1
|
Ramos Y, González A, Sosa‐Acosta P, Perez‐Riverol Y, García Y, Castellanos‐Serra L, Gil J, Sánchez A, González LJ, Besada V. Sodium dodecyl sulfate free gel electrophoresis/electroelution sorting for peptide fractionation. J Sep Sci 2019; 42:3712-3717. [DOI: 10.1002/jssc.201900495] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 10/08/2019] [Accepted: 10/10/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Yassel Ramos
- Department of ProteomicsCenter for Genetic Engineering and Biotechnology La Habana Cuba
| | - Annia González
- Department of ProteomicsCenter for Genetic Engineering and Biotechnology La Habana Cuba
| | - Patricia Sosa‐Acosta
- Department of ProteomicsCenter for Genetic Engineering and Biotechnology La Habana Cuba
| | - Yasset Perez‐Riverol
- European Molecular Biology LaboratoryEuropean Bioinformatics Institute (EMBL‐EBI)Wellcome Trust Genome Campus Hinxton Cambridge United Kingdom
| | - Yairet García
- Department of ProteomicsCenter for Genetic Engineering and Biotechnology La Habana Cuba
| | | | - Jeovanis Gil
- Clinical Protein Science & Imaging, Biomedical CentreDepartment of Biomedical EngineeringLund University, Lund Lund Sweden
| | - Aniel Sánchez
- Section for Clinical ChemistryDepartment of Translational MedicineLund UniversitySkåne University Hospital Malmö Malmö Sweden
| | - Luis J. González
- Department of ProteomicsCenter for Genetic Engineering and Biotechnology La Habana Cuba
| | - Vladimir Besada
- Department of ProteomicsCenter for Genetic Engineering and Biotechnology La Habana Cuba
| |
Collapse
|
2
|
Beutner A, Herl T, Matysik FM. Selectivity enhancement in capillary electrophoresis by means of two-dimensional separation or dual detection concepts. Anal Chim Acta 2018; 1057:18-35. [PMID: 30832915 DOI: 10.1016/j.aca.2018.11.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 11/01/2018] [Accepted: 11/19/2018] [Indexed: 12/18/2022]
Abstract
For the identification and quantification of analytes in complex samples, highly selective analytical strategies are required. The selectivity of single separation techniques such as gas chromatography (GC), liquid chromatography (LC), or capillary electrophoresis (CE) with common detection principles can be enhanced by hyphenating orthogonal separation techniques but also by using complementary detection systems. In this review, two-dimensional systems containing CE in at least one dimension are reviewed, namely LC-CE or 2D CE systems. Particular attention is paid to the aspect of selectivity enhancement due to the orthogonality of the different separation mechanisms. As an alternative concept, dual detection approaches are reviewed using the common detectors of CE such as UV/VIS, laser-induced fluorescence, capacitively coupled contactless conductivity (C4D), electrochemical detection, and mass spectrometry. Special emphasis is given to dual detection systems implementing the highly flexible C4D as one detection component. Selectivity enhancement can be achieved in case of complementarity of the different detection techniques.
Collapse
Affiliation(s)
- Andrea Beutner
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany
| | - Thomas Herl
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany
| | - Frank-Michael Matysik
- Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Universitaetsstrasse 31, 93053, Regensburg, Germany.
| |
Collapse
|
3
|
Identification of Unexpected Protein Modifications by Mass Spectrometry-Based Proteomics. Methods Mol Biol 2018. [PMID: 30276743 DOI: 10.1007/978-1-4939-8814-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Peptide identification relies in the majority of mass spectrometry-based proteomics experiments on matching of experimental data against peptide and fragment ion masses derived from in silico digests of protein databases. One of the main drawbacks of this approach is that modifications have to be defined for database searching and therefore no unexpected modifications can be identified in a standard setup. Consequently, in many bottom-up proteomics experiments, unexpected modifications are not identified, even if high-quality fragment ion spectra of the modified peptides were acquired. It is therefore often not straightforward to identify unexpected modifications. In this protocol, we describe a stepwise procedure to identify unexpected modifications at peptides using the database search algorithm Mascot. The workflow includes parallel searches for the identification of known modifications at unexpected amino acids, error tolerant searches for modifications unexpected in the sample but known to the community, and mass tolerant searches for entirely unknown modifications. Furthermore, we suggest a follow-up strategy consisting of (1) verification of identified modifications in the initial dataset and (2) targeted experiments using synthetic peptides.
Collapse
|
4
|
Lai A, Kinhal V, Nuzhat Z, Menon R, Rice GE, Salomon C. Proteomics Method to Identification of Protein Profiles in Exosomes. Methods Mol Biol 2018; 1710:139-153. [PMID: 29197000 DOI: 10.1007/978-1-4939-7498-6_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Exosomes are membrane-bound nanovesicles that transport molecular signals (e.g., proteins) between cells and are released from a wide range of cells, including the human placenta. Interestingly, the levels of exosomes present in maternal circulation are higher in preeclamptic pregnancies and their protein content profile change in response to the microenvironment milieu. Through the discovery of candidate biomarkers, mass spectrometry (MS)-based proteomics may provide a better understanding of the pathophysiology underlying pregnancy-associated disorders. With advances in sample preparation techniques, computational methodologies, and bioinformatics, MS-based proteomics have addressed the challenge of identifying and quantifying thousands of proteins and peptides from a variety of complex biological samples. Despite increasing interest in biomarker diagnostics, the complex nature of biological matrices (e.g., plasma) poses a challenge for candidate biomarker discovery. Here we describe a workflow to prepare exosomes for proteomic analysis.
Collapse
Affiliation(s)
- Andrew Lai
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Bldg. 71/918, Royal Brisbane Hospital, Brisbane, QLD, 4029, Australia
| | - Vyjayanthi Kinhal
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Bldg. 71/918, Royal Brisbane Hospital, Brisbane, QLD, 4029, Australia
| | - Zarin Nuzhat
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Bldg. 71/918, Royal Brisbane Hospital, Brisbane, QLD, 4029, Australia
| | - Ramkumar Menon
- Division of Maternal-Fetal Medicine & Perinatal Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA.,Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA
| | - Gregory E Rice
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Bldg. 71/918, Royal Brisbane Hospital, Brisbane, QLD, 4029, Australia.,Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, LA, USA
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, The University of Queensland, Bldg. 71/918, Royal Brisbane Hospital, Brisbane, QLD, 4029, Australia. .,Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, TX, USA. .,Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, University of Concepción, Concepción, Chile.
| |
Collapse
|
5
|
Pergande MR, Cologna SM. Isoelectric Point Separations of Peptides and Proteins. Proteomes 2017; 5:proteomes5010004. [PMID: 28248255 PMCID: PMC5372225 DOI: 10.3390/proteomes5010004] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/03/2017] [Accepted: 01/08/2017] [Indexed: 12/20/2022] Open
Abstract
The separation of ampholytic components according to isoelectric point has played an important role in isolating, reducing complexity and improving peptide and protein detection. This brief review outlines the basics of isoelectric focusing, including a summary of the historical achievements and considerations in experimental design. Derivative methodologies of isoelectric focusing are also discussed including common detection methods used. Applications in a variety of fields using isoelectric point based separations are provided as well as an outlook on the field for future studies.
Collapse
Affiliation(s)
- Melissa R Pergande
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA.
| | - Stephanie M Cologna
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL 60607, USA.
| |
Collapse
|
6
|
Česla P, Křenková J. Fraction transfer process in on-line comprehensive two-dimensional liquid-phase separations. J Sep Sci 2016; 40:109-123. [DOI: 10.1002/jssc.201600921] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 11/15/2016] [Accepted: 11/20/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Petr Česla
- Faculty of Chemical Technology, Department of Analytical Chemistry; University of Pardubice; Pardubice Czech Republic
| | - Jana Křenková
- Institute of Analytical Chemistry of the CAS; v.v.i.; Brno Czech Republic
| |
Collapse
|
7
|
Samperi R, Capriotti AL, Cavaliere C, Colapicchioni V, Chiozzi RZ, Laganà A. Food Proteins and Peptides. ADVANCED MASS SPECTROMETRY FOR FOOD SAFETY AND QUALITY 2015. [DOI: 10.1016/b978-0-444-63340-8.00006-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
8
|
Kohl FJ, Sánchez-Hernández L, Neusüß C. Capillary electrophoresis in two-dimensional separation systems: Techniques and applications. Electrophoresis 2014; 36:144-58. [DOI: 10.1002/elps.201400368] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/16/2014] [Accepted: 09/17/2014] [Indexed: 12/24/2022]
Affiliation(s)
- Felix J. Kohl
- Department of Chemistry; Aalen University; Aalen Germany
| | | | | |
Collapse
|
9
|
Wang Y, Balgley BM, Lee CS. Tissue proteomics using capillary isoelectric focusing-based multidimensional separations. Expert Rev Proteomics 2014; 2:659-67. [PMID: 16209646 DOI: 10.1586/14789450.2.5.659] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The capabilities of capillary isoelectric focusing-based multidimensional separations for performing proteome analysis from minute samples create new opportunities in the pursuit of biomarker discovery using enriched and selected cell populations procured from tissue specimens. In this article, recent advances in online integration of capillary isoelectric focusing with nano-reversed phase liquid chromatography for achieving high-resolution peptide and protein separations prior to mass spectrometry analysis are reviewed, along with its potential application to tissue proteomics. These proteome technological advances combined with recently developed tissue microdissection techniques, provide powerful tools for those seeking to gain a greater understanding at the global level of the cellular machinery associated with human diseases such as cancer.
Collapse
Affiliation(s)
- Yueju Wang
- Calibrant Biosystems, Gaithersburg, MD 20878, USA.
| | | | | |
Collapse
|
10
|
Umar A, Jaremko M, Burgers PC, Luider TM, Foekens JA, Paša-Tolic L. High-throughput proteomics of breast carcinoma cells: a focus on FTICR-MS. Expert Rev Proteomics 2014; 5:445-55. [DOI: 10.1586/14789450.5.3.445] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
11
|
Gao M, Qi D, Zhang P, Deng C, Zhang X. Development of multidimensional liquid chromatography and application in proteomic analysis. Expert Rev Proteomics 2014; 7:665-78. [DOI: 10.1586/epr.10.49] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
12
|
Zhang Z, Wu S, Stenoien DL, Paša-Tolić L. High-throughput proteomics. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2014; 7:427-454. [PMID: 25014346 DOI: 10.1146/annurev-anchem-071213-020216] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mass spectrometry (MS)-based high-throughput proteomics is the core technique for large-scale protein characterization. Due to the extreme complexity of proteomes, sophisticated separation techniques and advanced MS instrumentation have been developed to extend coverage and enhance dynamic range and sensitivity. In this review, we discuss the separation and prefractionation techniques applied for large-scale analysis in both bottom-up (i.e., peptide-level) and top-down (i.e., protein-level) proteomics. Different approaches for quantifying peptides or intact proteins, including label-free and stable-isotope-labeling strategies, are also discussed. In addition, we present a brief overview of different types of mass analyzers and fragmentation techniques as well as selected emerging techniques.
Collapse
|
13
|
The potential of electrophoretic sample pretreatment techniques and new instrumentation for bioanalysis, with a focus on peptidomics and metabolomics. Bioanalysis 2013; 5:2785-801. [DOI: 10.4155/bio.13.254] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This Review highlights the potential of new electromigration-based sample pretreatment techniques for bioanalysis. Sample pretreatment is a challenging part of the analytical workflow, especially in the fields of peptidomics and metabolomics, where the analytes are very diverse, both in physicochemical properties and in endogenous concentration. Electromigration-based techniques have several strengths, such as fast selective analyte concentration and that complementary information on the content of a sample can be obtained when compared with more conventional (chromatography-based) techniques. In the past decade, various new electromigration-based sample pretreatment techniques have been developed, and importantly, new instrumental setups. In this Review, we provide an introduction on electromigration and its strengths. Then, selected examples of electromigration-based sample pretreatment techniques and instrumentation are discussed, namely free-flow electrophoresis, isoelectric focusing, isotachophoresis, electrodialysis, electromembrane extraction and electroextraction. Finally, the promising perspectives of electromigration-based sample pretreatment techniques are outlined.
Collapse
|
14
|
Mostovenko E, Hassan C, Rattke J, Deelder AM, van Veelen PA, Palmblad M. Comparison of peptide and protein fractionation methods in proteomics. EUPA OPEN PROTEOMICS 2013. [DOI: 10.1016/j.euprot.2013.09.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Koshel BM, Wirth MJ. Trajectory of isoelectric focusing from gels to capillaries to immobilized gradients in capillaries. Proteomics 2012; 12:2918-26. [PMID: 22930445 PMCID: PMC3799802 DOI: 10.1002/pmic.201200213] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 08/15/2012] [Accepted: 08/20/2012] [Indexed: 12/29/2022]
Abstract
This review presents the need for replacing gels in 2D separations for proteomics, where speed, high-throughput, and the ability to characterize trace level proteins or small samples are the current desires. The theme of the review is isoelectric focusing, which is a valuable tool because it pre-concentrates proteins in addition to separating with high peak capacity. The review traces the technological progress from gel IEF to CIEF to packed capillaries with immobilized gradients for CIEF. Multiple capillary techniques are progressing toward meeting the current desires, providing extremely high sensitivity with regard to concentration and to small samples, integrated automation, and high peak capacity from multiple dimensions of separation. Capillaries with immobilized pH gradients for CIEF are emerging, which will alleviate interference from ampholytes and improve reproducibility in separation times when this valuable technique can be used as one of the dimensions.
Collapse
Affiliation(s)
- Brooke M. Koshel
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907
| | - Mary J. Wirth
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN 47907
| |
Collapse
|
16
|
Chingin K, Astorga-Wells J, Pirmoradian Najafabadi M, Lavold T, Zubarev RA. Separation of Polypeptides by Isoelectric Point Focusing in Electrospray-Friendly Solution Using a Multiple-Junction Capillary Fractionator. Anal Chem 2012; 84:6856-62. [DOI: 10.1021/ac3013016] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Konstantin Chingin
- Department of Medical
Biochemistry
and Biophysics, Karolinska Institutet,
Scheeles väg 2, SE-17177 Stockholm, Sweden
| | - Juan Astorga-Wells
- Department of Medical
Biochemistry
and Biophysics, Karolinska Institutet,
Scheeles väg 2, SE-17177 Stockholm, Sweden
- Biomotif AB, Stockholm,
Sweden
| | - Mohammad Pirmoradian Najafabadi
- Department of Medical
Biochemistry
and Biophysics, Karolinska Institutet,
Scheeles väg 2, SE-17177 Stockholm, Sweden
- Biomotif AB, Stockholm,
Sweden
| | | | - Roman A. Zubarev
- Department of Medical
Biochemistry
and Biophysics, Karolinska Institutet,
Scheeles väg 2, SE-17177 Stockholm, Sweden
- Science for Life Laboratory, Stockholm, Sweden
| |
Collapse
|
17
|
Abstract
Microscale 2D separation systems have been implemented in capillaries and microfabricated channels. They offer advantages of faster analysis, higher separation efficiency and less sample consumption than the conventional methods, such as liquid chromatography (LC) in a column and slab gel electrophoresis. In this article, we review their recent advancement, focusing on three types of platforms, including 2D capillary electrophoresis (CE), CE coupling with capillary LC, and microfluidic devices. A variety of CE and LC modes have been employed to construct 2D separation systems via sophistically designed interfaces. Coupling of different separation modes has also been realized in a number of microfluidic devices. These separation systems have been applied for the proteomic analysis of various biological samples, ranging from a single cell to tumor tissues.
Collapse
Affiliation(s)
- Xin Xu
- Interdisciplinary Microsystems Group, Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL 32611-6250, USA
| | - Ke Liu
- Interdisciplinary Microsystems Group, Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL 32611-6250, USA
| | - Z. Hugh Fan
- Interdisciplinary Microsystems Group, Department of Mechanical & Aerospace Engineering, University of Florida, Gainesville, FL 32611-6250, USA
- J Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL 32611-6131, USA
| |
Collapse
|
18
|
Rafalko A, Dai S, Hancock WS, Karger BL, Hincapie M. Development of a Chip/Chip/SRM platform using digital chip isoelectric focusing and LC-Chip mass spectrometry for enrichment and quantitation of low abundance protein biomarkers in human plasma. J Proteome Res 2012; 11:808-17. [PMID: 22098410 PMCID: PMC3656385 DOI: 10.1021/pr2006704] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Protein biomarkers are critical for diagnosis, prognosis, and treatment of disease. The transition from protein biomarker discovery to verification can be a rate limiting step in clinical development of new diagnostics. Liquid chromatography-selected reaction monitoring mass spectrometry (LC-SRM MS) is becoming an important tool for biomarker verification studies in highly complex biological samples. Analyte enrichment or sample fractionation is often necessary to reduce sample complexity and improve sensitivity of SRM for quantitation of clinically relevant biomarker candidates present at the low ng/mL range in blood. In this paper, we describe an alternative method for sample preparation for LC-SRM MS, which does not rely on availability of antibodies. This new platform is based on selective enrichment of proteotypic peptides from complex biological peptide mixtures via isoelectric focusing (IEF) on a digital ProteomeChip (dPC) for SRM quantitation using a triple quadrupole (QQQ) instrument with an LC-Chip (Chip/Chip/SRM). To demonstrate the value of this approach, the optimization of the Chip/Chip/SRM platform was performed using prostate specific antigen (PSA) added to female plasma as a model system. The combination of immunodepletion of albumin and IgG with peptide fractionation on the dPC, followed by SRM analysis, resulted in a limit of quantitation of PSA added to female plasma at the level of ∼1-2.5 ng/mL with a CV of ∼13%. The optimized platform was applied to measure levels of PSA in plasma of a small cohort of male patients with prostate cancer (PCa) and healthy matched controls with concentrations ranging from 1.5 to 25 ng/mL. A good correlation (r(2) = 0.9459) was observed between standard clinical ELISA tests and the SRM-based assay. Our data demonstrate that the combination of IEF on the dPC and SRM (Chip/Chip/SRM) can be successfully applied for verification of low abundance protein biomarkers in complex samples.
Collapse
Affiliation(s)
- Agnes Rafalko
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| | - Shujia Dai
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| | - William S. Hancock
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| | - Barry L. Karger
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| | - Marina Hincapie
- Barnett Institute of Chemical and Biological Analysis and Department of Chemistry and Chemical Biology Northeastern University, 360 Huntington Avenue, Boston, MA 02115
| |
Collapse
|
19
|
Cristobal A, Hennrich ML, Giansanti P, Goerdayal SS, Heck AJR, Mohammed S. In-house construction of a UHPLC system enabling the identification of over 4000 protein groups in a single analysis. Analyst 2012; 137:3541-8. [DOI: 10.1039/c2an35445d] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
|
21
|
Ly L, Wasinger VC. Protein and peptide fractionation, enrichment and depletion: Tools for the complex proteome. Proteomics 2011; 11:513-34. [DOI: 10.1002/pmic.201000394] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 10/03/2010] [Accepted: 10/18/2010] [Indexed: 12/28/2022]
|
22
|
Wei J, Gu X, Wang Y, Wu Y, Yan C. Two-dimensional separation system by on-line hyphenation of capillary isoelectric focusing with pressurized capillary electrochromatography for peptide and protein mapping. Electrophoresis 2010; 32:230-7. [DOI: 10.1002/elps.201000419] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/08/2010] [Accepted: 10/11/2010] [Indexed: 11/09/2022]
|
23
|
Zhang J, Lanham KA, Peterson RE, Heideman W, Li L. Characterization of the adult zebrafish cardiac proteome using online pH gradient strong cation exchange-RP 2D LC coupled with ESI MS/MS. J Sep Sci 2010; 33:1462-71. [PMID: 20235133 DOI: 10.1002/jssc.200900780] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
2D HPLC separations by coupling strong cation exchange (SCX) and RP fractionation have been widely used in large-scale proteomic studies. Traditionally this method is performed by salt gradient SCX separation followed by RP and MS/MS analysis. The salt gradient SCX method has been known to have low peptide and protein resolution. In this study, we implemented a pH gradient SCX-RP HPLC platform to separate proteome digests from adult zebrafish hearts, followed by ESI quadrupole-TOF MS/MS analysis. This pH gradient SCX method has improved peptide separation, as demonstrated by a greater number of peptides and proteins identified from individual SCX fractions. This pH gradient method also has better MS compatibility owing to lower salt usage. This setup allows fast microflow fractionation in SCX dimension and nanoflow RP separation in the second dimension, and can be easily implemented on conventional capillary LC ESI MS/MS systems. Using this setup, we identified 1375 proteins from adult zebrafish hearts, establishing the first reported experimental data set for the heart proteome of zebrafish. This work laid the foundation for further studies of environmental cardiac toxicology using zebrafish as a model organism.
Collapse
Affiliation(s)
- Jiang Zhang
- School of Pharmacy, University of Wisconsin, Madison, WI 53705-2222, USA
| | | | | | | | | |
Collapse
|
24
|
Liu J, Chen CF, Yang S, Chang CC, Devoe DL. Mixed-mode electrokinetic and chromatographic peptide separations in a microvalve-integrated polymer chip. LAB ON A CHIP 2010; 10:2122-2129. [PMID: 20556309 DOI: 10.1039/c003505j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
A cycloolefin polymer chip supporting the concatenation of isoelectric focusing (IEF) and reversed-phase liquid chromatography (RPLC) is demonstrated for high throughput two dimensional peptide separations. A unique benefit of the mixed-mode platform is the ability of IEF to act as a highly concentrating electrokinetic separation mode for effective isolation of sample components prior to RPLC. The thermoplastic chip contains integrated high pressure microvalves, enabling uniform sample transfer from the IEF channel to multiple parallel RPLC channels, gradient elution from each RPLC column, and hydrodynamic isolation between the separation dimensions. The reusable system is shown to provide efficient 2-D separations together with facile interfacing with MALDI-MS, suggesting a new path towards effective peptide analysis from complex samples.
Collapse
Affiliation(s)
- Jikun Liu
- Department of Mechanical Engineering, University of Maryland, College Park, MD, USA
| | | | | | | | | |
Collapse
|
25
|
Mondello L, Donato P, Cacciola F, Fanali C, Dugo P. RP‐LC×RP‐LC analysis of a tryptic digest using a combination of totally porous and partially porous stationary phases. J Sep Sci 2010; 33:1454-61. [DOI: 10.1002/jssc.200900816] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Luigi Mondello
- Dipartimento Farmaco‐chimico, Facoltà di Farmacia, Università di Messina, Messina, Italy
- Campus‐Biomedico, Roma, Italy
| | - Paola Donato
- Dipartimento Farmaco‐chimico, Facoltà di Farmacia, Università di Messina, Messina, Italy
- Campus‐Biomedico, Roma, Italy
| | - Francesco Cacciola
- Dipartimento Farmaco‐chimico, Facoltà di Farmacia, Università di Messina, Messina, Italy
| | - Chiara Fanali
- Campus‐Biomedico, Roma, Italy
- Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Paola Dugo
- Dipartimento Farmaco‐chimico, Facoltà di Farmacia, Università di Messina, Messina, Italy
- Campus‐Biomedico, Roma, Italy
| |
Collapse
|
26
|
Yang C, Wang S, Chang C, Wang Y, Hu X. Capillary Isoelectric Focusing with an Open Tubular Immobilized pH Gradient. Anal Chem 2010; 82:1580-3. [DOI: 10.1021/ac902223y] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Chun Yang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Shuangshou Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Chunyan Chang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yang Wang
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Xiaoya Hu
- College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
27
|
Ly L, Wasinger VC. Mass and charge selective protein fractionation for the differential analysis of T-cell and CD34+ stem cell proteins from cord blood. J Proteomics 2010; 73:571-8. [DOI: 10.1016/j.jprot.2009.09.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2009] [Revised: 08/11/2009] [Accepted: 09/02/2009] [Indexed: 12/11/2022]
|
28
|
Slebos RJC, Brock JWC, Winters NF, Stuart SR, Martinez MA, Li M, Chambers MC, Zimmerman LJ, Ham AJ, Tabb DL, Liebler DC. Evaluation of strong cation exchange versus isoelectric focusing of peptides for multidimensional liquid chromatography-tandem mass spectrometry. J Proteome Res 2009; 7:5286-94. [PMID: 18939861 DOI: 10.1021/pr8004666] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Shotgun proteome analysis platforms based on multidimensional liquid chromatography-tandem mass spectrometry (LC-MS/MS) provide a powerful means to discover biomarker candidates in tissue specimens. Analysis platforms must balance sensitivity for peptide detection, reproducibility of detected peptide inventories and analytical throughput for protein amounts commonly present in tissue biospecimens (< 100 microg), such that platform stability is sufficient to detect modest changes in complex proteomes. We compared shotgun proteomics platforms by analyzing tryptic digests of whole cell and tissue proteomes using strong cation exchange (SCX) and isoelectric focusing (IEF) separations of peptides prior to LC-MS/MS analysis on a LTQ-Orbitrap hybrid instrument. IEF separations provided superior reproducibility and resolution for peptide fractionation from samples corresponding to both large (100 microg) and small (10 microg) protein inputs. SCX generated more peptide and protein identifications than did IEF with small (10 microg) samples, whereas the two platforms yielded similar numbers of identifications with large (100 microg) samples. In nine replicate analyses of tryptic peptides from 50 microg colon adenocarcinoma protein, overlap in protein detection by the two platforms was 77% of all proteins detected by both methods combined. IEF more quickly approached maximal detection, with 90% of IEF-detectable medium abundance proteins (those detected with a total of 3-4 peptides) detected within three replicate analyses. In contrast, the SCX platform required six replicates to detect 90% of SCX-detectable medium abundance proteins. High reproducibility and efficient resolution of IEF peptide separations make the IEF platform superior to the SCX platform for biomarker discovery via shotgun proteomic analyses of tissue specimens.
Collapse
Affiliation(s)
- Robbert J C Slebos
- Jim Ayers Institute for Precancer Detection and Diagnosis, Vanderbilt-Ingram Cancer Center, Medical Research Building III, 465 21st Avenue South, Nashville, Tennessee 37232, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zhang ZX, Zhang XW, Zhang SS. Heart-cut capillary electrophoresis for drug analysis in mouse blood with electrochemical detection. Anal Biochem 2009; 387:171-7. [DOI: 10.1016/j.ab.2009.01.026] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 11/28/2022]
|
30
|
François I, Cabooter D, Sandra K, Lynen F, Desmet G, Sandra P. Tryptic digest analysis by comprehensive reversed phase×two reversed phase liquid chromatography (RP-LC×2RP-LC) at different pH's. J Sep Sci 2009; 32:1137-44. [DOI: 10.1002/jssc.200800578] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Abstract
In the postgenomic era, proteomics has become a dominant field for identifying and quantifying the complex protein machinery of the cell. The expression levels, posttranslational modifications, and specific interactions of proteins control the biology of such processes as development, differentiation, and signal transduction. Studies of the proteins involved in these processes often lead to a better understanding of biology and of human disease. Powerful separation techniques and sensitive detection methods enable researchers to untangle these complicated networks of processes. CE coupled with either MS or LIF are two of the techniques that make this possible. This review will cover proven CE-based methods for proteomics on the cell and tissue level and their application in biological and clinical studies, relevant new developments in enabling technology such as microfluidic CE-MS demonstrated on model systems, and comment on the future of CE in proteomics.
Collapse
MESH Headings
- Amino Acid Sequence
- Electrophoresis, Capillary/instrumentation
- Electrophoresis, Capillary/methods
- Humans
- Molecular Sequence Data
- Proteins/analysis
- Proteins/genetics
- Proteome/analysis
- Proteomics/methods
- Sequence Alignment
- Spectrometry, Mass, Electrospray Ionization/instrumentation
- Spectrometry, Mass, Electrospray Ionization/methods
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/instrumentation
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization/methods
Collapse
Affiliation(s)
- Bryan R Fonslow
- Department of Chemical Physiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | |
Collapse
|
32
|
Kim KH, Moon MH. Development of a Multilane Channel System for Nongel-Based Two-Dimensional Protein Separations Using Isoelectric Focusing and Asymmetrical Flow Field-Flow Fractionation. Anal Chem 2009; 81:1715-21. [DOI: 10.1021/ac802357s] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ki Hun Kim
- Department of Chemistry, Yonsei University, Seoul, 120-749, Korea
| | - Myeong Hee Moon
- Department of Chemistry, Yonsei University, Seoul, 120-749, Korea
| |
Collapse
|
33
|
Lu B, McClatchy DB, Kim JY, Yates JR. Strategies for shotgun identification of integral membrane proteins by tandem mass spectrometry. Proteomics 2009; 8:3947-55. [PMID: 18780349 DOI: 10.1002/pmic.200800120] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Integral membrane proteins (IMPs) are difficult to identify, mainly for two reasons: the hydrophobicity of IMPs and their low abundance. Sample preparation is a key component in the large-scale identification of IMPs. In this review, we survey strategies for shotgun identification of IMPs by MS/MS. We will discuss enrichment, solubilization, separation, and digestion of IMPs, and data analysis for membrane proteomics.
Collapse
Affiliation(s)
- Bingwen Lu
- Department of Chemical Physiology, SR-11, The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | | | | |
Collapse
|
34
|
|
35
|
Abstract
Two modes of separation coupled with MS enable researchers to study complicated biological structures.
Collapse
|
36
|
Pruim P, Öhman M, Huo Y, Schoenmakers PJ, Kok WT. Methacrylate monolithic capillary columns for gradient peptide separations. J Chromatogr A 2008; 1208:109-15. [DOI: 10.1016/j.chroma.2008.08.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2008] [Revised: 08/18/2008] [Accepted: 08/20/2008] [Indexed: 10/21/2022]
|
37
|
Multi-dimensional capillary electrophoresis and chromatography for proteomic analysis. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2008. [PMID: 18392595 DOI: 10.1007/978-1-59745-376-9_33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
Comprehensive two-dimensional liquid chromatography-capillary electrophoresis systems are summarized in this chapter. A variety of combinations of capillary electrophoresis and liquid chromatography modes as well as interfaces and detection technologies are discussed. A typical, comprehensive two-dimensional system coupled with reverse-phase liquid chromatography with fast capillary electrophoresis and hyphenated to mass spectrometry was demonstrated for proteomic analysis. A two-dimensional capillary electrophoresis system of coupling capillary sieving electrophoresis with micellar electrokinetic chromatography and its application in single cell analysis for protein expression profiling are presented.
Collapse
|
38
|
Stoll DR, Li X, Wang X, Carr PW, Porter SEG, Rutan SC. Fast, comprehensive two-dimensional liquid chromatography. J Chromatogr A 2007; 1168:3-43; discussion 2. [PMID: 17888443 PMCID: PMC3205947 DOI: 10.1016/j.chroma.2007.08.054] [Citation(s) in RCA: 307] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Revised: 07/09/2007] [Accepted: 08/10/2007] [Indexed: 11/21/2022]
Abstract
The absolute need to improve the separating power of liquid chromatography, especially for multi-constituent biological samples, is becoming increasingly evident. In response, over the past few years, there has been a great deal of interest in the development of two-dimensional liquid chromatography (2DLC). Just as 1DLC is preferred to 1DGC based on its compatibility with biological materials we believe that ultimately 2DLC will be preferred to the much more highly developed 2DGC for such samples. The huge advantage of 2D chromatographic techniques over 1D methods is inherent in the tremendous potential increase in peak capacity (resolving power). This is especially true of comprehensive 2D chromatography wherein it is possible, under ideal conditions, to obtain a total peak capacity equal to the product of the peak capacities of the first and second dimension separations. However, the very long timescale (typically several hours to tens of hours) of comprehensive 2DLC is clearly its chief drawback. Recent advances in the use of higher temperatures to speed up isocratic and gradient elution liquid chromatography have been used to decrease the time needed to do the second dimension LC separation of 2DLC to about 20s for a full gradient elution run. Thus, fast, high temperature LC is becoming a very promising technique. Peak capacities of over 2000 and rates of peak capacity production of nearly 1 peak/s have been achieved. In consequence, many real samples showing more than 200 peaks with signal to noise ratios of better than 10:1 have been run in total times of under 30 min. This report is not intended to be a comprehensive review of 2DLC, but is deliberately focused on the issues involved in doing fast 2DLC by means of elevating the column temperature; however, many issues of broader applicability will be discussed.
Collapse
Affiliation(s)
- Dwight R. Stoll
- University of Minnesota, Department of Chemistry, Smith and Kolthoff Halls, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | - Xiaoping Li
- University of Minnesota, Department of Chemistry, Smith and Kolthoff Halls, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | - Xiaoli Wang
- University of Minnesota, Department of Chemistry, Smith and Kolthoff Halls, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | - Peter W. Carr
- University of Minnesota, Department of Chemistry, Smith and Kolthoff Halls, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | - Sarah E. G. Porter
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, VA 23284-2006, USA
| | - Sarah C. Rutan
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, VA 23284-2006, USA
| |
Collapse
|
39
|
Fournier ML, Gilmore JM, Martin-Brown SA, Washburn MP. Multidimensional Separations-Based Shotgun Proteomics. Chem Rev 2007; 107:3654-86. [PMID: 17649983 DOI: 10.1021/cr068279a] [Citation(s) in RCA: 171] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
40
|
Hu L, Ye M, Jiang X, Feng S, Zou H. Advances in hyphenated analytical techniques for shotgun proteome and peptidome analysis--a review. Anal Chim Acta 2007; 598:193-204. [PMID: 17719892 DOI: 10.1016/j.aca.2007.07.046] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2007] [Revised: 07/17/2007] [Accepted: 07/18/2007] [Indexed: 01/30/2023]
Abstract
Proteomics is defined as the analysis of part or all of the protein components of a complex biological system (a cell, organ or tissue) at a given moment. Due to the huge number of proteins encoded by the genome, novel analytical techniques must be developed to meet the need of large scale analysis. This has led to the hyphenation of multiple techniques to achieve this object. Here current status of the hyphenated analytical techniques of one-dimensional and multidimensional liquid chromatography-mass spectrometry for shotgun proteomic analysis is reviewed, and on-line techniques for automated sample preparation and injection are also covered. In addition, the hyphenated techniques for peptidome analysis are also covered.
Collapse
Affiliation(s)
- Lianghai Hu
- National Chromatographic R&A Center, Dalian Institute of Chemical Physics, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | | | | | | | | |
Collapse
|
41
|
Armenta JM, Gu B, Thulin CD, Lee ML. Coupled affinity-hydrophobic monolithic column for on-line removal of immunoglobulin G, preconcentration of low abundance proteins and separation by capillary zone electrophoresis. J Chromatogr A 2007; 1148:115-22. [PMID: 17379232 DOI: 10.1016/j.chroma.2007.02.089] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2006] [Revised: 02/18/2007] [Accepted: 02/23/2007] [Indexed: 11/26/2022]
Abstract
A butyl methacrylate-co-ethylene dimethacrylate (BuMA-co-EDMA) monolith was synthesized by UV initiated polymerization at the inlet end of a 75 microm I.D. fused silica capillary that had been previously coated with a protein compatible polymer, poly(vinyl)alcohol. The monolith was used for on-line preconcentration of proteins followed by capillary electrophoresis (CE) separation. For the analysis of standard proteins (cytochrome c, lysozyme and trypsinogen A) this system proved reproducible. The run-to-run %RSD values for migration time and corrected peak area were less than 5%, which is typical of CE. As measured by frontal analysis using lysozyme as solute, saturation of a 1cm monolith was reached after loading 48 ng of protein. Finally, the BuMA-co-EDMA monolithic preconcentrator was coupled to a protein G monolithic column via a zero dead volume union. The coupled system was used for on-line removal of IgG, preconcentration of standard proteins and CE separation. This system could be a valuable sample preparation tool for the analysis of low abundance proteins in complex samples such as human serum, in which high abundance proteins, e.g., human serum albumin (HSA) and immunoglobulin G (IgG), hinder identification and quantification of low abundance proteins.
Collapse
Affiliation(s)
- Jenny M Armenta
- Department of Chemistry and Biochemistry, Brigham Young University, Provo, UT 84602-5700, USA
| | | | | | | |
Collapse
|
42
|
Ye M, Jiang X, Feng S, Tian R, Zou H. Advances in chromatographic techniques and methods in shotgun proteome analysis. Trends Analyt Chem 2007. [DOI: 10.1016/j.trac.2006.10.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
An Y, Cooper JW, Balgley BM, Lee CS. Selective enrichment and ultrasensitive identification of trace peptides in proteome analysis using transient capillary isotachophoresis/zone electrophoresis coupled with nano-ESI-MS. Electrophoresis 2006; 27:3599-608. [PMID: 16927423 DOI: 10.1002/elps.200600093] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Besides the complexity in protein samples of biological origin, probably the greatest challenge presently facing comprehensive proteome analysis is related to the large variation of protein relative abundances (>6 orders of magnitude), having potential biological significance in mammalian systems. As demonstrated in this work, transient capillary ITP/zone electrophoresis (CITP/CZE) provides selective analyte enrichment through electrokinetic stacking and extremely high resolving power toward protein and peptide mixtures. The result of the CITP process is that major components may be diluted, but trace compounds are concentrated. The on-column transition of CITP to CZE minimizes additional band broadening while providing superior analyte resolution. Online coupling of transient CITP/CZE with nano-ESI-MS allows ultrasensitive detection of trace peptides at levels of subnanomolar concentration or subfemtomole mass in complex peptide mixtures. More importantly, selective enrichment of trace peptides enables the identification and sequence analysis of low-abundance peptides co-migrated with highly abundant species at a concentration ratio of 1:500,000. The combined CITP/CZE-nano-ESI-MS system is demonstrated to be at least one to two orders of magnitude more sensitive than that attained in conventional electrophoretic and chromatographic-based proteome technologies over a wide dynamic concentration range, potentially allowing comprehensive analysis of protein profiles within a small cell population and limited tissue samples using conventional mass spectrometers. Furthermore, the speed of CITP/CZE separation and the lack of column equilibration in CITP/CZE not only improve the throughput of proteome analysis, but also facilitate its seamless integration with other separation technologies in a multidimensional protein identification platform.
Collapse
Affiliation(s)
- Yanming An
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
| | | | | | | |
Collapse
|
44
|
Simpson DC, Ahn S, Pasa-Tolic L, Bogdanov B, Mottaz HM, Vilkov AN, Anderson GA, Lipton MS, Smith RD. Using size exclusion chromatography-RPLC and RPLC-CIEF as two-dimensional separation strategies for protein profiling. Electrophoresis 2006; 27:2722-33. [PMID: 16732621 PMCID: PMC1769308 DOI: 10.1002/elps.200600037] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Bottom-up proteomics (analyzing peptides that result from protein digestion) has demonstrated capability for broad proteome coverage and good throughput. However, due to incomplete sequence coverage, this approach is not ideally suited to the study of modified proteins. The modification complement of a protein can best be elucidated by analyzing the intact protein. 2-DE, typically coupled with the analysis of peptides that result from in-gel digestion, is the most frequently applied protein separation technique in MS-based proteomics. As an alternative, numerous column-based liquid phase techniques, which are generally more amenable to automation, are being investigated. In this work, the combination of size-exclusion chromatography (SEC) fractionation with RPLC-Fourier-transform ion cyclotron resonance (FTICR)-MS is compared with the combination of RPLC fractionation with CIEF-FTICR-MS for the analysis of the Shewanella oneidensis proteome. SEC-RPLC-FTICR-MS allowed the detection of 297 proteins, as opposed to 166 using RPLC-CIEF-FTICR-MS, indicating that approaches based on LC-MS provide better coverage. However, there were significant differences in the sets of proteins detected and both approaches provide a basis for accurately quantifying changes in protein and modified protein abundances.
Collapse
Affiliation(s)
| | | | - Ljiljana Pasa-Tolic
- Corresponding Author: Ljiljana Pasa-Tolic, Telephone:
+1 509 376 8859, Facsimile: +1 509 376
2303, Electronic Mail:
| | | | | | | | | | | | | |
Collapse
|
45
|
Huang YF, Huang CC, Hu CC, Chang HT. Capillary electrophoresis-based separation techniques for the analysis of proteins. Electrophoresis 2006; 27:3503-22. [PMID: 16927348 DOI: 10.1002/elps.200600100] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
CE offers the advantages of high speed, great efficiency, as well as the requirement of minimum amounts of sample and buffer for the analysis of proteins. In this review, we summarize the CE-based techniques coupled with absorption, LIF, and MS detection systems for the analysis of proteins mostly within the past 5 years. The basic principle of each technique and its advantages and disadvantages for protein analysis are discussed in brief. Advanced CE techniques, including on-column concentration techniques and high-efficiency multidimensional separation techniques, for high-throughput protein profiling of complex biological samples and/or of single cells are emphasized. Although the developed techniques provide improved peak capacity, they have not become practical tools for proteomics, mainly because of poor reproducibility, low-sample lading capacity, and low throughput due to ineffective interfaces between two separation dimensions and that between separation and MS systems. In order to identify the complexities and dynamics of the proteomes expressed by cells, tissues, or organisms, techniques providing improved analytical sensitivity, throughput, and dynamic ranges are still demanded.
Collapse
Affiliation(s)
- Yu-Fen Huang
- Department of Chemistry, National Taiwan University, Taipei, Taiwan
| | | | | | | |
Collapse
|
46
|
Monton MRN, Terabe S. Sample enrichment techniques in capillary electrophoresis: Focus on peptides and proteins. J Chromatogr B Analyt Technol Biomed Life Sci 2006; 841:88-95. [PMID: 16716769 DOI: 10.1016/j.jchromb.2006.04.017] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 04/17/2006] [Accepted: 04/20/2006] [Indexed: 01/03/2023]
Abstract
Compared to chromatography-based techniques, the concentration limits of detection (CLOD) associated with capillary electrophoresis are worse, and these have largely precluded their use in many practical applications. To overcome this limitation, researchers from various disciplines have exerted tremendous efforts toward developing strategies for increasing the concentration sensitivities of capillary electrophoresis (CE) systems, via the so-called sample enrichment techniques. This review highlights selected developments and advances in this area as applied to the analyses of proteins and peptides in the last 5 years.
Collapse
Affiliation(s)
- Maria Rowena N Monton
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | | |
Collapse
|
47
|
Malmström J, Lee H, Nesvizhskii AI, Shteynberg D, Mohanty S, Brunner E, Ye M, Weber G, Eckerskorn C, Aebersold R. Optimized Peptide Separation and Identification for Mass Spectrometry Based Proteomics via Free-Flow Electrophoresis. J Proteome Res 2006; 5:2241-9. [PMID: 16944936 DOI: 10.1021/pr0600632] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multidimensional LC-MS based shotgun proteomics experiments at the peptide level have traditionally been carried out by ion exchange in the first dimension and reversed-phase liquid chromatography in the second. Recently, it has been shown that isoelectric focusing (IEF) is an interesting alternative approach to ion exchange separation of peptides in the first dimension. Here we present an improved protocol for peptide separation by continuous free-flow electrophoresis (FFE) as the first dimension in a two-dimensional peptide separation work flow. By the use of a flat pI gradient and a mannitol and urea based separation media we were able to perform high-throughput proteome analysis with improved interfacing between FFE and RPLC-MS/MS. The developed protocol was applied to a cytosolic fraction from Schneider S2 cells from Drosophila melanogaster, resulting in the identification of more than 10,000 unique peptides with high probability. To improve the accuracy of the peptide identification following FFE-IEF we incorporated the pI information as an additional parameter into a statistical model for discrimination between correct and incorrect peptide assignments to MS/MS spectra.
Collapse
Affiliation(s)
- Johan Malmström
- Institute for Molecular Systems Molecular Biology, Swiss Federal Institute for Technology Zürich (ETH), Hoenggerberg 8093 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Wang X, Stoll DR, Schellinger AP, Carr PW. Peak capacity optimization of peptide separations in reversed-phase gradient elution chromatography: fixed column format. Anal Chem 2006; 78:3406-16. [PMID: 16689544 PMCID: PMC2638764 DOI: 10.1021/ac0600149] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The optimization of peak capacity in gradient elution RPLC is essential for the separation of multicomponent samples such as those encountered in proteomic research. In this work, we study the effect of gradient time (tG), flow rate (F), temperature (T), and final eluent strength (phi(final)) on the peak capacity of separations of peptides that are representative of the range in peptides found in a tryptic digest. We find that there are very strong interactions between the individual variables (e.g., flow rate and gradient time) which make the optimization quite complicated. On a given column, one should first set the gradient time to the longest tolerable and then set the temperature to the highest achievable with the instrument. Next, the flow rate should be optimized using a reasonable but arbitrary value of phi(final). Last, the final eluent strength should be adjusted so that the last solute elutes as close as possible to the gradient time. We also develop an easily implemented, highly efficient, and effective Monte Carlo search strategy to simultaneously optimize all the variables. We find that gradient steepness is an important parameter that influences peak capacity and an optimum range of gradient steepness exists in which the peak capacity is maximized.
Collapse
Affiliation(s)
- Xiaoli Wang
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
49
|
Mao Y, Li Y, Zhang X. Array based capillary IEF with a whole column image of laser-induced fluorescence in coupling to capillary RPLC as a comprehensive 2-D separation system for proteome analysis. Proteomics 2006; 6:420-6. [PMID: 16317775 DOI: 10.1002/pmic.200500220] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Based on array CIEF (ACIEF) and a novel whole column imaging detection (WCID), a comprehensive 2-D system with laser-induced fluorescence was developed for protein mapping. By coupling capillary RPLC (CRPLC) as the first dimension and ACIEF as the second dimension, a high-throughput and high-resolution proteomic expression profiling was obtained. An array of up to 60 capillaries was assembled, with electrical connections made through filling small breaks, created on each capillary at positions of buffer reservoirs, with a porous polymer. A whole column image system with laser-induced fluorescence (LIF) was devised. Spot excitation was performed with a laser converted to produce linear light, and a CCD camera was employed to take images of the protein fluorescence during line laser scanning of the capillary array. Quantitative detection of thousands of focusing protein bands in the capillary array was achieved. Details on the capillary array fabrication and scanning LIF detection system devices are discussed. The efficiency of this CRPLC-ACIEF-LIF-WCID system was further demonstrated using samples of soluble proteins extracted from liver cancer tissue. The overall peak capacity was estimated to be around 18 000 in an analysis time of less than 3 h. The reproducibility of consecutive runs and different columns were assessed as having an RSD of 1.5% and 2.2% in focusing positions, respectively.
Collapse
Affiliation(s)
- Yu Mao
- Department of Chemistry and Research Center for Proteome, Fudan University, Shanghai, PR China
| | | | | |
Collapse
|
50
|
Park GW, Kwon KH, Kim JY, Lee JH, Yun SH, Kim SI, Park YM, Cho SY, Paik YK, Yoo JS. Human plasma proteome analysis by reversed sequence database search and molecular weight correlation based on a bacterial proteome analysis. Proteomics 2006; 6:1121-32. [PMID: 16429460 DOI: 10.1002/pmic.200500318] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
In shotgun proteomics, proteins can be fractionated by 1-D gel electrophoresis and digested into peptides, followed by liquid chromatography to separate the peptide mixture. Mass spectrometry generates hundreds of thousands of tandem mass spectra from these fractions, and proteins are identified by database searching. However, the search scores are usually not sufficient to distinguish the correct peptides. In this study, we propose a confident protein identification method for high-throughput analysis of human proteome. To build a filtering protocol in database search, we chose Pseudomonas putida KT2440 as a reference because this bacterial proteome contains fewer modifications and is simpler than the human proteome. First, the P. putida KT2440 proteome was filtered by reversed sequence database search and correlated by the molecular weight in 1-D-gel band positions. The characterization protocol was then applied to determine the criteria for clustering of the human plasma proteome into three different groups. This protein filtering method, based on bacterial proteome data analysis, represents a rapid way to generate higher confidence protein list of the human proteome, which includes some of heavily modified and cleaved proteins.
Collapse
Affiliation(s)
- Gun Wook Park
- Proteomics Team, Korea Basic Science Institute, Yusung-Ku, Daejeon, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|