify the proteins involved in the fenvalerate reaction process. Finally, the cDNA of P450 fragments was cloned and real-time RT-PCR was performed. Our data showed that at the 0-15 mumol/L challenge concentration of fenvalerate, at which the vitality of Tn cells was not affected (p > 0.05), there was a tendency toward a dose- and time-response of total cellular P450s, which peaked at the 9 h (p < 0.05) and 12 h (p < 0.01) time points following 12.5 mumol/L stimulation with fenvalerate. The 2-DE assay detected more than 1300 protein spots in each two-dimensional gel, of which 33 spots displayed significant differences. Among the changed spots, three isoforms of P450 were identified. One of the three P450 cDNA fragments (CYP4L4) was cloned and sequenced, and its expression in treated Tn cells increased significantly (p < 0.01). It was found that fenvalerate induced the expression of P450s in insect cells. This suggests that fenvalerate could be metabolized by CYP4L4 through a hydroxylation reaction in insect cells.
Collapse
Affiliation(s)
- Xin-Kui Fang
- School of Agriculture and Biology, Shanghai Jiaotong University, 800 Dongchuan Road, 200240 Shanghai, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Bak-Jensen KS, Laugesen S, Ostergaard O, Finnie C, Roepstorff P, Svensson B. Spatio-temporal profiling and degradation of α-amylase isozymes during barley seed germination. FEBS J 2007; 274:2552-65. [PMID: 17437525 DOI: 10.1111/j.1742-4658.2007.05790.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ten genes from two multigene families encode barley alpha-amylases. To gain insight into the occurrence and fate of individual isoforms during seed germination, the alpha-amylase repertoire was mapped by using a proteomics approach consisting of 2D gel electrophoresis, western blotting, and mass spectrometry. Mass spectrometric analysis confirmed that the 29 alpha-amylase positive 2D gel spots contained products of one (GenBank accession gi|113765) and two (gi|4699831 and gi|166985) genes encoding alpha-amylase 1 and 2, respectively, but lacked products from seven other genes. Eleven spots were identified only by immunostaining. Mass spectrometry identified 12 full-length forms and 12 fragments from the cultivar Barke. Products of both alpha-amylase 2 entries co-migrated in five full-length and one fragment spot. The alpha-amylase abundance and the number of fragments increased during germination. Assessing the fragment minimum chain length by peptide mass fingerprinting suggested that alpha-amylase 2 (gi|4699831) initially was cleaved just prior to domain B that protrudes from the (betaalpha)(8)-barrel between beta-strand 3 and alpha-helix 3, followed by cleavage on the C-terminal side of domain B and near the C-terminus. Only two shorter fragments were identified of the other alpha-amylase 2 (gi|166985). The 2D gels of dissected tissues showed alpha-amylase degradation to be confined to endosperm. In contrast, the aleurone layer contained essentially only full-length alpha-amylase forms. While only products of the above three genes appeared by germination also of 15 other barley cultivars, the cultivars had distinct repertoires of charge and molecular mass variant forms. These patterns appeared not to be correlated with malt quality.
Collapse
|
22
|
Schaefer H, Chamrad DC, Herrmann M, Stuwe J, Becker G, Klose J, Blueggel M, Meyer HE, Marcus K. Study of posttranslational modifications in lenticular αA-Crystallin of mice using proteomic analysis techniques. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2006; 1764:1948-62. [PMID: 17157567 DOI: 10.1016/j.bbapap.2006.10.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2006] [Revised: 10/09/2006] [Accepted: 10/09/2006] [Indexed: 11/19/2022]
Abstract
In the present work the complexity in the 2D-gel protein pattern of murin lenticular alphaA-Crystallin was analyzed. An in depth study of the different protein isoforms was done combining different proteomic tools. Lens proteins of four different ages, from embryo to 100-week-old mice, were separated by large 2D-PAGE, revealing an increase in the number and intensity of the spots of alphaA-Crystallin during the process of aging. For further analyses the oldest mice were chosen. Comparison and evaluation of two different staining methods proved Imidazole-Zinc to be a good alternative to the generally used Coomassie stain. The characterization of the different alphaA-Crystallin protein species was done using nanoLC-ESI-MS/MS (liquid chromatography electrospray ionisation tandem mass spectrometry). Data interpretation was done by database searching, manual validation and a new MS/MS-interpretation tool for posttranslational modifications--the PTM-Explorer. Using this way, eight different phosphorylation sites were identified and localized; the identification of four of them was not published so far. Furthermore, quantitative N-terminal acetylation of alphaA-Crystallin and variable C-terminal truncation was observed, also not published in this extent yet. The results of the mass spectrometric analysis were validated by immunoblotting experiments using two different alphaA-Crystallin specific antibodies. In addition, a fluorescent phospho-specific stain was used to detect the protein spots including phosphorylation groups. Re-separation 2D-PAGE was done to round off the present study and explain the appearance of some of the protein spots in the gel as artifacts of the 2D-PAGE separation.
Collapse
MESH Headings
- Aging
- Amino Acid Sequence
- Animals
- Chromatography, Liquid
- Electrophoresis, Gel, Two-Dimensional/methods
- Imidazoles
- Immunoblotting
- Lens, Crystalline/embryology
- Lens, Crystalline/growth & development
- Lens, Crystalline/metabolism
- Mice
- Mice, Inbred C57BL
- Molecular Sequence Data
- Phosphoproteins/analysis
- Phosphorylation
- Protein Processing, Post-Translational
- Proteomics/methods
- Rosaniline Dyes
- Spectrometry, Mass, Electrospray Ionization
- Staining and Labeling
- Tandem Mass Spectrometry
- Zinc
- alpha-Crystallin A Chain/metabolism
Collapse
Affiliation(s)
- Heike Schaefer
- Medizinisches Proteom-Center, Ruhr-Universitaet Bochum, Universitaetsstr.150, 44801 Bochum, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Girardet JM, Miclo L, Florent S, Mollé D, Gaillard JL. Determination of the phosphorylation level and deamidation susceptibility of equine β-casein. Proteomics 2006; 6:3707-17. [PMID: 16691551 DOI: 10.1002/pmic.200500728] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
beta-Casein was isolated from Haflinger mare's milk by RP-HPLC, and displayed microheterogeneity by urea-electrophoresis and 2-DE probably due to a variable degree of phosphorylation. To investigate the degree of phosphorylation, the primary structure of equine beta-casein was determined by tryptic hydrolysis and MS of peptides released and by MS of the protein treated by alkaline phosphatase. The molecular mass found for the apo-form of Haflinger mare's beta-casein (25 514 +/- 3 Da) was close to the theoretical mass of the reported sequence (GenBank AAG43954) modified by insertion of a region (residues 27-34) encoded by an exon sometimes out-spliced (25 511.40 Da). Hence, the beta-casein isolated from Haflinger mare's milk corresponded to a variant of 226 amino acid residues. The latter was composed by highly multi-phosphorylated isoforms with three to seven phosphate groups, and pIs, determined by 2-DE, ranging from 4.74 to 5.30. Moreover, the equine beta-casein was able to deamidate spontaneously, at the level of Asn in the potential deamidation motif (135)Asn-Gly(136). Approximately 80% of the protein was deamidated after 96 h of incubation under physiological conditions.
Collapse
Affiliation(s)
- Jean-Michel Girardet
- Laboratoire des BioSciences de l'Aliment, UC INRA 885, Faculté des Sciences et Techniques, Université Henri Poincaré-Nancy 1, Vandoeuvre-lès-Nancy, France.
| | | | | | | | | |
Collapse
|
24
|
Fulda S, Mikkat S, Huang F, Huckauf J, Marin K, Norling B, Hagemann M. Proteome analysis of salt stress response in the cyanobacteriumSynechocystis sp. strain PCC 6803. Proteomics 2006; 6:2733-45. [PMID: 16572470 DOI: 10.1002/pmic.200500538] [Citation(s) in RCA: 147] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the present study, changes in protein synthesis patterns after salt shock visualized by 35S-methionine labeling and the changed protein composition in salt-acclimated cells of the cyanobacterium Synechocystis sp. strain PCC 6803 were analyzed by a combination of 2-DE for protein separation and PMF for protein identification. As a basis for the differential analysis, a proteome map with 500 identified protein spots comprising 337 different protein species was established. Fifty-five proteins were found, which are induced by salt shock or accumulated after long-term salt acclimation. Some of the proteins are salt stress-specific, such as enzymes involved in the synthesis of the compatible solute glucosylglycerol, while most of them are involved in general stress acclimation. Particularly, heat-shock proteins and proteins acting against lesions by reactive oxygen species were found. Moreover, changes in enzymes involved in basic carbohydrate metabolism were detected. The dynamic of the proteome of salt-stressed Synechocystis cells was compared to previous data concerning transcriptome analysis revealing that 89% of the proteins induced shortly after salt shock were also found to be induced at the RNA level. However, 42% of the stably up-regulated proteins in salt-acclimated cells were not detected previously using DNA microarrays. The comparison of transcriptomic and proteomic analyses shows the significance of post-transcriptional regulatory mechanisms in acclimation of Synechocystis to high salt concentrations.
Collapse
Affiliation(s)
- Sabine Fulda
- Universität Rostock, Institut Biowissenschaften, Pflanzengenetik, Rostock, Germany
| | | | | | | | | | | | | |
Collapse
|
25
|
Berven FS, Karlsen OA, Straume AH, Flikka K, Murrell JC, Fjellbirkeland A, Lillehaug JR, Eidhammer I, Jensen HB. Analysing the outer membrane subproteome of Methylococcus capsulatus (Bath) using proteomics and novel biocomputing tools. Arch Microbiol 2005; 184:362-77. [PMID: 16311759 DOI: 10.1007/s00203-005-0055-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2005] [Revised: 10/13/2005] [Accepted: 11/03/2005] [Indexed: 02/05/2023]
Abstract
High-resolution two-dimensional gel electrophoresis and mass spectrometry has been used to identify the outer membrane (OM) subproteome of the Gram-negative bacterium Methylococcus capsulatus (Bath). Twenty-eight unique polypeptide sequences were identified from protein samples enriched in OMs. Only six of these polypeptides had previously been identified. The predictions from novel bioinformatic methods predicting beta-barrel outer membrane proteins (OMPs) and OM lipoproteins were compared to proteins identified experimentally. BOMP ( http://www.bioinfo.no/tools/bomp ) predicted 43 beta-barrel OMPs (1.45%) from the 2,959 annotated open reading frames. This was a lower percentage than predicted from other Gram-negative proteomes (1.8-3%). More than half of the predicted BOMPs in M. capsulatus were annotated as (conserved) hypothetical proteins with significant similarity to very few sequences in Swiss-Prot or TrEMBL. The experimental data and the computer predictions indicated that the protein composition of the M. capsulatus OM subproteome was different from that of other Gram-negative bacteria studied in a similar manner. A new program, Lipo, was developed that can analyse entire predicted proteomes and give a list of recognised lipoproteins categorised according to their lipo-box similarity to known Gram-negative lipoproteins ( http://www.bioinfo.no/tools/lipo ). This report is the first using a proteomics and bioinformatics approach to identify the OM subproteome of an obligate methanotroph.
Collapse
Affiliation(s)
- Frode S Berven
- Department of Molecular Biology, University of Bergen, Thormøhlensgate 55, N-5020, Bergen, Norway.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Pötter M, Müller H, Reinecke F, Wieczorek R, Fricke F, Bowien B, Friedrich B, Steinbüchel A. The complex structure of polyhydroxybutyrate (PHB) granules: four orthologous and paralogous phasins occur in Ralstonia eutropha. Microbiology (Reading) 2004; 150:2301-2311. [PMID: 15256572 DOI: 10.1099/mic.0.26970-0] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Analysis of the genome sequence of the polyhydroxyalkanoate- (PHA) accumulating bacteriumRalstonia eutrophastrain H16 revealed three homologues (PhaP2, PhaP3 and PhaP4) of the phasin protein PhaP1. PhaP1 is known to constitute the major component of the layer at the surface of poly(3-hydroxybutyrate), poly(3HB), granules. PhaP2, PhaP3 and PhaP4 exhibited 42, 49 and 45 % identity or 61, 62 and 63 % similarity to PhaP1, respectively. The calculated molecular masses of PhaP1, PhaP2, PhaP3 and PhaP4 were 20·0, 20·2, 19·6 and 20·2 kDa, respectively. RT-PCR analysis showed thatphaP2,phaP3andphaP4were transcribed under conditions permissive for accumulation of poly(3HB). 2D PAGE of the poly(3HB) granule proteome and analysis of the detected proteins by MALDI-TOF clearly demonstrated that PhaP1, PhaP3 and PhaP4 are bound to the poly(3HB) granules in the cells. PhaP3 was expressed at a significantly higher level in PhaP1-negative mutants. Occurrence of an unknown protein with an N-terminal amino-acid sequence identical to that of PhaP2 in crude cellular extracts ofR. eutrophahad previously been shown by others. Although PhaP2 could not be localizedin vivoon poly(3HB) granules,in vitroexperiments clearly demonstrated binding of PhaP2 to these granules. Further analysis of complete or partial genomes of other poly(3HB)-accumulating bacteria revealed the existence of multiple phasin homologues inRalstonia solanacearum,Burkholderia fungorumandAzotobacter vinelandii. These new and unexpected findings should affect our current models of PHA-granule structure and may also have a considerable impact on the establishment of heterologous production systems for PHAs.
Collapse
Affiliation(s)
- Markus Pötter
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, 48149 Münster, Germany
| | - Helena Müller
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, 48149 Münster, Germany
| | - Frank Reinecke
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, 48149 Münster, Germany
| | - Roman Wieczorek
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, 48149 Münster, Germany
| | - Florian Fricke
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
- Genomik Netzwerk Göttingen, Georg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
| | - Botho Bowien
- Institut für Mikrobiologie und Genetik, Georg-August-Universität Göttingen, Grisebachstrasse 8, 37077 Göttingen, Germany
| | - Bärbel Friedrich
- Institut für Biologie, Humboldt-Universität Berlin, Chausseestrasse 117, 10115 Berlin, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 3, 48149 Münster, Germany
| |
Collapse
|
27
|
Girardet JM, N’negue MA, Egito A, Campagna S, Lagrange A, Gaillard JL. Multiple forms of equine α-lactalbumin: evidence for N-glycosylated and deamidated forms. Int Dairy J 2004. [DOI: 10.1016/j.idairyj.2003.08.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Zahrt TC, Wozniak C, Jones D, Trevett A. Functional analysis of the Mycobacterium tuberculosis MprAB two-component signal transduction system. Infect Immun 2004; 71:6962-70. [PMID: 14638785 PMCID: PMC308901 DOI: 10.1128/iai.71.12.6962-6970.2003] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The mechanisms utilized by Mycobacterium tuberculosis to establish, maintain, or reactivate from latent infection in the host are largely unknown but likely include genes that mediate adaptation to conditions encountered during persistence. Previously, a two-component signal transduction system, mprAB, was found to be required in M. tuberculosis for establishment and maintenance of persistent infection in a tissue- and stage-specific fashion. To begin to characterize the role of this system in M. tuberculosis physiology and virulence, a functional analysis of the mprA and mprB gene products was initiated. Here, evidence is presented demonstrating that sensor kinase MprB and response regulator MprA function as an intact signal-transducing pair in vitro and in vivo. Sensor kinase MprB can be autophosphorylated, can donate phosphate to MprA, and can act as a phospho-MprA phosphatase in vitro. Correspondingly, response regulator MprA can accept phosphate from MprB or from small phosphodonors including acetyl phosphate. Mutagenesis of residues His249 in MprB and Asp48 in MprA abolished the ability of these proteins to be phosphorylated in vitro. Introduction of these alleles into Mycobacterium bovis BCG attenuated virulence in macrophages in vivo. Together, these results support a role for the mprAB two-component system in M. tuberculosis physiology and pathogenesis. Characterization of two-component signal transduction systems will enhance our understanding of processes regulated by M. tuberculosis during acute and/or persistent infection in the host.
Collapse
Affiliation(s)
- Thomas C Zahrt
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA.
| | | | | | | |
Collapse
|
29
|
Berven FS, Karlsen OA, Murrell JC, Jensen HB. Multiple polypeptide forms observed in two-dimensional gels of Methylococcus capsulatus (Bath) polypeptides are generated during the separation procedure. Electrophoresis 2003; 24:757-61. [PMID: 12601748 DOI: 10.1002/elps.200390091] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have examined two-dimensional electrophoresis (2-DE) gel maps of polypeptides from the Gram-negative bacterium Methylococcus capsulatus (Bath) and found the same widespread trains of spots as often reported in 2-DE gels of polypeptides of other Gram-negative bacteria. Some of the trains of polypeptides, both from the outer membrane and soluble protein fraction, were shown to be generated during the separation procedure of 2-DE, and not by covalent post-translational modifications. The trains were found to be regenerated when rerunning individual polypeptide spots. The polypeptides analysed giving this type of trains were all found to be classified as stable polypeptides according to the instability index of Guruprasad et al. (Protein Eng. 1990, 4, 155-161). The phenomenon most likely reflects conformational equilibria of polypeptides arising from the experimental conditions used, and is a clear drawback of the standard 2-DE procedure, making the gel picture unnecessarily complex to analyse.
Collapse
Affiliation(s)
- Frode S Berven
- Department of Molecular Biology, University of Bergen, Bergen, Norway.
| | | | | | | |
Collapse
|
30
|
Koen YM, Hanzlik RP. Identification of seven proteins in the endoplasmic reticulum as targets for reactive metabolites of bromobenzene. Chem Res Toxicol 2002; 15:699-706. [PMID: 12018992 DOI: 10.1021/tx0101898] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The hepatotoxicity of bromobenzene is strongly correlated with the covalent binding of chemically reactive metabolites to cellular proteins, but up to now relatively few hepatic protein targets of these reactive metabolites have been identified. To identify additional hepatic protein targets we injected an hepatotoxic dose of [14C]bromobenzene to phenobarbital-pretreated male Sprague-Dawley rats ip. After 4 h, their livers were removed and homogenized, and the homogenates fractionated by differential ultracentrifugation. The highest specific radiolabeling (6.1 nmol equiv 14C/mg of protein) was observed in a particulate fraction (P25) sedimented at 25000g from a 6000g supernatant fraction. Proteins in this fraction were separated by two-dimensional electrophoresis and, after transblotting, analyzed for radioactivity by phosphorimaging. More than 20 radiolabeled protein spots were observed in the blots. For 17 of these spots, peptide mass maps were obtained using in-gel digestion with trypsin, followed by MALDI-TOF mass spectrometric analysis of the resulting peptide mixtures. By searching genomic databases, the 17 sets of MS-derived peptide masses were found to match predicted tryptic fragments of just 7 proteins. Spots 1-4 matched with 78 kDa glucose regulated protein (GRP78), protein disulfide isomerase isozyme A1 (PDIA1), endoplasmic reticulum protein ERp29, and PDIA6, respectively. Spots 5 and 6, 7-11, and 12-17 presented as apparent "charge trains" of spots, each of which gave peptide mixtures closely similar to those of other spots within the train. The proteins present in these sets of spots were identified as transthyretin, serum albumin precursor and PDIA3, respectively. The possible relationship of the adduction of these proteins to the toxicological outcome is discussed.
Collapse
Affiliation(s)
- Yakov M Koen
- Department of Medicinal Chemistry, University of Kansas, Lawrence 66045-7582, USA
| | | |
Collapse
|
31
|
Current literature in mass spectrometry. JOURNAL OF MASS SPECTROMETRY : JMS 2002; 37:119-132. [PMID: 11813320 DOI: 10.1002/jms.248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
|