1
|
Zhang X, Jiang J, Xu J, Chen J, Gu Y, Wu G. Liraglutide, a glucagon-like peptide-1 receptor agonist, ameliorates inflammation and apoptosis via inhibition of receptor for advanced glycation end products signaling in AGEs induced chondrocytes. BMC Musculoskelet Disord 2024; 25:601. [PMID: 39080620 PMCID: PMC11287913 DOI: 10.1186/s12891-024-07640-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 06/28/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND This study aimed to investigate functions of GLP-1R agonist by liraglutide (LIRA) and revealing the mechanism related to AGEs/RAGE in chondrocytes. METHODS To illustrate potential effect of GLP-1R agonist on AGEs induced chondrocytes, chondrocytes were administrated by AGEs with LIRA and GLP-1R inhibitor exendin. Inflammatory factors were assessed using ELISA. Real-time PCR was used to evaluate the catabolic activity MMPs and ADAMTS mRNA level, as well as anabolic activity (aggrecan and collagen II). RAGE expression was investigated by Western blotting. TUNEL, caspase3 activity and immunofluorescence were performed to test the apoptotic activity. RESULTS Our results showed that treatment with LIRA at > 100 nM attenuated the AGE-induced chondrocyte viability. Western bolt demonstrated that GLP-1R activation by LIRA treatment reduced RAGE protein expression compared with the AGEs groups. ELISA showed that LIRA hindered the AGEs-induced production of inflammatory cytokines (IL-6, IL-12 and TNF-α) in primary chondrocytes. AGEs induced catabolism levels (MMP-1, -3, -13 and ADAMTS-4, 5) are also attenuated by LIRA, causing the retention of more extracellular matrix (Aggrecan and Collagen II). TUNEL, caspase3 activity and immunofluorescence results indicated that LIRA inhibited the AGEs-induced production of inflammatory cytokines in primary chondrocytes and attenuated the caspase 3 level, leading to the reduced apoptotic activity. All the protective effects are reversed by exendin (GLP-1R blockers). CONCLUSIONS The present study demonstrates for the first time that LIRA, an agonist for GLP-1R which is commonly used in type 2 diabetes reverses AGEs induced chondrocyte inflammation and apoptosis through suppressing RAGE signaling, contributing to reduced catabolism and retention of more extracellular matrix. The above results indicate the possible effect of GLP-1R agonist on treating OA.
Collapse
Affiliation(s)
- Xianyu Zhang
- Department of Orthopedics, ShangRao People's Hospital, Shangrao, Jiangxi province, 334000, China
| | - Jian Jiang
- Department of Orthopedics, ShangRao People's Hospital, Shangrao, Jiangxi province, 334000, China
| | - Jiajia Xu
- Department of Orthopedics, ShangRao People's Hospital, Shangrao, Jiangxi province, 334000, China
| | - Jian Chen
- Department of Orthopedics, ShangRao People's Hospital, Shangrao, Jiangxi province, 334000, China
| | - Yuntao Gu
- Spine Surgery, The Second Affiliated Hospital of Hainan Medical University, 368 Yehai Dadao, Longhua District, Haikou, Hainan, 570216, China.
| | - Guobao Wu
- Department of Orthopedics, ShangRao People's Hospital, Shangrao, Jiangxi province, 334000, China.
| |
Collapse
|
2
|
Diekman BO, Loeser RF. Aging and the emerging role of cellular senescence in osteoarthritis. Osteoarthritis Cartilage 2024; 32:365-371. [PMID: 38049031 PMCID: PMC10984800 DOI: 10.1016/j.joca.2023.11.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVE The correlation between age and incidence of osteoarthritis (OA) is well known but the causal mechanisms involved are not completely understood. This narrative review summarizes selected key findings from the past 30 years that have elucidated key aspects of the relationship between aging and OA. METHODS The peer-reviewed English language literature was searched on PubMed using keywords including senescence, aging, cartilage, and osteoarthritis, for original studies and reviews published from 1993 to 2023 with a major focus on more recent studies. Manuscripts most relevant to aging and OA that examined one or more of the hallmarks of aging were selected for further review. RESULTS All proposed hallmarks of aging have been observed in articular cartilage and some have also been described in other joint tissues. Hallmarks include genomic instability, telomere attrition, epigenetic alterations, loss of proteostasis, deregulated nutrient sensing, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, disabled macroautophagy, chronic inflammation, and dysbiosis. There is evidence that these age-related changes contribute to the development of OA in part by promoting cellular senescence. Senescence may therefore serve as a downstream mediator that connects numerous aging hallmarks to OA, likely through the senescence-associated secretory phenotype that is characterized by increased production of proinflammatory cytokines and matrix metalloproteinases. CONCLUSIONS Progress over the past 30 years has provided the foundation for emerging therapies, such as senolytics and senomorphics, that hold promise for OA disease modification. Mechanistic studies utilizing physiologically-aged animals and cadaveric human joint tissues will be important for continued progress.
Collapse
Affiliation(s)
- Brian O Diekman
- Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA; Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, NC, 27599, USA.
| | - Richard F Loeser
- Thurston Arthritis Research Center, University of North Carolina School of Medicine, Chapel Hill, NC, 27599, USA; Division of Rheumatology, Allergy, and Immunology, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
3
|
Tan L, Armstrong AR, Rosas S, Patel CM, Wiele SSV, Willey JS, Carlson CS, Yammani RR. Nuclear protein-1 is the common link for pathways activated by aging and obesity in chondrocytes: A potential therapeutic target for osteoarthritis. FASEB J 2023; 37:e23133. [PMID: 37566478 PMCID: PMC10939173 DOI: 10.1096/fj.202201700rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 07/10/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023]
Abstract
Pathways leading to osteoarthritis (OA) are diverse depending on the risk factors involved; thus, developing OA therapeutics has been challenging. Here we report that nuclear protein-1 (Nupr1), a stress-inducible protein/transcription factor, is activated by pathways associated with obesity and aging in chondrocytes. Treatment of human chondrocytes with free fatty acids (palmitate and oleate; a model for high-fat diet/obesity) induced PERK signaling and increased expression of caspase-3, TRB3, and Nupr1. On the other hand, treatment of chondrocytes with menadione (oxidative stress inducer) induced oxidation of IRE1, activated antioxidant response (higher Nrf2 expression), and increased expression of Nupr1 and matrix metalloproteinases. Experimental OA was induced by destabilization of the medial meniscus (DMM) in the knee joints of Nupr1+/+ and Nupr1-/- mice. Loss of Nupr1 expression reduced the severity of cartilage lesions in this model. Together, our findings suggest that Nupr1 is a common factor activated by signaling pathways activated by obesity (ER stress) and age (oxidative stress) and a potential drug target for OA resulting from various risk factors.
Collapse
Affiliation(s)
- Li Tan
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Alexandra R. Armstrong
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Samuel Rosas
- Department of Orthopaedic Surgery, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Chirayu M. Patel
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Sabrina S. Vander Wiele
- Department of Biomedical Engineering, The College of New Jersey, Ewing Township, New Jersey, USA
| | - Jeffrey S. Willey
- Department of Radiation Oncology, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| | - Cathy S. Carlson
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St. Paul, Minnesota, USA
| | - Raghunatha R. Yammani
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina, USA
| |
Collapse
|
4
|
Xiao SQ, Cheng M, Wang L, Cao J, Fang L, Zhou XP, He XJ, Hu YF. The role of apoptosis in the pathogenesis of osteoarthritis. INTERNATIONAL ORTHOPAEDICS 2023:10.1007/s00264-023-05847-1. [PMID: 37294429 DOI: 10.1007/s00264-023-05847-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/17/2023] [Indexed: 06/10/2023]
Abstract
PURPOSE Apoptosis is an important physiological process, making a great difference to development and tissue homeostasis. Osteoarthritis (OA) is a chronic joint disease characterized by degeneration and destruction of articular cartilage and bone hyperplasia. This purpose of this study is to provide an updated review of the role of apoptosis in the pathogenesis of osteoarthritis. METHODS A comprehensive review of the literature on osteoarthritis and apoptosis was performed, which mainly focused on the regulatory factors and signaling pathways associated with chondrocyte apoptosis in osteoarthritis and other pathogenic mechanisms involved in chondrocyte apoptosis. RESULTS Inflammatory mediators such as reactive oxygen species (ROS), nitric oxide (NO), IL-1β, tumor necrosis factor-α (TNF-α), and Fas are closely related to chondrocyte apoptosis. NF-κB signaling pathway, Wnt signaling pathway, and Notch signaling pathway activate proteins and gene targets that promote or inhibit the progression of osteoarthritis disease, including chondrocyte apoptosis and ECM degradation. Long non-coding RNAs (LncRNAs) and microRNAs (microRNAs) have gradually replaced single and localized research methods and become the main research approaches. In addition, the relationship between cellular senescence, autophagy, and apoptosis was also briefly explained. CONCLUSION This review offers a better molecular delineation of apoptotic processes that may help in designing new therapeutic options for OA treatment.
Collapse
Affiliation(s)
- Si-Qi Xiao
- Department of Rheumatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China
| | - Miao Cheng
- Department of Rheumatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China
| | - Lei Wang
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China
| | - Jing Cao
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China
| | - Liang Fang
- Department of Rheumatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China
| | - Xue-Ping Zhou
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Xiao-Jin He
- Department of Rheumatology, The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210029, China.
- Jiangsu Province Hospital of Chinese medicine, Nanjing, 210029, China.
| | - Yu-Feng Hu
- The First Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
5
|
Wen P, Zheng B, Zhang B, Ma T, Hao L, Zhang Y. The role of ageing and oxidative stress in intervertebral disc degeneration. Front Mol Biosci 2022; 9:1052878. [PMID: 36419928 PMCID: PMC9676652 DOI: 10.3389/fmolb.2022.1052878] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 10/25/2022] [Indexed: 10/10/2023] Open
Abstract
Intervertebral disc degeneration (IDD) is the primary cause of intervertebral disc (IVD) disease. With the increased ageing of society, an increasing number of patients are plagued by intervertebral disc disease. Ageing not only accelerates the decreased vitality and functional loss of intervertebral disc cells but also increases intracellular oxidative stress. Moreover, the speed of intervertebral disc ageing is also linked to high levels of reactive oxygen species (ROS) production. Not only is the production of ROS increased in ageing intervertebral disc cells, but antioxidant levels in degenerative intervertebral discs also decrease. In addition to the intervertebral disc, the structural components of the intervertebral disc matrix are vulnerable to oxidative damage. After chronic mitochondrial dysfunction, ROS can be produced in large quantities, while autophagy can eliminate these impaired mitochondria to reduce the production of ROS. Oxidative stress has a marked impact on the occurrence of IDD. In the future, IDD treatment is aiming to improve oxidative stress by regulating the redox balance in intervertebral disc cells. In summary, ageing and oxidative stress promote the degeneration of IVD, but further basic and clinical trials are needed to determine how to treat oxidative stress. At present, although there are many in-depth studies on the relationship between oxidative stress and degeneration of intervertebral disc cells, the specific mechanism has not been elucidated. In this paper, the main causes of intervertebral disc diseases are studied and summarized, and the impact of oxidative stress on intervertebral disc degeneration is studied.
Collapse
Affiliation(s)
- Pengfei Wen
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Bolong Zheng
- Department of Spine Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Binfei Zhang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Tao Ma
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Linjie Hao
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yumin Zhang
- Department of Joint Surgery, Honghui Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
6
|
Kaneguchi A, Ozawa J. Inflammation and Fibrosis Induced by Joint Remobilization, and Relevance to Progression of Arthrogenic Joint Contracture: A Narrative Review. Physiol Res 2022. [DOI: 10.33549/physiolres.934876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Joint immobilization is frequently administered after fractures and ligament injuries and can cause joint contracture as a side effect. The structures responsible for immobilization-induced joint contracture can be roughly divided into muscular and articular. During remobilization, although myogenic contracture recovers spontaneously, arthrogenic contracture is irreversible or deteriorates further. Immediately after remobilization, an inflammatory response is observed, characterized by joint swelling, deposit formation in the joint space, edema, inflammatory cell infiltration, and the upregulation of genes encoding proinflammatory cytokines in the joint capsule. Subsequently, fibrosis in the joint capsule develops, in parallel with progressing arthrogenic contracture. The triggers of remobilization-induced joint inflammation are not fully understood, but two potential mechanisms are proposed: 1) micro-damage induced by mechanical stress in the joint capsule, and 2) nitric oxide (NO) production via NO synthase 2. Some interventions can modulate remobilization-induced inflammatory and subsequent fibrotic reactions. Anti-inflammatory treatments, such as steroidal anti-inflammatory drugs and low-level laser therapy, can attenuate joint capsule fibrosis and the progression of arthrogenic contracture in remobilized joints. Antiproliferative treatment using the cell-proliferation inhibitor mitomycin C can also attenuate joint capsule fibrosis by inhibiting fibroblast proliferation without suppressing inflammation. Conversely, aggressive exercise during the early remobilization phases is counterproductive, because it facilitates inflammatory and then fibrotic reactions in the joint. However, the adverse effects of aggressive exercise on remobilization-induced inflammation and fibrosis are offset by anti-inflammatory treatment. To prevent the progression of arthrogenic contracture during remobilization, therefore, care should be taken to control inflammatory and fibrotic reactions in the joints.
Collapse
Affiliation(s)
- A Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan
| | - J Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan.
| |
Collapse
|
7
|
Hemati K, Pourhanifeh MH, Fatemi I, Hosseinzadeh A, Mehrzadi S. Anti-degenerative effect of melatonin on intervertebral disc: protective contribution against inflammation, oxidative stress, apoptosis, and autophagy. Curr Drug Targets 2022; 23:711-718. [PMID: 35034592 DOI: 10.2174/1389450123666220114151654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/08/2021] [Accepted: 12/01/2021] [Indexed: 11/22/2022]
Abstract
Intervertebral disc (IVD) degeneration is a leading cause of lower back pain. Although the etiology of IVD degeneration (IVDD) is unclear, excessive oxidative stress, inflammation and apoptosis and disruption of autophagy play important role in the pathogenesis of IVDD. Therefore, finding a solution to mitigate these processes could stop or reduce the development of IVDD. Melatonin, a powerful antioxidant, plays an important role in regulating cartilage tissue hemostasis. Melatonin inhibits destruction of extracellular matrix (ECM) of disc. Melatonin preserves ECM contents including sox-9, aggrecan, and collagen II through inhibiting matrix degeneration enzymes such as MMP-13. These protective effects may be mediated by the inhibition of oxidative stress, inflammation and apoptosis, and regulation of autophagy in IVD cells.
Collapse
Affiliation(s)
- Karim Hemati
- Department of Anesthesiology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Iman Fatemi
- Research Center of Tropical and Infectious Diseases, Kerman University of Medical Sciences, Kerman, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
The Role of Oxidative Stress in Intervertebral Disc Degeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:2166817. [PMID: 35069969 PMCID: PMC8769842 DOI: 10.1155/2022/2166817] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/21/2021] [Accepted: 12/04/2021] [Indexed: 12/22/2022]
Abstract
Intervertebral disc degeneration is a very common type of degenerative disease causing severe socioeconomic impact, as well as a major cause of discogenic low back pain and herniated discs, placing a heavy burden on patients and the clinicians who treat them. IDD is known to be associating with a complex process involving in extracellular matrix and cellular damage, and in recent years, there is increasing evidence that oxidative stress is an important activation mechanism of IDD and that reactive oxygen and reactive nitrogen species regulate matrix metabolism, proinflammatory phenotype, autophagy and senescence in intervertebral disc cells, apoptosis, autophagy, and senescence. Despite the tremendous efforts of researchers within the field of IDD pathogenesis, the proven strategies to prevent and treat this disease are still very limited. Up to now, several antioxidants have been proved to be effective for alleviating IDD. In this article, we discussed that oxidative stress accelerates disc degeneration by influencing aging, inflammation, autophagy, and DNA methylation, and summarize some antioxidant therapeutic measures for IDD, indicating that antioxidant therapy for disc degeneration holds excellent promise.
Collapse
|
9
|
Christensen BB, Olesen ML, Hede KTC, Bergholt NL, Foldager CB, Lind M. Particulated Cartilage for Chondral and Osteochondral Repair: A Review. Cartilage 2021; 13:1047S-1057S. [PMID: 32052642 PMCID: PMC8808866 DOI: 10.1177/1947603520904757] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Injuries to articular cartilage have a poor spontaneous repair potential and no gold standard treatment exist. Particulated cartilage, both auto- and allograft, is a promising new treatment method that circumvents the high cost of scaffold- and cell-based treatments. MATERIALS AND METHODS A comprehensive database search on particulated cartilage was performed. RESULTS Fourteen animal studies have found particulated cartilage to be an effective treatment for cartilage injuries. Many studies suggest that juvenile cartilage has increased regenerative potential compared to adult cartilage. Sixteen clinical studies on 4 different treatment methods have been published. (1) CAIS, particulated autologous cartilage in a scaffold, (2) Denovo NT, juvenile human allograft cartilage embedded in fibrin glue, (3) autologous cartilage chips-with and without concomitant bone grafting, and (4) augmented autologous cartilage chips. CONCLUSION Implantation of allogeneic and autologous particulated cartilage provides a low cost and effective treatment alternative to microfracture and autologous chondrocyte implantation. The methods are promising, but large randomized controlled studies are needed.
Collapse
Affiliation(s)
- Bjørn Borsøe Christensen
- Department of Orthopedic Surgery,
Horsens Regional Hospital, Denmark,Department of orthopedic surgery, Aarhus
University Hospital, Aarhus, Denmark,Bjørn Borsøe Christensen, Aarhus University
Hospital, Noerrebrogade 44, Building 1A, 1st Floor, Aarhus, 8000, Denmark.
| | | | | | - Natasja Leth Bergholt
- Orthopedic Research Laboratory, Aarhus
University Hospital, Denmark,Comparative medicine, Institute of
clinical medicine, Aarhus University Hospital, Denmark
| | | | - Martin Lind
- Department of orthopedic surgery, Aarhus
University Hospital, Aarhus, Denmark
| |
Collapse
|
10
|
Mehta S, Young CC, Warren MR, Akhtar S, Shefelbine SJ, Crane JD, Bajpayee AG. Resveratrol and Curcumin Attenuate Ex Vivo Sugar-Induced Cartilage Glycation, Stiffening, Senescence, and Degeneration. Cartilage 2021; 13:1214S-1228S. [PMID: 33472415 PMCID: PMC8804818 DOI: 10.1177/1947603520988768] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE Advanced glycation end-product (AGE) accumulation is implicated in osteoarthritis (OA) pathogenesis in aging and diabetic populations. Here, we develop a representative nonenzymatic glycation-induced OA cartilage explant culture model and investigate the effectiveness of resveratrol, curcumin, and eugenol in inhibiting AGEs and the structural and biological hallmarks of cartilage degeneration. DESIGN Bovine cartilage explants were treated with AGE-bovine serum albumin, threose, and ribose to determine the optimal conditions that induce physiological levels of AGEs while maintaining chondrocyte viability. AGE crosslinks, tissue stiffness, cell viability, metabolism and senescence, nitrite release and loss of glycosaminoglycans were assessed. Explants were cotreated with resveratrol, curcumin, or eugenol to evaluate their anti-AGE properties. Blind docking analysis was conducted to estimate binding energies of drugs with collagen II. RESULTS Treatment with 100 mM ribose significantly increased AGE crosslink formation and tissue stiffness, resulting in reduced chondrocyte metabolism and enhanced senescence. Blind docking analysis revealed stronger binding energies of both resveratrol and curcumin than ribose, with glycation sites along a human collagen II fragment, indicating their increased likelihood of competitively inhibiting ribose activity. Resveratrol and curcumin, but not eugenol, successfully inhibited AGE crosslink formation and its associated downstream biological response. CONCLUSIONS We establish a cartilage explant model of OA that recapitulates several aspects of aged human cartilage. We find that resveratrol and curcumin are effective anti-AGE therapeutics with the potential to decelerate age-related and diabetes-induced OA. This in vitro nonenzymatic glycation-induced model provides a tool for screening OA drugs, to simultaneously evaluate AGE-induced biological and mechanical changes.
Collapse
Affiliation(s)
- Shikhar Mehta
- Department of Bioengineering,
Northeastern University, Boston, MA, USA
| | - Cameron C. Young
- Department of Chemical Engineering,
Northeastern University, Boston, MA, USA
| | - Matthew R. Warren
- Department of Bioengineering,
Northeastern University, Boston, MA, USA
| | - Sumayyah Akhtar
- Department of Biochemistry, Northeastern
University, Boston, MA, USA
| | - Sandra J. Shefelbine
- Department of Bioengineering,
Northeastern University, Boston, MA, USA,Department of Mechanical &
Industrial Engineering, Northeastern University, Boston, MA, USA
| | - Justin D. Crane
- Department of Biology, Northeastern
University, Boston, MA, USA
| | - Ambika G. Bajpayee
- Department of Bioengineering,
Northeastern University, Boston, MA, USA,Department of Mechanical &
Industrial Engineering, Northeastern University, Boston, MA, USA,Ambika G. Bajpayee, Department of
Bioengineering, Northeastern University, ISEC Room 216, 805 Columbus Avenue,
Boston, MA 02115, USA.
| |
Collapse
|
11
|
Wu Z, Korntner SH, Mullen AM, Zeugolis DI. Collagen type II: From biosynthesis to advanced biomaterials for cartilage engineering. BIOMATERIALS AND BIOSYSTEMS 2021; 4:100030. [PMID: 36824570 PMCID: PMC9934443 DOI: 10.1016/j.bbiosy.2021.100030] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/02/2021] [Accepted: 11/19/2021] [Indexed: 12/11/2022] Open
Abstract
Collagen type II is the major constituent of cartilage tissue. Yet, cartilage engineering approaches are primarily based on collagen type I devices that are associated with suboptimal functional therapeutic outcomes. Herein, we briefly describe cartilage's development and cellular and extracellular composition and organisation. We also provide an overview of collagen type II biosynthesis and purification protocols from tissues of terrestrial and marine species and recombinant systems. We then advocate the use of collagen type II as a building block in cartilage engineering approaches, based on safety, efficiency and efficacy data that have been derived over the years from numerous in vitro and in vivo studies.
Collapse
Affiliation(s)
- Z Wu
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - SH Korntner
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
| | - AM Mullen
- Teagasc Research Centre, Ashtown, Ireland
| | - DI Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL) and Science Foundation Ireland (SFI) Centre for Research in Medical Devices (CÚRAM), National University of Ireland Galway (NUI Galway), Galway, Ireland
- Regenerative, Modular & Developmental Engineering Laboratory (REMODEL), Charles Institute of Dermatology, Conway Institute of Biomolecular & Biomedical Research and School of Mechanical & Materials Engineering, University College Dublin (UCD), Dublin, Ireland
- Correspondence author at: REMODEL, NUI Galway & UCD.
| |
Collapse
|
12
|
Hua R, Jiang JX. Small leucine-rich proteoglycans in physiological and biomechanical function of bone. Matrix Biol Plus 2021; 11:100063. [PMID: 34435181 PMCID: PMC8377002 DOI: 10.1016/j.mbplus.2021.100063] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/10/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022] Open
Abstract
Proteoglycans (PGs) and glycosaminoglycans (GAGs) play vital roles in key signaling pathways to regulate bone homeostasis. The highly negatively charged GAGs are crucial in retaining bound water and modulating mechanical properties of bone. Age-related changes of PGs, GAGs, and bound water contribute to deterioration of bone quality during aging.
Proteoglycans (PGs) contain long unbranched glycosaminoglycan (GAG) chains attached to core proteins. In the bone extracellular matrix, PGs represent a class of non-collagenous proteins, and have high affinity to minerals and collagen. Considering the highly negatively charged character of GAGs and their interfibrillar positioning interconnecting with collagen fibrils, PGs and GAGs play pivotal roles in maintaining hydrostatic and osmotic pressure in the matrix. In this review, we will discuss the role of PGs, especially the small leucine-rich proteoglycans, in regulating the bioactivity of multiple cytokines and growth factors, and the bone turnover process. In addition, we focus on the coupling effects of PGs and GAGs in the hydration status of bone extracellular matrix, thus modulating bone biomechanical properties under physiological and pathological conditions.
Collapse
Affiliation(s)
- Rui Hua
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Jean X Jiang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| |
Collapse
|
13
|
|
14
|
Boraldi F, Lofaro FD, Quaglino D. Apoptosis in the Extraosseous Calcification Process. Cells 2021; 10:cells10010131. [PMID: 33445441 PMCID: PMC7827519 DOI: 10.3390/cells10010131] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 12/13/2022] Open
Abstract
Extraosseous calcification is a pathologic mineralization process occurring in soft connective tissues (e.g., skin, vessels, tendons, and cartilage). It can take place on a genetic basis or as a consequence of acquired chronic diseases. In this last case, the etiology is multifactorial, including both extra- and intracellular mechanisms, such as the formation of membrane vesicles (e.g., matrix vesicles and apoptotic bodies), mitochondrial alterations, and oxidative stress. This review is an overview of extraosseous calcification mechanisms focusing on the relationships between apoptosis and mineralization in cartilage and vascular tissues, as these are the two tissues mostly affected by a number of age-related diseases having a progressively increased impact in Western Countries.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (D.Q.)
- Correspondence:
| | - Francesco Demetrio Lofaro
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (D.Q.)
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.D.L.); (D.Q.)
- Interuniversity Consortium for Biotechnologies (CIB), Italy
| |
Collapse
|
15
|
Tan L, Register TC, Yammani RR. Age-Related Decline in Expression of Molecular Chaperones Induces Endoplasmic Reticulum Stress and Chondrocyte Apoptosis in Articular Cartilage. Aging Dis 2020; 11:1091-1102. [PMID: 33014525 PMCID: PMC7505268 DOI: 10.14336/ad.2019.1130] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 11/30/2019] [Indexed: 12/27/2022] Open
Abstract
Aging is a major risk factor for the development of osteoarthritis (OA). One hallmark of aging is loss of proteostasis resulting in increased cellular stress and cell death. However, its effect on the development of OA is not clear. Here, using knee articular cartilage tissue from young and old cynomolgus monkeys (Macaca fascicularis), we demonstrate that with aging there is loss of molecular chaperone expression resulting in endoplasmic reticulum (ER) stress and cell death. Chondrocytes from aged articular cartilage showed decreased expression of molecular chaperones, including protein disulfide isomerase, calnexin, and Ero1-like protein alpha, and increased immunohistochemical staining for ER stress markers (phosphorylated IRE1 alpha, spliced X-box binding protein-1, activating transcription factor 4 and C/EBP homologous protein), and apoptotic markers [cleaved caspase 3 and cleaved poly(ADP-ribose) polymerase], suggesting that decreased expression of molecular chaperone during aging induces ER stress and chondrocyte apoptosis in monkey articular cartilage. Apoptosis induced by aging-associated ER stress was further confirmed by TUNEL staining. Aged monkey cartilage also showed increased expression of nuclear protein 1 (Nupr1) and tribbles related protein-3 (TRB3), known regulators of apoptosis and cell survival pathways. Treatment of cultured monkey chondrocytes with a small molecule chemical chaperone, 4-phenylbutyric acid (PBA, a general ER stress inhibitor) or PERK Inhibitor I (an ER stress inhibitor specifically targeting the PERK branch of the unfolded protein response pathway), decreased the expression of ER stress and apoptotic markers and reduced the expression of Nupr1 and TRB3. Consistent with the above finding, knockdown of calnexin expression induces ER stress and apoptotic markers in normal human chondrocytes in vitro. Taken together, our study clearly demonstrates that aging promotes loss of proteostasis and induces ER stress and chondrocyte apoptosis in articular cartilage. Thus, restoring proteostasis using chemical/molecular chaperone or ER stress inhibitor could be a therapeutic option to treat aged-linked OA.
Collapse
Affiliation(s)
- Li Tan
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Thomas C Register
- Departments of Pathology and Comparative Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| | - Raghunatha R Yammani
- Section of Molecular Medicine, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, NC 27157, USA
| |
Collapse
|
16
|
Wang X, Lu Y, Wang W, Wang Q, Liang J, Fan Y, Zhang X. Effect of different aged cartilage ECM on chondrogenesis of BMSCs in vitro and in vivo. Regen Biomater 2020; 7:583-595. [PMID: 33365144 PMCID: PMC7748452 DOI: 10.1093/rb/rbaa028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 05/23/2020] [Accepted: 06/07/2020] [Indexed: 12/11/2022] Open
Abstract
Extracellular matrix (ECM)-based biomaterials are promising candidates in cartilage tissue engineering by simulating the native microenvironment to regulate the chondrogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) without exogenous growth factors. The biological properties of ECM scaffolds are primarily depended on the original source, which would directly influence the chondrogenic effects of the ECM materials. Despite the expanding investigations on ECM scaffolds in recent years, the selection of optimized ECM materials in cartilage regeneration was less reported. In this study, we harvested and compared the articular cartilage ECM from newborn, juvenile and adult rabbits. The results demonstrated the significant differences in the mechanical strength, sulphated glycosaminoglycan and collagen contents of the different aged ECM, before and after decellularization. Consequently, different compositional and mechanical properties were shown in the three ECM-based collagen hydrogels, which exerted age-dependent chondrogenic inducibility. In general, both in vitro and in vivo results suggested that the newborn ECM promoted the most chondrogenesis of BMSCs but led to severe matrix calcification. In contrast, BMSCs synthesized the lowest amount of cartilaginous matrix with minimal calcification with adult ECM. The juvenile ECM achieved the best overall results in promoting chondrogenesis of BMSCs and preventing matrix calcification. Together, this study provides important information to our current knowledge in the design of future ECM-based biomaterials towards a successful repair of articular cartilage.
Collapse
Affiliation(s)
- Xiuyu Wang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning 530021, China.,National Engineering Research Center for Biomaterials, Sichuan University, Wangjiang Road 29, Chengdu 610064, China
| | - Yan Lu
- National Engineering Research Center for Biomaterials, Sichuan University, Wangjiang Road 29, Chengdu 610064, China
| | - Wan Wang
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning 530021, China.,National Engineering Research Center for Biomaterials, Sichuan University, Wangjiang Road 29, Chengdu 610064, China
| | - Qiguang Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Wangjiang Road 29, Chengdu 610064, China
| | - Jie Liang
- National Engineering Research Center for Biomaterials, Sichuan University, Wangjiang Road 29, Chengdu 610064, China
| | - Yujiang Fan
- Guangxi Engineering Center in Biomedical Materials for Tissue and Organ Regeneration, Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning 530021, China.,National Engineering Research Center for Biomaterials, Sichuan University, Wangjiang Road 29, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Wangjiang Road 29, Chengdu 610064, China
| |
Collapse
|
17
|
The Effects of Age and Cell Isolation on Collagen II Synthesis by Articular Chondrocytes: Evidence for Transcriptional and Posttranscriptional Regulation. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4060135. [PMID: 32461985 PMCID: PMC7212282 DOI: 10.1155/2020/4060135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/06/2020] [Accepted: 04/10/2020] [Indexed: 12/13/2022]
Abstract
Adult articular cartilage synthesises very little type II collagen in comparison to young cartilage. The age-related difference in collagen II synthesis is poorly understood. This is the first systematic investigation of age-related differences in extracellular matrix synthesis in fresh articular cartilage and following isolation of chondrocytes. A histological comparison of 3-year-old skeletally mature and 6-month-old juvenile porcine cartilage was made. Differences in collagen II, aggrecan, and Sox5, 6, and 9 mRNA and protein expression and mRNA stability were measured. Adult cartilage was found to be thinner than juvenile cartilage but with similar chondrocyte density. Procollagen α1(II) and Sox9 mRNA levels were 10-fold and 3-fold reduced in adult cartilage. Sox9 protein was halved and collagen II protein synthesis was almost undetectable and calculated to be at least 30-fold reduced. Aggrecan expression did not differ. Isolation of chondrocytes caused a drop in procollagen α1(II) and Sox9 mRNA in both adult and juvenile cells along with a marked reduction in Sox9 mRNA stability. Interestingly, juvenile chondrocytes continued to synthesise collagen II protein with mRNA levels similar to those seen in adult articular cartilage. Age-related differences in collagen II protein synthesis are due to both transcriptional and posttranscription regulation. A better understanding of these regulatory mechanisms would be an important step in improving current cartilage regeneration techniques.
Collapse
|
18
|
Xu C, Sheng S, Dou H, Chen J, Zhou K, Lin Y, Yang H. α-Bisabolol suppresses the inflammatory response and ECM catabolism in advanced glycation end products-treated chondrocytes and attenuates murine osteoarthritis. Int Immunopharmacol 2020; 84:106530. [PMID: 32334386 DOI: 10.1016/j.intimp.2020.106530] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 04/18/2020] [Accepted: 04/19/2020] [Indexed: 12/12/2022]
Abstract
As a chronic musculoskeletal degeneration disease, osteoarthritis (OA) clinically manifests as joint pain, stiffness and a limited range of movement. OA has affected the life quality of at least one-tenth of the population but lacks satisfactory treatments. α-Bisabolol (BISA) is a small oily sesquiterpene alcohol widely found in essential oils of chamomile (Matricaria recutita), salvia and wood of Candeia and has multiple biological properties, particularly an anti-inflammatory effect. The purpose of this study is to assess the anti-inflammatory and chondroprotective effect of BISA in OA progression and explore its underlying mechanism. We isolated human chondrocytes and treated them with advanced glycation end products (AGEs) to imitate OA progression in vitro. BISA pretreatment suppressed the AGE-induced inflammatory reaction and extracellular matrix (ECM) degeneration by blocking nuclear factor kappa B (NF-κB), p38 and c-Jun N-terminal kinase (JNK) signaling. Moreover, a mouse destabilization of the medial meniscus (DMM) model was established by surgery to investigate BISA protection in vivo. BISA administration attenuated DMM-induced radiological and histopathological changes relative to the DMM group and resulted in lower OARSI scores. Taken together, the results of our study indicate the potential of BISA in OA therapy.
Collapse
Affiliation(s)
- Cong Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China; Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Sunren Sheng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Haicheng Dou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jiaoxiang Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Kailiang Zhou
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Yan Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Huilin Yang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
19
|
Lin Z, Lin C, Fu C, Lu H, Jin H, Chen Q, Pan J. The protective effect of Ellagic acid (EA) in osteoarthritis: An in vitro and in vivo study. Biomed Pharmacother 2020; 125:109845. [PMID: 32058211 DOI: 10.1016/j.biopha.2020.109845] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/27/2019] [Accepted: 12/29/2019] [Indexed: 01/11/2023] Open
Abstract
Osteoarthritis (OA), a progressive joint disorder, is principally characterized by the degeneration and destruction of the articular cartilage. Ellagic acid (EA), a natural polyphenol found in berries and nuts has shown potent anti-inflammatory effects, however, its effects and underlying mechanisms on OA have seldom been systematically illuminated. In this study, we reported the anti-inflammatory effects of Ellagic acid (EA) in the progression of OA in both in vitro and in vivo experiments. in vitro study, IL-1β-induced expression of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), Nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), prostaglandin E2 (PGE2), and interleukin-6 (IL-6) were inhibited by Ellagic acid (EA). Moreover, Ellagic acid (EA) down-regulated the IL-1β-stimulated matrix metalloproteinase-13 (MMP-13) and thrombospondin motifs 5 (ADAMTS-5) while up-regulated the collagen of type II and aggrecan. Mechanistically, we revealed that Ellagic acid (EA) suppressed nuclear factor kappa B (NF-κB) signaling in IL-1β -induced chondrocytes. And Ellagic acid (EA)-induced protectiveness in OA development was also shown by the DMM model. Taken together, our data indicate that Ellagic acid (EA) may serve as a potential drug for OA treatment.
Collapse
Affiliation(s)
- Zeng Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China; Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Chen Lin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China; Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Changchang Fu
- Department of Neonatology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China; Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Hongwei Lu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China; Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Haidong Jin
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China; Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China
| | - Qin Chen
- Department of Intensive Care Unit, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, China.
| | - Jun Pan
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109 Xue Yuan Xi Road, Wenzhou, Zhejiang 325000, China; The Second School of Medicine, Wenzhou Medical University, Wenzhou, China; Bone Research Institute, The Key Orthopaedic Laboratory of Zhejiang Province, Wenzhou, China.
| |
Collapse
|
20
|
Xue X, Chen Y, Wang Y, Zhan J, Chen B, Wang X, Pan X. Troxerutin suppresses the inflammatory response in advanced glycation end-product-administered chondrocytes and attenuates mouse osteoarthritis development. Food Funct 2019; 10:5059-5069. [PMID: 31359010 DOI: 10.1039/c9fo01089k] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As a chronic degenerative joint disease, osteoarthritis (OA) is clinically characterized by a high incidence, long-term pain, and limited joint activity but without effective preventative therapy.
Collapse
Affiliation(s)
- Xinghe Xue
- Department of Orthopaedics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou
- China
- Zhejiang Provincial Key Laboratory of Orthpaedics
| | - Yunlin Chen
- Department of Orthopaedics
- The Second Affiliated Hospital
- Zhejiang University School of Medicine
- Hangzhou
- China
| | - Ye Wang
- The Second School of Medicine
- Wenzhou Medical University
- Wenzhou
- China
| | - Jingdi Zhan
- Department of Orthopaedics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou
- China
- Zhejiang Provincial Key Laboratory of Orthpaedics
| | - Bin Chen
- Department of Orthopaedics
- The Second Affiliated Hospital of Jiaxing University
- Jiaxing
- China
| | - Xiangyang Wang
- Department of Orthopaedics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou
- China
- Zhejiang Provincial Key Laboratory of Orthpaedics
| | - Xiaoyun Pan
- Department of Orthopaedics
- The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University
- Wenzhou
- China
- Zhejiang Provincial Key Laboratory of Orthpaedics
| |
Collapse
|
21
|
Aging does not change the compressive stiffness of mandibular condylar cartilage in horses. Osteoarthritis Cartilage 2018; 26:1744-1752. [PMID: 30145230 DOI: 10.1016/j.joca.2018.08.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 08/13/2018] [Accepted: 08/13/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Aging can cause an increase in the stiffness of hyaline cartilage as a consequence of increased protein crosslinks. By induction of crosslinking, a reduction in the diffusion of solutions into the hyaline cartilage has been observed. However, there is a lack of knowledge about the effects of aging on the biophysical and biochemical properties of the temporomandibular joint (TMJ) cartilage. Hence, the aim of this study was to examine the biophysical properties (thickness, stiffness, and diffusion) of the TMJ condylar cartilage of horses of different ages and their correlation with biochemical parameters. MATERIALS AND METHODS We measured the compressive stiffness of the condyles, after which the diffusion of two contrast agents into cartilage was measured using Contrast Enhanced Computed Tomography technique. Furthermore, the content of water, collagen, GAG, and pentosidine was analyzed. RESULTS Contrary to our expectations, the stiffness of the cartilage did not change with age (modulus remained around 0.7 MPa). The diffusion of the negatively charged contrast agent (Hexabrix) also did not alter. However, the diffusion of the uncharged contrast agent (Visipaque) decreased with aging. The flux was negatively correlated with the amount of collagen and crosslink level which increased with aging. Pentosidine, collagen, and GAG were positively correlated with age whereas thickness and water content showed negative correlations. CONCLUSION Our data demonstrated that aging was not necessarily reflected in the biophysical properties of TMJ condylar cartilage. The combination of the changes happening due to aging resulted in different diffusive properties, depending on the nature of the solution.
Collapse
|
22
|
Chen JH, Lin X, Bu C, Zhang X. Role of advanced glycation end products in mobility and considerations in possible dietary and nutritional intervention strategies. Nutr Metab (Lond) 2018; 15:72. [PMID: 30337945 PMCID: PMC6180645 DOI: 10.1186/s12986-018-0306-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 09/21/2018] [Indexed: 02/08/2023] Open
Abstract
Advanced glycation end products (AGEs), a group of compounds that are formed by non-enzymatic reactions between carbonyl groups of reducing sugars and free amino groups of proteins, lipids or nucleic acids, can be obtained exogenously from diet or formed endogenously within the body. AGEs accumulate intracellularly and extracellularly in all tissues and body fluids and can cross-link with other proteins and thus affect their normal functions. Furthermore, AGEs can interact with specific cell surface receptors and hence alter cell intracellular signaling, gene expression, the production of reactive oxygen species and the activation of several inflammatory pathways. High levels of AGEs in diet as well as in tissues and the circulation are pathogenic to a wide range of diseases. With respect to mobility, AGEs accumulate in bones, joints and skeletal muscles, playing important roles in the development of osteoporosis, osteoarthritis, and sarcopenia with aging. This report covered the related pathological mechanisms and the potential pharmaceutical and dietary intervention strategies in reducing systemic AGEs. More prospective studies are needed to determine whether elevated serum AGEs and/or skin autofluorescence predict a decline in measures of mobility. In addition, human intervention studies are required to investigate the beneficial effects of exogenous AGEs inhibitors on mobility outcomes.
Collapse
Affiliation(s)
- Jie-Hua Chen
- Science and Technology Centre, By-Health Co. Ltd, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Science City, Luogang District, Guangzhou, 510000 China
| | - Xu Lin
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, Shanghai Institutes for Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Cuihong Bu
- Science and Technology Centre, By-Health Co. Ltd, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Science City, Luogang District, Guangzhou, 510000 China
| | - Xuguang Zhang
- Science and Technology Centre, By-Health Co. Ltd, No. 3 Kehui 3rd Street, No. 99 Kexue Avenue Central, Science City, Luogang District, Guangzhou, 510000 China
| |
Collapse
|
23
|
Drevet S, Gavazzi G, Grange L, Dupuy C, Lardy B. Reactive oxygen species and NADPH oxidase 4 involvement in osteoarthritis. Exp Gerontol 2018; 111:107-117. [PMID: 30012342 DOI: 10.1016/j.exger.2018.07.007] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 07/06/2018] [Accepted: 07/09/2018] [Indexed: 01/04/2023]
Abstract
Osteoarthritis (OA) is a degenerative chronic disease affecting >300,000 million people around the world as of 2016. Symptomatic measures exist, but there are hardly any curative treatments available. Disruption of the cartilage homeostasis in favor of catabolism leads to cartilage destruction. ROS-macromolecular-induced damage is significantly greater in OA cartilage and OA is described as low-grade chronic systemic inflammation. This review aimed to assess the critical role of cartilage ageing and oxidative stress in the OA process, focusing in particular on NADPH oxidase and especially Nox4 involvement. With age, hypertrophic senescent cells with an altered redox cell profile accumulated. Chondrocytes are more sensitive to oxidant-mediators and the serum level of pro-inflammatory mediators increases. Age-related advanced glycation end products impact on extra cellular matrix (ECM) properties leading to the apoptosis of chondrocytes. A focus on NADPH oxidase-mediated-ROS signaling highlighted the very specific Nox4 isoform, which plays a role on the final common pathway targeting chondrocyte cells. IL-1β-mediated Nox4 stimulation induced an increase in the levels released by the chondrocyte of MMP-1 and MMP-13 proteins, which are involved in ECM degradation. In comparison with the other Nox isoforms, Nox4 remains unusual, since it is constitutively active, does not depend on cytosolic activator proteins and seems to generate H2O2 thanks to the specific conformation of the Nox4 E-loop. Nox4-induced ROS production appears an essential actor in the OA process and it could be relevant to focus on this target in the aim of discovering and developing new therapeutic strategies.
Collapse
Affiliation(s)
- S Drevet
- Grenoble Alpes University Hospital, Orthogeriatric Unit, Geriatric Department, Grenoble Alpes University, GREPI UGA-EFS EA7408, Boulevard de la Chantourne, 38043 Grenoble Cedex 1, France.
| | - G Gavazzi
- Grenoble Alpes University Hospital, Acute Geriatric Medicine Unit, Geriatric Department, Grenoble Alpes University, GREPI UGA-EFS EA7408, Boulevard de la Chantourne, 38043 Grenoble Cedex 1, France.
| | - L Grange
- Grenoble Alpes University Hospital, Rheumatology Department, Hopital Sud, GREPI UGA-EFS EA7408, 19 avenue de Kimberley, 38130 Echirolles, France.
| | - C Dupuy
- Institut Gustave Roussy, UMR 8200 CNRS "Stabilité génétique et Oncogenèse", 114 rue Edouard Vaillant, 94805 Villejuif Cedex, France.
| | - B Lardy
- Grenoble Alpes University Hospital, Biology Department, Grenoble Alpes University, GREPI UGA-EFS EA7408, Boulevard de la Chantourne, 38043 Grenoble Cedex 1, France.
| |
Collapse
|
24
|
Ozawa J, Kaneguchi A, Minamimoto K, Tanaka R, Kito N, Moriyama H. Accumulation of advanced-glycation end products (AGEs) accelerates arthrogenic joint contracture in immobilized rat knee. J Orthop Res 2018; 36:854-863. [PMID: 28862361 DOI: 10.1002/jor.23719] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 08/29/2017] [Indexed: 02/04/2023]
Abstract
Joint mobility decreases in the elderly and in diabetics, this process is thought to be caused by accumulation of advanced-glycation end products (AGEs). Here, we aimed to elucidate the role of AGEs in joint contracture formation in rat knees. Rats were injected with ribose or saline into the knees twice weekly for 8 weeks. Pentosidine (AGE) levels were measured in the knee-joint tissues. After serial injections, rats were subjected to unilateral knee-joint immobilization in a flexion position for various periods. At day 21, the passive knee ranges of motions (ROMs) were measured. Knee joint histopathology were assessed, and the expression of fibrotic genes in the posterior joint capsules was examined using real-time PCR. Ribose injection induced a 7.0-fold increase in pentosidine levels relative to saline injection. Joint immobilization resulted in equal myogenic ROM restriction in both groups. Arthrogenic ROM restriction was greater with ribose injection in the immobilized joints (p < 0.05), but was not affected in nonimmobilized joints. Type-I (COL1A1) and type-III (COL3A1) collagen gene expression increased significantly in immobilized joints relative to nonimmobilized joints in the ribose group, but was not affected in the saline group. Ribose injection increased COL1A1 expression slightly and COL3A1 expression significantly in immobilized joints. Histologically, inflammatory changes appeared at day 3 of immobilization and peaked at day 7. These responses trended to be more severe and prolonged in the ribose group than in the saline group. Our data provide evidence for a causal relationship between AGEs and joint contracture formation following immobilization. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:854-863, 2018.
Collapse
Affiliation(s)
- Junya Ozawa
- Faculty of Rehabilitation, Department of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Akinori Kaneguchi
- Department of Rehabilitation, Mori Orthopaedic Clinic, 1-3-16, Hikarimachi, Higashi-Ku Hiroshima, Hiroshima, Japan
| | - Kengo Minamimoto
- Faculty of Rehabilitation, Department of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Ryo Tanaka
- Faculty of Rehabilitation, Department of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Nobuhiro Kito
- Faculty of Rehabilitation, Department of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Hideki Moriyama
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Tomogaoka 7-10-2, Suma-ku, Kobe, Hyogo, Japan
| |
Collapse
|
25
|
Zhang HB, Zhang Y, Chen C, Li YQ, Ma C, Wang ZJ. Pioglitazone inhibits advanced glycation end product-induced matrix metalloproteinases and apoptosis by suppressing the activation of MAPK and NF-κB. Apoptosis 2018; 21:1082-93. [PMID: 27515513 DOI: 10.1007/s10495-016-1280-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Apoptosis and degeneration coming mainly from chondrocytes are important mechanisms in the onset and progression of osteoarthritis. Specifically, advanced glycation end products (AGEs) play an important role in the pathogenesis of osteoarthritis. Pioglitazone, a peroxisome proliferator-activated receptor γ (PPARγ) agonist has a protective effect on cartilage. This study aims to evaluate the effect of pioglitazone on AGEs-induced chondrocyte apoptosis and degeneration and their underlying mechanism. The in vitro study shows that AGEs induce cleavage of caspase-3 and PARP, up-regulate MMP-13 expression, enhance chondrocyte apoptosis and down-regulate PPARγ expression in human primary chondrocytes, which is reversed by pioglitazone. Furthermore, AGEs activate phosphorylation of Erk, JNK, and p38, and pioglitazone reverses AGEs-induced phosphorylation of Erk and p38. AGEs-induced degradation of IκBα and translocation of nuclear NF-κB p65 is reversed by pioglitazone. Pretreatment of chondrocytes with SB202190 (p38 inhibitor), SP600125 (JNK inhibitor) and BAY-11-7082 (NF-κB inhibitor) inhibit AGEs-induced apoptosis and degeneration. In vivo experiments suggest that pioglitazone reverses AGEs-induced cartilage degeneration and apoptosis in a mouse model, as demonstrated by HE and Safranin O staining, immunohistochemical analyses of Type II collagen (Col II), metalloproteinases (MMPs) and caspase-3. These findings suggest that pioglitazone, a PPARγ agonist, inhibits AGEs-induced chondrocytes apoptosis and degeneration via suppressing the activation of MAPK and NF-κB.
Collapse
Affiliation(s)
- Hai-Bin Zhang
- Department of Orthopedics, The 163rd Central Hospital of the People's Liberation Army, The Second Affiliated Hospital of Hunan Normal University, Changsha, 410003, Hunan, People's Republic of China
| | - Ying Zhang
- Department of Orthopedics, The 163rd Central Hospital of the People's Liberation Army, The Second Affiliated Hospital of Hunan Normal University, Changsha, 410003, Hunan, People's Republic of China
| | - Cheng Chen
- Department of Orthopedics, The 163rd Central Hospital of the People's Liberation Army, The Second Affiliated Hospital of Hunan Normal University, Changsha, 410003, Hunan, People's Republic of China.
| | - Yu-Qing Li
- Department of Orthopedics, The 163rd Central Hospital of the People's Liberation Army, The Second Affiliated Hospital of Hunan Normal University, Changsha, 410003, Hunan, People's Republic of China
| | - Chi Ma
- Department of Orthopedics, People's Hospital of Xiangxi Autonomous Prefecture, Jishou, Hunan, China
| | - Zhao-Jun Wang
- Department of Orthopedics, The 163rd Central Hospital of the People's Liberation Army, The Second Affiliated Hospital of Hunan Normal University, Changsha, 410003, Hunan, People's Republic of China
| |
Collapse
|
26
|
Mirahmadi F, Koolstra JH, Lobbezoo F, van Lenthe GH, Ghazanfari S, Snabel J, Stoop R, Everts V. Mechanical stiffness of TMJ condylar cartilage increases after artificial aging by ribose. Arch Oral Biol 2017; 87:102-109. [PMID: 29275153 DOI: 10.1016/j.archoralbio.2017.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 11/17/2017] [Accepted: 12/12/2017] [Indexed: 12/18/2022]
Abstract
OBJECTIVE Aging is accompanied by a series of changes in mature tissues that influence their properties and functions. Collagen, as one of the main extracellular components of cartilage, becomes highly crosslinked during aging. In this study, the aim was to examine whether a correlation exists between collagen crosslinking induced by artificial aging and mechanical properties of the temporomandibular joint (TMJ) condyle. To evaluate this hypothesis, collagen crosslinks were induced using ribose incubation. METHODS Porcine TMJ condyles were incubated for 7 days with different concentrations of ribose. The compressive modulus and stiffness ratio (incubated versus control) was determined after loading. Glycosaminoglycan and collagen content, and the number of crosslinks were analyzed. Tissue structure was visualized by microscopy using different staining methods. RESULTS Concomitant with an increasing concentration of ribose, an increase of collagen crosslinks was found. The number of crosslinks increased almost 50 fold after incubation with the highest concentration of ribose. Simultaneously, the stiffness ratio of the samples showed a significant increase after incubation with the ribose. Pearson correlation analyses showed a significant positive correlation between the overall stiffness ratio and the crosslink level; the higher the number of crosslinks the higher the stiffness. CONCLUSION The present model, in which ribose was used to mimic certain aspects of age-related changes, can be employed as an in vitro model to study age-related mechanical changes in the TMJ condyle.
Collapse
Affiliation(s)
- Fereshteh Mirahmadi
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands; Biomechanics section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| | - Jan Harm Koolstra
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.
| | - Frank Lobbezoo
- Department of Oral Kinesiology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | - G Harry van Lenthe
- Biomechanics section, Department of Mechanical Engineering, KU Leuven, Leuven, Belgium.
| | - Samaneh Ghazanfari
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands; Aachen-Maastrciht Institute for Biobased Materials, Faculty of Humanities and Sciences, Maastricht University, Maastricht, The Netherlands; Department of Orthopedic Surgery, Vrije Universiteit Medical Center, Amsterdam, The Netherlands.
| | | | - Reinout Stoop
- TNO Metabolic Health Research, Leiden, The Netherlands.
| | - Vincent Everts
- Department of Oral Cell Biology and Functional Anatomy, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Amsterdam, The Netherlands.
| |
Collapse
|
27
|
Biomarkers of hand osteoarthritis. Rheumatol Int 2017; 38:725-735. [DOI: 10.1007/s00296-017-3864-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Accepted: 10/24/2017] [Indexed: 01/03/2023]
|
28
|
Combined effects of oscillating hydrostatic pressure, perfusion and encapsulation in a novel bioreactor for enhancing extracellular matrix synthesis by bovine chondrocytes. Cell Tissue Res 2017; 370:179-193. [PMID: 28687928 DOI: 10.1007/s00441-017-2651-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 05/16/2017] [Indexed: 01/10/2023]
Abstract
The influence of combined shear stress and oscillating hydrostatic pressure (OHP), two forms of physical forces experienced by articular cartilage (AC) in vivo, on chondrogenesis, is investigated in a unique bioreactor system. Our system introduces a single reaction chamber design that does not require transfer of constructs after seeding to a second chamber for applying the mechanical forces, and, as such, biochemical and mechanical stimuli can be applied in combination. The biochemical and mechanical properties of bovine articular chondrocytes encapsulated in agarose scaffolds cultured in our bioreactors for 21 days are compared to cells statically cultured in agarose scaffolds in addition to static micromass and pellet cultures. Our findings indicate that glycosaminoglycan and collagen secretions were enhanced by at least 1.6-fold with scaffold encapsulation, 5.9-fold when adding 0.02 Pa of shear stress and 7.6-fold with simultaneous addition of 4 MPa of OHP when compared to micromass samples. Furthermore, shear stress and OHP have chondroprotective effects as evidenced by lower mRNA expression of β1 integrin and collagen X to non-detectable levels and an absence of collagen I upregulation as observed in micromass controls. These collective results are further supported by better mechanical properties as indicated by 1.6-19.8-fold increases in elastic moduli measured by atomic force microscopy.
Collapse
|
29
|
|
30
|
Nims RJ, Cigan AD, Durney KM, Jones BK, O'Neill JD, Law WSA, Vunjak-Novakovic G, Hung CT, Ateshian GA. * Constrained Cage Culture Improves Engineered Cartilage Functional Properties by Enhancing Collagen Network Stability. Tissue Eng Part A 2017; 23:847-858. [PMID: 28193145 DOI: 10.1089/ten.tea.2016.0467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
When cultured with sufficient nutrient supply, engineered cartilage synthesizes proteoglycans rapidly, producing an osmotic swelling pressure that destabilizes immature collagen and prevents the development of a robust collagen framework, a hallmark of native cartilage. We hypothesized that mechanically constraining the proteoglycan-induced tissue swelling would enhance construct functional properties through the development of a more stable collagen framework. To test this hypothesis, we developed a novel "cage" growth system to mechanically prevent tissue constructs from swelling while ensuring adequate nutrient supply to the growing construct. The effectiveness of constrained culture was examined by testing constructs embedded within two different scaffolds: agarose and cartilage-derived matrix hydrogel (CDMH). Constructs were seeded with immature bovine chondrocytes and cultured under free swelling (FS) conditions for 14 days with transforming growth factor-β before being placed into a constraining cage for the remainder of culture. Controls were cultured under FS conditions throughout. Agarose constructs cultured in cages did not expand after the day 14 caging while FS constructs expanded to 8 × their day 0 weight after 112 days of culture. In addition to the physical differences in growth, by day 56, caged constructs had higher equilibrium (agarose: 639 ± 179 kPa and CDMH: 608 ± 257 kPa) and dynamic compressive moduli (agarose: 3.4 ± 1.0 MPa and CDMH 2.8 ± 1.0 MPa) than FS constructs (agarose: 193 ± 74 kPa and 1.1 ± 0.5 MPa and CDMH: 317 ± 93 kPa and 1.8 ± 1.0 MPa for equilibrium and dynamic properties, respectively). Interestingly, when normalized to final day wet weight, cage and FS constructs did not exhibit differences in proteoglycan or collagen content. However, caged culture enhanced collagen maturation through the increased formation of pyridinoline crosslinks and improved collagen matrix stability as measured by α-chymotrypsin solubility. These findings demonstrate that physically constrained culture of engineered cartilage constructs improves functional properties through improved collagen network maturity and stability. We anticipate that constrained culture may benefit other reported engineered cartilage systems that exhibit a mismatch in proteoglycan and collagen synthesis.
Collapse
Affiliation(s)
- Robert J Nims
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Alexander D Cigan
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Krista M Durney
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Brian K Jones
- 2 Department of Mechanical Engineering, Columbia University , New York, New York
| | - John D O'Neill
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Wing-Sum A Law
- 2 Department of Mechanical Engineering, Columbia University , New York, New York
| | - Gordana Vunjak-Novakovic
- 1 Department of Biomedical Engineering, Columbia University , New York, New York.,3 Department of Medicine, Columbia University , New York, New York
| | - Clark T Hung
- 1 Department of Biomedical Engineering, Columbia University , New York, New York
| | - Gerard A Ateshian
- 1 Department of Biomedical Engineering, Columbia University , New York, New York.,2 Department of Mechanical Engineering, Columbia University , New York, New York
| |
Collapse
|
31
|
Wirth W, Maschek S, Eckstein F. Sex- and age-dependence of region- and layer-specific knee cartilage composition (spin-spin-relaxation time) in healthy reference subjects. Ann Anat 2016; 210:1-8. [PMID: 27836800 DOI: 10.1016/j.aanat.2016.10.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/19/2016] [Accepted: 10/29/2016] [Indexed: 12/18/2022]
Abstract
Compositional measures of articular cartilage are accessible in vivo by magnetic resonance imaging (MRI) based relaxometry and cartilage spin-spin transverse relaxation time (T2) has been related to tissue hydration, collagen content and orientation, and mechanical (functional) properties of articular cartilage. The objective of the current study was therefore to evaluate subregional variation, and sex- and age-differences, in laminar (deep and superficial) femorotibial cartilage T2 relaxation time in healthy adults. To this end, we studied the right knees of 92 healthy subjects from the Osteoarthritis Initiative reference cohort (55 women, 37 men; age range 45-78 years; BMI 24.4±3.1) without knee pain, radiographic signs, or risk factors of knee osteoarthritis in either knee. T2 of the deep and superficial femorotibial cartilages was determined in 16 femorotibial subregions, using a multi-echo spin-echo (MESE) MRI sequence. Significant subregional variation in femorotibial cartilage T2 was observed for the superficial and for the deep (both p<0.001) cartilage layer (Friedman test). Yet, layer- and region-specific femorotibial T2 did not differ between men and women, or between healthy adults below and above the median age (54 years). In conclusion, this first study to report subregional (layer-specific) compositional variation of femorotibial cartilage T2 in healthy adults identifies significant differences in both superficial and deep cartilage T2 between femorotibial subregions. However, no relevant sex- or age-dependence of cartilage T2 was observed between age 45-78 years. The findings suggest that a common, non-sex-specific set of layer-and region-specific T2 reference values can be used to identify compositional pathology in joint disease for this age group.
Collapse
Affiliation(s)
- Wolfgang Wirth
- Institute of Anatomy, Paracelsus Medical University, Salzburg, Austria; Chondrometrics GmbH, Ainring, Germany.
| | - Susanne Maschek
- Institute of Anatomy, Paracelsus Medical University, Salzburg, Austria; Chondrometrics GmbH, Ainring, Germany
| | - Felix Eckstein
- Institute of Anatomy, Paracelsus Medical University, Salzburg, Austria; Chondrometrics GmbH, Ainring, Germany
| |
Collapse
|
32
|
Fukumitsu S, Villareal MO, Aida K, Hino A, Hori N, Isoda H, Naito Y. Maslinic acid in olive fruit alleviates mild knee joint pain and improves quality of life by promoting weight loss in the elderly. J Clin Biochem Nutr 2016; 59:220-225. [PMID: 27895390 PMCID: PMC5110940 DOI: 10.3164/jcbn.16-40] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 06/06/2016] [Indexed: 12/18/2022] Open
Abstract
Consumption of olives (Olea europaea L.) is associated with a low incidence of inflammation-related diseases. Olive fruit is rich in bioactive pentacyclic triterpenoids, mainly maslinic acid. This study, a randomized, double-blind, and placebo-controlled trial, examined the effects of an orally administered maslinic acid supplement, olive fruit extract, on 20 middle-aged and elderly volunteers with mild knee joint pain. Each subject (58 ± 7 years) received either olive fruit extract, containing 50 mg maslinic acid (n = 12), or placebo (n = 8) daily for 12 weeks and evaluated for pain and physical functions as primary outcome measures. Secondary outcome measures included body composition and inflammatory biomarkers in serum. Although both groups exhibited improved pain visual analogue scale score and quality of life after supplementation, symptoms were better in the maslinic acid group than in the placebo group. After 12 weeks, maslinic acid group exhibited significant decrease in body weight and body mass index suggesting that maslinic acid affected the weight of volunteers with mild knee joint pain. Therefore, olive products containing maslinic acid may be useful as a new preventive and therapeutic food ingredient for arthritic diseases. Since this clinical study is a preliminary study, it was not registered in a publicly accessible database.
Collapse
Affiliation(s)
- Satoshi Fukumitsu
- Nippon Flour Mills Co., Ltd., Central Laboratory, 5-1-3 Atsugi, Kanagawa 243-0041, Japan
| | - Myra O Villareal
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Kazuhiko Aida
- Nippon Flour Mills Co., Ltd., Central Laboratory, 5-1-3 Atsugi, Kanagawa 243-0041, Japan
| | - Akihiro Hino
- Nippon Flour Mills Co., Ltd., Central Laboratory, 5-1-3 Atsugi, Kanagawa 243-0041, Japan
| | | | - Hiroko Isoda
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan; Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Yuji Naito
- Molecular Gastroenterology and Hepatology, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| |
Collapse
|
33
|
Villalvilla A, García-Martín A, Largo R, Gualillo O, Herrero-Beaumont G, Gómez R. The adipokine lipocalin-2 in the context of the osteoarthritic osteochondral junction. Sci Rep 2016; 6:29243. [PMID: 27385438 PMCID: PMC4935838 DOI: 10.1038/srep29243] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 06/14/2016] [Indexed: 12/11/2022] Open
Abstract
Obesity and osteoarthritis (OA) form a vicious circle in which obesity contributes to cartilage destruction in OA, and OA-associated sedentary behaviour promotes weight gain. Lipocalin-2 (LCN2), a novel adipokine with catabolic activities in OA joints, contributes to the obesity and OA pathologies and is associated with other OA risk factors. LCN2 is highly induced in osteoblasts in the absence of mechanical loading, but its role in osteoblast metabolism is unclear. Therefore, because osteochondral junctions play a major role in OA development, we investigated the expression and role of LCN2 in osteoblasts and chondrocytes in the OA osteochondral junction environment. Our results showed that LCN2 expression in human osteoblasts and chondrocytes decreased throughout osteoblast differentiation and was induced by catabolic and inflammatory factors; however, TGF-β1 and IGF-1 reversed this induction. LCN2 reduced osteoblast viability in the presence of iron and enhanced the activity of MMP-9 released by osteoblasts. Moreover, pre-stimulated human osteoblasts induced LCN2 expression in human chondrocytes, but the inverse was not observed. Thus, LCN2 is an important catabolic adipokine in osteoblast and chondrocyte metabolism that is regulated by differentiation, inflammation and catabolic and anabolic stimuli, and LCN2 expression in chondrocytes is regulated in a paracrine manner after osteoblast stimulation.
Collapse
Affiliation(s)
- Amanda Villalvilla
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz, UAM, Avda Reyes Católicos, Madrid, 28040, Spain
| | - Adela García-Martín
- Department of Bioengineering, Universidad Carlos III de Madrid, CIEMAT-CIBERER, IIS-Fundación Jiménez Díaz, Madrid, 28040, Spain
| | - Raquel Largo
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz, UAM, Avda Reyes Católicos, Madrid, 28040, Spain
| | - Oreste Gualillo
- Research Laboratory 9 (NEIRID LAB), Institute of Medical Research, SERGAS, Santiago University Clinical Hospital, Santiago de Compostela, 15706, Spain
| | - Gabriel Herrero-Beaumont
- Bone and Joint Research Unit, IIS-Fundación Jiménez Díaz, UAM, Avda Reyes Católicos, Madrid, 28040, Spain
| | - Rodolfo Gómez
- Musculoskeletal Pathology Laboratory, Institute IDIS, Santiago University Clinical Hospital, Santiago de Compostela, 15706, Spain
| |
Collapse
|
34
|
Gittens J, Haleem AM, Grenier S, Smyth NA, Hannon CP, Ross KA, Torzilli PA, Kennedy JG. Use of novel chitosan hydrogels for chemical tissue bonding of autologous chondral transplants. J Orthop Res 2016; 34:1139-46. [PMID: 26698186 DOI: 10.1002/jor.23142] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Accepted: 12/08/2015] [Indexed: 02/04/2023]
Abstract
The objective of this study was to evaluate the effect of chemical tissue bonding (CTB) on adhesion strength, fluid permeability, and cell viability across a cartilaginous graft-host interface in an in vitro autologous chondral transplant (ACT) model. Chitosan-based cross-linkers; Chitosan-Rose Bengal [Chi-RB (Ch-ABC)], Chitosan-Genipin [Chi-GP (Ch-ABC)], and Chitosan-Rose Bengal-Genipin [Chi-RB-GP (Ch-ABC)] were applied to bovine immature cartilage explants after pre-treatment with surface degrading enzyme, Chondroitinase-ABC (Ch-ABC). Adhesion strength, fluid permeability and cell viability were assessed via mechanical push-out shear testing, fluid transport and live/dead cell staining, respectively. All three chitosan-based cross-linkers significantly increased the adhesion strength at the graft-host interface, however, only a statistically significant decrease in fluid permeability was noted in Chi-GP (Ch-ABC) specimen compared to untreated controls. Cell viability was maintained for 7 days of culture across all three treatment groups. These results show the potential clinical relevance of novel chitosan-based hydrogels in enhancing tissue integration and reducing synovial fluid penetration after ACT procedures in diarthoidal joints such as the knee and ankle. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:1139-1146, 2016.
Collapse
Affiliation(s)
- Jamila Gittens
- Laboratory for Soft Tissue Research, Hospital for Special Surgery, New York, New York
| | - Amgad M Haleem
- Department of Orthopedic Surgery, Oklahoma University Health Sciences Center, Oklahoma City, Oklahoma.,Department of Orthopedic Surgery, Cairo University School of Medicine, Cairo, Egypt
| | - Stephanie Grenier
- Laboratory for Soft Tissue Research, Hospital for Special Surgery, New York, New York
| | - Niall A Smyth
- Laboratory for Soft Tissue Research, Hospital for Special Surgery, New York, New York
| | - Charles P Hannon
- Department of Foot and Ankle Surgery, Hospital for Special Surgery, New York, New York
| | - Keir A Ross
- Department of Foot and Ankle Surgery, Hospital for Special Surgery, New York, New York
| | - Peter A Torzilli
- Laboratory for Soft Tissue Research, Hospital for Special Surgery, New York, New York
| | - John G Kennedy
- Department of Foot and Ankle Surgery, Hospital for Special Surgery, New York, New York
| |
Collapse
|
35
|
Yabe K, Satoh H, Ishii Y, Jindo T, Sugawara T, Furuhama K, Goryo M, Okada K. Early Pathophysiologic Feature of Arthropathy in Juvenile Dogs Induced by Ofloxacin, a Quinolone Antimicrobial Agent. Vet Pathol 2016; 41:673-81. [PMID: 15557076 DOI: 10.1354/vp.41-6-673] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Arthropathy in dogs induced by ofloxacin, a quinolone antimicrobial agent, was pathophysiologically investigated. In the in vivo studies, ofloxacin was administered orally once or twice at 20 mg/kg/day to male juvenile (3-month-old, n = 3) or adult (36-month-old, n = 2) dogs, and the humeral and femoral heads were examined pathologically. Unlike adult dogs, fluid-filled vesicles were macroscopically observed on the articular surfaces of one juvenile dog 24 hours after a single treatment with ofloxacin. These lesions were seen in all juvenile dogs by twice dosing. Microscopically, fissures or cavity formations in the middle zone of the articular cartilage were noted only in juvenile dogs. Furthermore, the cartilage matrix from the abnormal area to the articular surface showed a decreased safranin-O staining intensity, suggesting proteoglycan depletion. Ultrastructurally, chondrocytes in the middle zone of juvenile dogs displayed dilatation of the cisternae in the rough endoplasmic reticulum as an initial hallmark. In the in vitro studies, chondrocytes isolated from the articular cartilage of naive juvenile dogs were exposed to ofloxacin at 6.3–100 μg/ml for 24 hours. Although no changes were noted in the deoxyribonucleic acid synthesis, protein synthesis, or proteoglycan release at concentrations of up to 100 μg/ml, the proteoglycan synthesis was evidently decreased in a dose-dependent manner from 12.5 μg/ml. The results obtained suggest that the inhibitory action of ofloxacin on proteoglycan syntheses in the chondrocytes may largely contribute to the early morphologic features in the articular cartilage of the juvenile dog.
Collapse
Affiliation(s)
- K Yabe
- Drug Safety Research Laboratory, Daiichi Pharmaceutical Co. Ltd., 16-13, Kita-Kasai 1-Chome, Edogawaku, Tokyo 134-8630, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhou W, Liu G, Yang S, Ye S. Investigation for Effects of Cyclical Dynamic Compression on Matrix Metabolite and Mechanical Properties of Chondrocytes Cultured in Alginate. J HARD TISSUE BIOL 2016. [DOI: 10.2485/jhtb.25.351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Wu Zhou
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Guohui Liu
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Shuhua Yang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| | - Shunan Ye
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
37
|
Kadow T, Sowa G, Vo N, Kang JD. Molecular basis of intervertebral disc degeneration and herniations: what are the important translational questions? Clin Orthop Relat Res 2015; 473:1903-12. [PMID: 25024024 PMCID: PMC4418989 DOI: 10.1007/s11999-014-3774-8] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Intervertebral disc degeneration is a common condition with few inexpensive and effective modes of treatment, but current investigations seek to clarify the underlying process and offer new treatment options. It will be important for physicians to understand the molecular basis for the pathology and how it translates to developing clinical treatments for disc degeneration. In this review, we sought to summarize for clinicians what is known about the molecular processes that causes disc degeneration. RESULTS A healthy disc requires maintenance of a homeostatic environment, and when disrupted, a catabolic cascade of events occurs on a molecular level resulting in upregulation of proinflammatory cytokines, increased degradative enzymes, and a loss of matrix proteins. This promotes degenerative changes and occasional neurovascular ingrowth potentially contributing to the development of pain. Research demonstrates the molecular changes underlying the harmful effects of aging, smoking, and obesity seen clinically while demonstrating the variable influence of exercise. Finally, oral medications, supplements, biologic treatments, gene therapy, and stem cells hold great promise but require cautious application until their safety profiles are better outlined. CONCLUSIONS Intervertebral disc degeneration occurs where there is a loss of homeostatic balance with a predominantly catabolic metabolic profile. A basic understanding of the molecular changes occurring in the degenerating disc is important for practicing clinicians because it may help them to inform patients to alter lifestyle choices, identify beneficial or harmful supplements, or offer new biologic, genetic, or stem cell therapies.
Collapse
Affiliation(s)
- Tiffany Kadow
- />Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, E1641 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261 USA
| | - Gwendolyn Sowa
- />Ferguson Laboratory for Orthopaedic and Spine Research, Department of Physical Medicine and Rehabilitation, University of Pittsburgh Medical Center, University of Pittsburgh, Pittsburgh, PA USA
| | - Nam Vo
- />Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, E1641 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261 USA
| | - James D. Kang
- />Ferguson Laboratory for Orthopaedic and Spine Research, Department of Orthopaedic Surgery, University of Pittsburgh Medical Center, University of Pittsburgh, E1641 Biomedical Science Tower, 200 Lothrop Street, Pittsburgh, PA 15261 USA
| |
Collapse
|
38
|
Laureano PEDS, Oliveira KDS, de Aro AA, Gomes L, Pimentel ER, Esquisatto MAM. Structure and composition of arytenoid cartilage of the bullfrog (Lithobates catesbeianus) during maturation and aging. Micron 2015; 77:16-24. [PMID: 26093475 DOI: 10.1016/j.micron.2015.05.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2014] [Revised: 05/24/2015] [Accepted: 05/28/2015] [Indexed: 01/23/2023]
Abstract
The aging process induces progressive and irreversible changes in the structural and functional organization of animals. The objective of this study was to evaluate the effects of aging on the structure and composition of the extracellular matrix of the arytenoid cartilage found in the larynx of male bullfrogs (Lithobates catesbeianus) kept in captivity for commercial purposes. Animals at 7, 180 and 1080 days post-metamorphosis (n=10/age) were euthanized and the cartilage was removed and processed for structural and biochemical analysis. For the structural analyses, cartilage sections were stained with picrosirius, toluidine blue, Weigert's resorcin-fuchsin and Von Kossa stain. The sections were also submitted to immunohistochemistry for detection of collagen types I and II. Other samples were processed for the ultrastructural and cytochemical analysis of proteoglycans. Histological sections were used to chondrocyte count. The number of positive stainings for proteoglycans was quantified by ultrastructural analysis. For quantification and analysis of glycosaminoglycans were used the dimethyl methylene blue and agarose gel electrophoresis methods. The chloramine T method was used for hydroxyproline quantification. At 7 days, basophilia was observed in the pericellular and territorial matrix, which decreased in the latter over the period studied. Collagen fibers were arranged perpendicular to the major axis of the cartilaginous plate and were thicker in older animals. Few calcification areas were observed at the periphery of the cartilage specimens in 1080-day-old animals. Type II collagen was present throughout the stroma at the different ages. Elastic fibers were found in the stroma and perichondrium and increased with age in the two regions. Proteoglycan staining significantly increased from 7 to 180 days and reduced at 1080 days. The amount of total glycosaminoglycans was higher in 180-day-old animals compared to the other ages, with marked presence of chondroitin- and dermatan-sulfate especially in this age. The content of hydroxyproline, which infers the total collagen concentration, was higher in 1080-day-old animals compared to the other ages. The results demonstrated the elastic nature of the arytenoid cartilage of L. catesbeianus and the occurrence of age-related changes in the structural organization and composition of the extracellular matrix. These changes may contribute to alter the function of the larynx in the animal during aging.
Collapse
Affiliation(s)
- Priscila Eliane dos Santos Laureano
- Programa de Pós-graduação em Ciências Biomédicas, Centro Universitário Hermínio Ometto, Av. Dr. Maximiliano Baruto, 500 Jd. Universitário, 13607-339, Araras, SP, Brazil
| | - Kris Daiana Silva Oliveira
- Programa de Pós-graduação em Ciências Biomédicas, Centro Universitário Hermínio Ometto, Av. Dr. Maximiliano Baruto, 500 Jd. Universitário, 13607-339, Araras, SP, Brazil
| | - Andrea Aparecida de Aro
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Rua Charles Darwin, s/n, CxP 6109, 13083-863, Campinas, SP, Brazil
| | - Laurecir Gomes
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Rua Charles Darwin, s/n, CxP 6109, 13083-863, Campinas, SP, Brazil
| | - Edson Rosa Pimentel
- Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campinas, Rua Charles Darwin, s/n, CxP 6109, 13083-863, Campinas, SP, Brazil
| | - Marcelo Augusto Marretto Esquisatto
- Programa de Pós-graduação em Ciências Biomédicas, Centro Universitário Hermínio Ometto, Av. Dr. Maximiliano Baruto, 500 Jd. Universitário, 13607-339, Araras, SP, Brazil.
| |
Collapse
|
39
|
Adachi D, Yamada M, Nishiguchi S, Fukutani N, Hotta T, Tashiro Y, Morino S, Shirooka H, Nozaki Y, Hirata H, Yamaguchi M, Aoyama T. Age-related decline in chest wall mobility: a cross-sectional study among community-dwelling elderly women. J Osteopath Med 2015; 115:384-9. [PMID: 26024332 DOI: 10.7556/jaoa.2015.079] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
CONTEXT Chest wall mobility is strongly related to respiratory function; however, the effect of aging on chest wall mobility-and the level at which this mobility is most affected-remains unclear. OBJECTIVE To investigate age-related differences in chest wall mobility and respiratory function among elderly women in different age groups. METHODS This cross-sectional observational study was performed in Himeji City in Hyogo Prefecture and Ayabe City in Kyoto Prefecture in Japan. Inclusion criteria were female sex, age 65 years or older, community resident, and ability to ambulate independently, with or without an assistive device. Thoracic excursion at the axillary and xiphoid levels and at the level of the tenth rib was measured with measuring tape. Respiratory function, including forced vital capacity (FVC) and forced expiratory volume in 1 second (FEV1), was assessed by spirometry, and FVC percent predicted (%FVC), FEV1 percent predicted (%FEV1), and FEV1/FVC were calculated. Chest wall mobility and respiratory function were compared among 4 age groups. RESULTS Of 251 potential participants, 132 met the inclusion criteria. Participants were divided into 4 age groups: group 1, 65 to 69 years; group 2, 70 to 74 years; group 3, 75 to 79 years; and group 4, 80 years or older. Statistically significant differences were found in thoracic excursion at the axillary level between groups 1 and 4 and between groups 2 and 4 when adjusted for height and weight (F4.52, P=.01). In addition, statistically significant differences were found in the FVC and FEV1 values between groups 1 and 3 and between groups 2 and 3 (FVC: F4.97, P=.01; FEV1: F6.17, P=.01). CONCLUSION Chest wall mobility at the axillary level and respiratory function decreased with age in community-dwelling women aged 65 years or older. Further longitudinal studies are required to clarify the effects of aging on chest wall mobility and respiratory function.
Collapse
|
40
|
Musumeci G, Aiello FC, Szychlinska MA, Di Rosa M, Castrogiovanni P, Mobasheri A. Osteoarthritis in the XXIst century: risk factors and behaviours that influence disease onset and progression. Int J Mol Sci 2015; 16:6093-112. [PMID: 25785564 PMCID: PMC4394521 DOI: 10.3390/ijms16036093] [Citation(s) in RCA: 215] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 03/06/2015] [Accepted: 03/12/2015] [Indexed: 12/24/2022] Open
Abstract
Osteoarthritis (OA) is a growing public health problem across the globe, affecting more than half of the over 65 population. In the past, OA was considered a wear and tear disease, leading to the loss of articular cartilage and joint disability. Nowadays, thanks to advancements in molecular biology, OA is believed to be a very complex multifactorial disease. OA is a degenerative disease characterized by “low-grade inflammation” in cartilage and synovium, resulting in the loss of joint structure and progressive deterioration of cartilage. Although the disease can be dependent on genetic and epigenetic factors, sex, ethnicity, and age (cellular senescence, apoptosis and lubricin), it is also associated with obesity and overweight, dietary factors, sedentary lifestyle and sport injuries. The aim of this review is to highlight how certain behaviors, habits and lifestyles may be involved in the onset and progression of OA and to summarize the principal risk factors involved in the development of this complicated joint disorder.
Collapse
Affiliation(s)
- Giuseppe Musumeci
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123 Catania, Italy.
| | - Flavia Concetta Aiello
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123 Catania, Italy.
| | - Marta Anna Szychlinska
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123 Catania, Italy.
| | - Michelino Di Rosa
- Department of Biomedical and Biotechnological Sciences, Pathology Section, School of Medicine, University of Catania, 95123 Catania, Italy.
| | - Paola Castrogiovanni
- Department of Biomedical and Biotechnological Sciences, Human Anatomy and Histology Section, School of Medicine, University of Catania, Via S. Sofia 87, 95123 Catania, Italy.
| | - Ali Mobasheri
- The D-BOARD European Consortium for Biomarker Discovery, Department of Veterinary Preclinical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XH, UK.
- Arthritis Research UK Centre for Sport, Exercise and Osteoarthritis, Arthritis Research UK Pain Centre, Medical Research Council and Arthritis Research UK Centre for Musculoskeletal Ageing Research, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
- Center of Excellence in Genomic Medicine Research (CEGMR), King Fahd Medical Research Center (KFMRC), King AbdulAziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
41
|
Trzeciak T, Czarny-Ratajczak M. MicroRNAs: Important Epigenetic Regulators in Osteoarthritis. Curr Genomics 2015; 15:481-4. [PMID: 25598697 PMCID: PMC4293743 DOI: 10.2174/1389202915666141024212506] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 10/14/2014] [Accepted: 10/24/2014] [Indexed: 01/17/2023] Open
Abstract
Multiple mechanisms are implicated in the development of primary osteoarthritis (OA), in which genetic and epigenetic factors appear to interact with environmental factors and age to initiate the disease and stimulate its progression. Changes in expression of microRNAs (miRs) contribute to development of osteoarthritis. Numerous miRs are involved in cartilage development, homeostasis and degradation through targeting genes expressed in this tissue. An important regulator of gene expression in human cartilage is miR-140, which directly targets a gene coding aggrecanase ADAMTS-5, that cleaves aggrecan in cartilage. This miR is considered a biological marker for cartilage and its level significantly decreases in OA cartilage. On the other hand, increased expression of miR-146a in early OA inhibits two other cartilage-degrading enzymes: MMP13 and ADAMTS4, and may provide a useful tool in developing treatments for OA. The COL2A1 gene, encoding collagen type II, which is the most abundant structural protein of the cartilage, is silenced by miR-34a and activated by miR-675. Every year, new targets of cartilage miRs are validated experimentally and this opens new possibilities for new therapies that control joint destruction and stimulate cartilage repair. At the same time development of next-generation sequencing technologies allows to identify new miRs involved in cartilage biology.
Collapse
Affiliation(s)
- Tomasz Trzeciak
- Department of Orthopedics and Traumatology, Poznan University of Medical Sciences, Poznan, Poland
| | - Malwina Czarny-Ratajczak
- Department of Medical Genetics, Poznan University of Medical Sciences, Poznan, Poland ; Department of Medicine, Center for Aging, Tulane University, School of Medicine, New Orleans, USA
| |
Collapse
|
42
|
Fick JM, Huttu MRJ, Lammi MJ, Korhonen RK. In vitro glycation of articular cartilage alters the biomechanical response of chondrocytes in a depth-dependent manner. Osteoarthritis Cartilage 2014; 22:1410-8. [PMID: 25278052 DOI: 10.1016/j.joca.2014.07.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 07/16/2014] [Accepted: 07/18/2014] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To determine if increasing cartilage cross-links through in vitro glycation of cartilage explants can alter the biomechanical response of chondrocytes to compressive deformation. METHOD Bovine osteochondral explants were either incubated with cell culture solution supplemented with (n = 7) or without (n = 7) ribose for 42 h in order to induce glycation. Deformation-induced changes in cell volume, dimensions and local tissue strains were determined through confocal laser scanning microscopy (CLSM) and the use of a custom built micro-compression device. Osteochondral explants were also utilized to demonstrate changes in depth-wise tissue properties, biomechanical tissue properties and cross-links such as pentosidine (Pent), hydroxylysyl pyridinoline (HP) and lysyl pyridinoline (LP). RESULTS The ribose treated osteochondral samples experienced reduced cell volume deformation in the upper tissue zone by ∼ 8% (P = 0.005), as compared the control samples, through restricting cell expansion. In the deeper tissue zone, cell volume deformation was increased by ∼ 12% (P < 0.001) via the transmission of mechanical signals further into the tissue depth. Biomechanical testing of the ribose treated osteochondral samples demonstrated an increase in the equilibrium and dynamic strain dependent moduli (P < 0.001 and P = 0.008, respectively). The biochemical analysis revealed an increase in Pent cross-links (P < 0.001). Depth-wise tissue property analyses revealed increased levels of carbohydrate content, greater levels of fixed charge density and an increased carbohydrate to protein ratio from 6 to 16%, 55-100% and 72-79% of the normalized tissue thickness (from the surface), respectively, in the ribose-treated group (P < 0.05). CONCLUSION In vitro glycation alters the biomechanical response of chondrocytes in cartilage differently in upper and deeper zones, offering possible insights into how aging could alter cell deformation behavior in cartilage.
Collapse
Affiliation(s)
- J M Fick
- Department of Applied Physics, University of Eastern Finland, Kuopio FI-70211, Finland.
| | - M R J Huttu
- Department of Applied Physics, University of Eastern Finland, Kuopio FI-70211, Finland
| | - M J Lammi
- Department of Applied Physics, University of Eastern Finland, Kuopio FI-70211, Finland
| | - R K Korhonen
- Department of Applied Physics, University of Eastern Finland, Kuopio FI-70211, Finland
| |
Collapse
|
43
|
Loeser RF, Gandhi U, Long DL, Yin W, Chubinskaya S. Aging and oxidative stress reduce the response of human articular chondrocytes to insulin-like growth factor 1 and osteogenic protein 1. Arthritis Rheumatol 2014; 66:2201-9. [PMID: 24664641 DOI: 10.1002/art.38641] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 03/20/2014] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To determine the effects of aging and oxidative stress on the response of human articular chondrocytes to insulin-like growth factor 1 (IGF-1) and osteogenic protein 1 (OP-1). METHODS Chondrocytes isolated from normal articular cartilage obtained from tissue donors were cultured in alginate beads or monolayer. Cells were stimulated with 50-100 ng/ml of IGF-1, OP-1, or both. Oxidative stress was induced using tert-butyl hydroperoxide. Sulfate incorporation was used to measure proteoglycan synthesis, and immunoblotting of cell lysates was performed to analyze cell signaling. Confocal microscopy was performed to measure nuclear translocation of Smad4. RESULTS Chondrocytes isolated from the articular cartilage of tissue donors ranging in age from 24 years to 81 years demonstrated an age-related decline in proteoglycan synthesis stimulated by IGF-1 and IGF-1 plus OP-1. Induction of oxidative stress inhibited both IGF-1- and OP-1-stimulated proteoglycan synthesis. Signaling studies showed that oxidative stress inhibited IGF-1-stimulated Akt phosphorylation while increasing phosphorylation of ERK, and that these effects were greater in cells from older donors. Oxidative stress also increased p38 phosphorylation, which resulted in phosphorylation of Smad1 at the Ser(206) inhibitory site and reduced nuclear accumulation of Smad1. Oxidative stress also modestly reduced OP-1-stimulated nuclear translocation of Smad4. CONCLUSION These results demonstrate an age-related reduction in the response of human chondrocytes to IGF-1 and OP-1, which are 2 important anabolic factors in cartilage, and suggest that oxidative stress may be a contributing factor by altering IGF-1 and OP-1 signaling.
Collapse
Affiliation(s)
- Richard F Loeser
- University of North Carolina, Chapel Hill, and Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | | | | | | | | |
Collapse
|
44
|
McGann ME, Bonitsky CM, Ovaert TC, Wagner DR. The effect of collagen crosslinking on the biphasic poroviscoelastic cartilage properties determined from a semi-automated microindentation protocol for stress relaxation. J Mech Behav Biomed Mater 2014; 34:264-72. [PMID: 24631625 DOI: 10.1016/j.jmbbm.2014.02.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Revised: 01/28/2014] [Accepted: 02/05/2014] [Indexed: 10/25/2022]
Abstract
Given the important role of the collagenous structure in cartilage mechanics, there is considerable interest in the relationship between collagen crosslinking and the mechanical behavior of the cartilage matrix. While crosslink-induced alterations to the elastic modulus of cartilage have been described, changes to time-dependent behavior have not yet been determined. The objective of the study was to quantify changes to cartilage material properties, including viscoelastic coefficients, with crosslinking via indentation. To accomplish this, a semi-autonomous microindentation stress relaxation protocol was first developed, validated and then applied to cartilage specimens before and after crosslinking. The change in mechanical properties with crosslinking was analyzed both in the unloading portions of the test via the Oliver-Pharr method and in the holding portion with an inverse iterative finite element model that represented cartilage as a biphasic poroviscoelastic material. Although both techniques suggested a similar increase in equilibrium modulus in the crosslinked specimens as compared to the controls, distinct differences in the control specimens were apparent, suggesting that the two different techniques may be capturing different aspects of the material behavior. No differences in time-dependent properties were observed between the crosslinked and the control specimens. These results give further insight into the effects of crosslinking in cartilage mechanical behavior. Additionally, the microindentation stress relaxation protocol may enable increased automation for high-throughput testing.
Collapse
Affiliation(s)
- Megan E McGann
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Craig M Bonitsky
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Timothy C Ovaert
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Diane R Wagner
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
45
|
Abstract
Obesity, together with aging and injury, is among the main risk factors for osteoarthritis. Obesity-related osteoarthritis can affect not only the weight-bearing joints, but also the hands, suggesting a role for circulating mediators released by the adipose tissue and known as adipokines. Thus, osteoarthritis may have a systemic metabolic component. Evidence from both epidemiological and biological studies support the concept of metabolic osteoarthritis, defined as a broad clinical phenotype that includes obesity-related osteoarthritis. Thus, osteoarthritis can be related to metabolic syndrome or to an accumulation of metabolic abnormalities. In addition, studies have demonstrated associations linking osteoarthritis to several components of the metabolic syndrome, such as hypertension and type 2 diabetes, independently from obesity or any of the other known risk factors for osteoarthritis. Both in vitro and in vitro findings indicate a deleterious effect of lipid and glucose abnormalities on cartilage homeostasis. Chronic low-grade inflammation is a feature shared by osteoarthritis and metabolic disorders and may contribute to the genesis of both. Thus, osteoarthritis is emerging as a disease that has a variety of phenotypes including a metabolic phenotype, in addition to the age-related and injury-related phenotypes.
Collapse
Affiliation(s)
- Jérémie Sellam
- Service de rhumatologie, département hospitalo-universitaire inflammation-immunopathology-biotherapy (I2B), université Paris 6, hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, 184, rue du Faubourg-Saint-Antoine, 75012 Paris, France.
| | | |
Collapse
|
46
|
|
47
|
Liu H, Zhao Z, Clarke RB, Gao J, Garrett IR, Margerrison EEC. Enhanced tissue regeneration potential of juvenile articular cartilage. Am J Sports Med 2013; 41:2658-67. [PMID: 24043472 DOI: 10.1177/0363546513502945] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Articular cartilage undergoes substantial age-related changes in molecular composition, matrix structure, and mechanical properties. These age-related differences between juvenile and adult cartilage manifest themselves as markedly distinct potentials for tissue repair and regeneration. PURPOSE To compare the biological properties and tissue regeneration capabilities of juvenile and adult bovine articular cartilage. STUDY DESIGN Controlled laboratory study. METHODS Articular cartilage harvested from juvenile (age, 4 months) and adult (age, 6-8 years) bovine femoral condyles was cultured for 4 weeks to monitor chondrocyte migration, glycosaminoglycan content conservation, and new tissue formation. The cartilage cell density and proliferative activity were also compared. Additionally, the effects of age-related changes on cartilage gene expression were analyzed using the Affymetrix GeneChip array. RESULTS Compared with adult cartilage, juvenile bovine cartilage demonstrated a significantly greater cell density, higher cell proliferation rate, increased cell outgrowth, elevated glycosaminoglycan content, and enhanced matrix metallopeptidase 2 activity. During 4 weeks in culture, only juvenile cartilage was able to generate new cartilaginous tissues, which exhibited pronounced labeling for proteoglycan and type II collagen but not type I collagen. With over 19,000 genes analyzed, distinctive gene expression profiles were identified. The genes mostly involved in cartilage growth and expansion, such as COL2A1, COL9A1, MMP2, MMP14, and TGFB3, were upregulated in juvenile cartilage, whereas the genes primarily responsible for structural integrity, such as COMP, FN1, TIMP2, TIMP3, and BMP2, were upregulated in adult cartilage. CONCLUSION As the first comprehensive comparison between juvenile and adult bovine articular cartilage at the tissue, cellular, and molecular levels, the results strongly suggest that juvenile cartilage possesses superior chondrogenic activity and enhanced regenerative potential over its adult counterpart. Additionally, the differential gene expression profiles of juvenile and adult cartilage suggest possible mechanisms underlying cartilage age-related changes in their regeneration capabilities, structural components, and biological properties. CLINICAL RELEVANCE The results of this comparative study between juvenile and adult bovine articular cartilage suggest an enhanced regenerative potential of juvenile cartilage tissue in the restoration of damaged articular cartilage.
Collapse
Affiliation(s)
- Hui Liu
- Rhonda B. Clarke, MS, Zimmer Orthobiologics Inc, 9301 Amberglen Boulevard, Building J, Suite 100, Austin, TX 78729.
| | | | | | | | | | | |
Collapse
|
48
|
Receptor for advanced glycation end products and its involvement in inflammatory diseases. Int J Inflam 2013; 2013:403460. [PMID: 24102034 PMCID: PMC3786507 DOI: 10.1155/2013/403460] [Citation(s) in RCA: 168] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 07/29/2013] [Indexed: 02/06/2023] Open
Abstract
The receptor for advanced glycation end products (RAGE) is a transmembrane receptor of the immunoglobulin superfamily, capable of binding a broad repertoire of ligands. RAGE-ligands interaction induces a series of signal transduction cascades and lead to the activation of transcription factor NF-κB as well as increased expression of cytokines, chemokines, and adhesion molecules. These effects endow RAGE with the role in the signal transduction from pathogen substrates to cell activation during the onset and perpetuation of inflammation. RAGE signaling and downstream pathways have been implicated in a wide spectrum of inflammatory-related pathologic conditions such as arteriosclerosis, Alzheimer's disease, arthritis, acute respiratory failure, and sepsis. Despite the significant progress in other RAGE studies, the functional importance of the receptor in clinical situations and inflammatory diseases still remains to be fully realized. In this review, we will summarize current understandings and lines of evidence on the molecular mechanisms through which RAGE signaling contributes to the pathogenesis of the aforementioned inflammation-associated conditions.
Collapse
|
49
|
The age-related changes in cartilage and osteoarthritis. BIOMED RESEARCH INTERNATIONAL 2013; 2013:916530. [PMID: 23971049 PMCID: PMC3736507 DOI: 10.1155/2013/916530] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2013] [Revised: 06/07/2013] [Accepted: 06/09/2013] [Indexed: 12/29/2022]
Abstract
Osteoarthritis (OA) is closely associated with aging, but its underlying mechanism is unclear. Recent publications were reviewed to elucidate the connection between aging and OA. With increasing OA incidence, more senior people are facing heavy financial and social burdens. Age-related OA pathogenesis is not well understood. Recently, it has been realized that age-related changes in other tissues besides articular cartilage may also contribute to OA development. Many factors including senescence-related secretory phenotypes, chondrocytes' low reactivity to growth factors, mitochondrial dysfunction and oxidative stress, and abnormal accumulation of advanced glycation end products (AGEs) may all play key roles in the pathogenesis of age-related OA. Lately, epigenetic regulation of gene expression was recognized for its impact on age-related OA pathogenesis. Up to now, few studies have been reported about the role of miRNA and long-noncoding RNA (lncRNA) in age-related OA. Research focusing on this area may provide valuable insights into OA pathogenesis. OA-induced financial and social burdens have become an increasingly severe threat to older population. Age-related changes in noncartilage tissue should be incorporated in the understanding of OA development. Growing attention on oxidative stress and epigenetics will provide more important clues for the better understanding of the age-related OA.
Collapse
|
50
|
Vo N, Niedernhofer LJ, Nasto LA, Jacobs L, Robbins PD, Kang J, Evans CH. An overview of underlying causes and animal models for the study of age-related degenerative disorders of the spine and synovial joints. J Orthop Res 2013; 31:831-7. [PMID: 23483579 PMCID: PMC3628921 DOI: 10.1002/jor.22204] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 07/10/2012] [Indexed: 02/04/2023]
Abstract
As human lifespan increases so does the incidence of age-associated degenerative joint diseases, resulting in significant negative socioeconomic consequences. Osteoarthritis (OA) and intervertebral disc degeneration (IDD) are the most common underlying causes of joint-related chronic disability and debilitating pain in the elderly. Current treatment methods are generally not effective and involve either symptomatic relief with non-steroidal anti-inflammatory drugs and physical therapy or surgery when conservative treatments fail. The limitation in treatment options is due to our incomplete knowledge of the molecular mechanism of degeneration of articular cartilage and disc tissue. Basic understanding of the age-related changes in joint tissue is thus needed to combat the adverse effects of aging on joint health. Aging is caused at least in part by time-dependent accumulation of damaged organelles and macromolecules, leading to cell death and senescence and the eventual loss of multipotent stem cells and tissue regenerative capacity. Studies over the past decades have uncovered a number of important molecular and cellular changes in joint tissues with age. However, the precise causes of damage, cellular targets of damage, and cellular responses to damage remain poorly understood. The objectives of this review are to provide an overview of the current knowledge about the sources of endogenous and exogenous damaging agents and how they contribute to age-dependent degenerative joint disease, and highlight animal models of accelerated aging that could potentially be useful for identifying causes of and therapies for degenerative joint diseases.
Collapse
Affiliation(s)
- Nam Vo
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA,Ferguson Laboratory for Orthopaedic Research, 523 Bridgeside Point II. 450 Technology Drive, Pittsburgh, PA 15219
| | - Laura J. Niedernhofer
- Department of Microbiology and Molecular Genetics, 523 Bridgeside Point II. 450 Technology Drive, Pittsburgh, PA 15219,University of Pittsburgh Cancer Institute, Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15213-1863, U.S.A
| | - Luigi Aurelio Nasto
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA,Ferguson Laboratory for Orthopaedic Research, 523 Bridgeside Point II. 450 Technology Drive, Pittsburgh, PA 15219
| | - Lloydine Jacobs
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA,Ferguson Laboratory for Orthopaedic Research, 523 Bridgeside Point II. 450 Technology Drive, Pittsburgh, PA 15219
| | - Paul D. Robbins
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA,Department of Microbiology and Molecular Genetics, 523 Bridgeside Point II. 450 Technology Drive, Pittsburgh, PA 15219,University of Pittsburgh Cancer Institute, Hillman Cancer Center, 5117 Centre Avenue, Pittsburgh, PA 15213-1863, U.S.A
| | - James Kang
- Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15261, USA,Ferguson Laboratory for Orthopaedic Research, 523 Bridgeside Point II. 450 Technology Drive, Pittsburgh, PA 15219
| | - Christopher H. Evans
- Center for Advanced Orthopedic Studies, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, RN-115, Boston, MA 02215, USA
| |
Collapse
|