1
|
Ruscitti P, Nunziato M, Caso F, Scarpa R, Di Maggio F, Giacomelli R, Salvatore F. Prevention of rheumatoid arthritis using a familial predictive medicine approach. Autoimmun Rev 2024; 23:103653. [PMID: 39370029 DOI: 10.1016/j.autrev.2024.103653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 09/28/2024] [Indexed: 10/08/2024]
Abstract
Most of the chronic-degenerative diseases deserve a very early recognition of symptoms and signs for the earliest secondary prevention, which could be also very useful in many cases for the most precocious clinical approach. The periodic monitoring of a subject at risk of a specific disease, because of genomic predisposition by predictive medicine approach, may help to earlier detection of onset and/or the progression of the pathology itself, through intra-individual monitoring. This is particularly the case of rheumatoid arthritis (RA) for which an early diagnosis is undoubtedly the first step to ensure the most proper therapy for the patient. Thus, the earlier identification of individuals at high risk of RA could lead to ultra-preventive strategies to start for the best lifestyle performances and/or for any other effective therapeutic interventions to contrast the onset, and/or the evolution of the putative RA. This will also optimize both costs and medical resources, according to the health care policies of many countries.
Collapse
Affiliation(s)
- Piero Ruscitti
- Rheumatology Unit, Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, L'Aquila, Italy
| | - Marcella Nunziato
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Sergio Pansini, 5, 80131 Napoli, NA, Italy; CEINGE - Biotecnologie Avanzate - Franco Salvatore, Via Gaetano Salvatore, 486, 80145 Napoli, Italy
| | - Francesco Caso
- Rheumatology Research Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Raffaele Scarpa
- Rheumatology Research Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, via S. Pansini 5, 80131 Naples, Italy
| | - Federica Di Maggio
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Sergio Pansini, 5, 80131 Napoli, NA, Italy; CEINGE - Biotecnologie Avanzate - Franco Salvatore, Via Gaetano Salvatore, 486, 80145 Napoli, Italy
| | - Roberto Giacomelli
- Clinical and Research Section of Rheumatology and Clinical Immunology, Fondazione Policlinico Campus Bio-Medico, Via Álvaro del Portillo 200, 00128 Rome, Italy; Rheumatology, Immunology and Clinical Medicine Unit, Department of Medicine, University of Rome "Campus Biomedico" School of Medicine, Rome, Italy.
| | - Francesco Salvatore
- Department of Molecular Medicine and Medical Biotechnologies, University Federico II, Via Sergio Pansini, 5, 80131 Napoli, NA, Italy; CEINGE - Biotecnologie Avanzate - Franco Salvatore, Via Gaetano Salvatore, 486, 80145 Napoli, Italy.
| |
Collapse
|
2
|
Ge M, Xu YQ, Hu X, He YS, Xu SZ, He T, Wang P, Pan HF. Genetic causality between modifiable risk factors and the risk of rheumatoid arthritis: Evidence from Mendelian randomization. Int J Rheum Dis 2024; 27:e15315. [PMID: 39258747 DOI: 10.1111/1756-185x.15315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/18/2024] [Accepted: 08/15/2024] [Indexed: 09/12/2024]
Abstract
OBJECTIVES Emerging research has investigated the potential impact of several modifiable risk factors on the risks of rheumatoid arthritis (RA), but the findings did not yield consistent results. This study aimed to comprehensively explore the genetic causality between modifiable risk factors and the susceptibility of RA risk using the Mendelian randomization (MR) approach. METHODS Genetic instruments for modifiable risk factors were selected from several genome-wide association studies at the genome-wide significance level (p < 5 × 10-8), respectively. Summary-level data for RA were sourced from a comprehensive meta-analysis. The causal estimates linking modifiable risk factors to RA risk were assessed using MR analysis with inverse variance weighting (IVW), MR-Egger, weighted, and weighted median methods. RESULTS After Bonferroni correction for multiple tests, we found the presence of causality between educational attainment and RA, where there were protective effects of educational attainment (college completion) (odds ratio [OR] = 0.50, 95% CI = 0.36, 0.69, p = 2.87E-05) and educational attainment (years of education) (OR = 0.93, 95% CI = 0.90, 0.96, p = 4.18E-06) on the lower RA risks. Nevertheless, smoking initiation was observed to be associated with increased RA risks (OR = 1.27, 95% CI = 1.09, 1.47, p = .002). Moreover, there was no indication of horizontal pleiotropy of genetic variants during causal inference between modifiable risk factors and RA. CONCLUSIONS Our study reveals the genetic causal impacts of educational attainment and smoking on RA risks, suggesting that the early monitoring and recognition of modifiable risk factors would be beneficial for the preventive counseling/treatment strategies for RA.
Collapse
Affiliation(s)
- Man Ge
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Big Data and Population Health of IHM, Hefei, China
- Inflammation and Immunity Mediated Diseases, Institute of Kidney Disease, The Second Hospital of Anhui Medical University, Hefei, China
| | - Yi-Qing Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Big Data and Population Health of IHM, Hefei, China
- Inflammation and Immunity Mediated Diseases, Institute of Kidney Disease, The Second Hospital of Anhui Medical University, Hefei, China
| | - Xiao Hu
- Inflammation and Immunity Mediated Diseases, Institute of Kidney Disease, The Second Hospital of Anhui Medical University, Hefei, China
- Department of Health Promotion and Behavioral Sciences, School of Public Health, Anhui Medical University, Hefei, China
| | - Yi-Sheng He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Big Data and Population Health of IHM, Hefei, China
- Inflammation and Immunity Mediated Diseases, Institute of Kidney Disease, The Second Hospital of Anhui Medical University, Hefei, China
| | - Shu-Zhen Xu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Big Data and Population Health of IHM, Hefei, China
- Inflammation and Immunity Mediated Diseases, Institute of Kidney Disease, The Second Hospital of Anhui Medical University, Hefei, China
| | - Tian He
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Big Data and Population Health of IHM, Hefei, China
- Inflammation and Immunity Mediated Diseases, Institute of Kidney Disease, The Second Hospital of Anhui Medical University, Hefei, China
| | - Peng Wang
- Inflammation and Immunity Mediated Diseases, Institute of Kidney Disease, The Second Hospital of Anhui Medical University, Hefei, China
- Department of Health Promotion and Behavioral Sciences, School of Public Health, Anhui Medical University, Hefei, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, China
- Big Data and Population Health of IHM, Hefei, China
- Inflammation and Immunity Mediated Diseases, Institute of Kidney Disease, The Second Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
3
|
Gao KX, Yang YH, Liang Q, Mei LY, Liang YB, Wang MJ, Chen XM, Huang QC, Wen ZH, Huang RY. Targeting Therapeutic Windows for Rheumatoid Arthritis Prevention. Chin J Integr Med 2024; 30:842-851. [PMID: 38753276 DOI: 10.1007/s11655-024-3760-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/15/2024] [Indexed: 08/25/2024]
Abstract
Rheumatoid arthritis (RA) is a worldwide public health problem. Interventions to delay or prevent the onset of RA have attracted much attention in recent years, and researchers are now exploring various prevention strategies. At present, there is still no unified consensus for RA prevention, but targeting therapeutic windows and implementing interventions for at-risk individuals are extremely important. Due to the limited number of clinical trials on pharmacologic interventions, further studies are needed to explore and establish optimal intervention regimens and effective measures to prevent progression to RA. In this review, we introduce the RA disease process and risk factors, and present research on the use of both Western and Chinese medicine from clinical perspectives regarding RA prevention. Furthermore, we describe several complete and ongoing clinical studies on the use of Chinese herbal formulae for the prevention of RA.
Collapse
Affiliation(s)
- Kai-Xin Gao
- Section of Rheumatology and Immunology Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Yi-Hong Yang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Qi Liang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Li-Yan Mei
- Section of Rheumatology and Immunology Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - You-Bang Liang
- The Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Mao-Jie Wang
- Section of Rheumatology and Immunology Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510120, China
| | - Xiu-Min Chen
- Section of Rheumatology and Immunology Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510120, China
| | - Qing-Chun Huang
- Section of Rheumatology and Immunology Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Guangdong Provincial Key Laboratory of Chinese Medicine for Prevention and Treatment of Refractory Chronic Diseases, Guangzhou, 510120, China
| | - Ze-Huai Wen
- The Key Unit of Methodology of Clinical Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Run-Yue Huang
- Section of Rheumatology and Immunology Research, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
- Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China.
- Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510120, China.
| |
Collapse
|
4
|
Bashir U, Singh G, Bhatia A. Rheumatoid arthritis-recent advances in pathogenesis and the anti-inflammatory effect of plant-derived COX inhibitors. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5363-5385. [PMID: 38358467 DOI: 10.1007/s00210-024-02982-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024]
Abstract
The majority of people with autoimmune disorders, including those with rheumatoid arthritis, osteoarthritis, and tendonitis report pain, stiffness, and inflammation as major contributors to their worse quality of life in terms of overall health. Of all the available treatment options, COX inhibitors are the ones that are utilized most frequently to ease the symptoms. Various signaling cascades have been reported to be involved in the pathogenesis of rheumatoid arthritis which includes JAK/STAT, MAPK, and NF-kB signaling pathways, and several allopathic inhibitors (tofacitinib and baricitinib) have been reported to target the components of these cascades and have received approval for RA treatment. However, the prolonged use of these COX inhibitors and other allopathic drugs can pose serious health challenges due to their significant side effects. Therefore, searching for a more effective and side effect-free treatment for rheumatoid arthritis has unveiled phytochemicals as both productive and promising. Their therapeutic ability helps develop potent and safe drugs targeting immune-inflammatory diseases including RA. Various scientific databases were used for searching articles such as NCBI, SpringerLink, BioMed Central, ResearchGate, Google Scholar, Scopus, Nature, Wiley Online Library, and ScienceDirect. This review lists various phytochemicals and discusses their potential molecular targets in RA treatment, as demonstrated by various in vitro, in vivo (pre-clinical), and clinical studies. Several pre-clinical and clinical studies suggest that various phytochemicals can be an alternative promising intervention for attenuating and managing inflammation-associated pathogenesis of rheumatoid arthritis.
Collapse
Affiliation(s)
- Ubaid Bashir
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Gurjant Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Astha Bhatia
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
5
|
Mastana S, Knight E, Hampson A, Akam L, Hunter DJ, Ghelani A, Samanta A, Singh P. Role of Selected Genetic Polymorphisms in the Development of Rheumatoid Arthritis in a British White Population. Genes (Basel) 2024; 15:1009. [PMID: 39202369 PMCID: PMC11354150 DOI: 10.3390/genes15081009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/26/2024] [Accepted: 07/28/2024] [Indexed: 09/03/2024] Open
Abstract
BACKGROUND Rheumatoid arthritis (RA) is a complex autoimmune disease that negatively affects synovial joints, leading to the deterioration of movement and mobility of patients. This chronic disease is considered to have a strong genetic inheritance, with genome-wide association studies (GWAS) highlighting many genetic loci associated with the disease. Moreover, numerous confounding and non-genetic factors also contribute to the risk of the disease. AIMS This study investigates the association of selected genetic polymorphisms with rheumatoid arthritis risk and develops a polygenic risk score (PRS) based on selected genes. METHODS A case-control study recruited fully consenting participants from the East Midlands region of the UK. DNA samples were genotyped for a range of polymorphisms and genetic associations were calculated under several inheritance models. PRS was calculated at crude (unweighted) and weighted levels, and its associations with clinical parameters were determined. RESULTS There were significant associations with the risk of RA at six genetic markers and their associated risk alleles (TNRF2*G, TRAF1*A, PTPN22*T, HLA-DRB1*G, TNFα*A, and IL4-590*T). The TTG haplotype at the VDR locus increased the risk of RA with an OR of 3.05 (CI 1.33-6.98, p = 0.009). The GA haplotype of HLADRB1-TNFα-308 was a significant contributor to the risk of RA in this population (OR = 2.77, CI 1.23-6.28, p = 0.01), although linkage disequilibrium was low. The polygenic risk score was significantly higher in cases over controls in both unweighted (mean difference = 1.48, t285 = 5.387, p < 0.001) and weighted (mean difference = 2.75, t285 = 6.437, p < 0.001) results. CONCLUSION Several genetic loci contribute to the increased risk of RA in the British White sample. The PRS is significantly higher in those with RA and can be used for clinical applications and personalised prevention of disease.
Collapse
Affiliation(s)
- Sarabjit Mastana
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK; (E.K.); (A.H.); (L.A.); (D.J.H.); (A.G.)
| | - Ella Knight
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK; (E.K.); (A.H.); (L.A.); (D.J.H.); (A.G.)
| | - Abigail Hampson
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK; (E.K.); (A.H.); (L.A.); (D.J.H.); (A.G.)
| | - Liz Akam
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK; (E.K.); (A.H.); (L.A.); (D.J.H.); (A.G.)
| | - David John Hunter
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK; (E.K.); (A.H.); (L.A.); (D.J.H.); (A.G.)
| | - Anant Ghelani
- School of Sport, Exercise and Health Sciences, Loughborough University, Loughborough LE11 3TU, UK; (E.K.); (A.H.); (L.A.); (D.J.H.); (A.G.)
| | - Ash Samanta
- Rheumatology, University Hospitals of Leicester NHS Trust, Leicester LE1 5WW, UK;
| | - Puneetpal Singh
- Department of Human Genetics, Punjabi University, Patiala 147002, India;
| |
Collapse
|
6
|
Santiago-Lamelas L, Dos Santos-Sobrín R, Carracedo Á, Castro-Santos P, Díaz-Peña R. Utility of polygenic risk scores to aid in the diagnosis of rheumatic diseases. Best Pract Res Clin Rheumatol 2024:101973. [PMID: 38997822 DOI: 10.1016/j.berh.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 07/14/2024]
Abstract
Rheumatic diseases (RDs) are characterized by autoimmunity and autoinflammation and are recognized as complex due to the interplay of multiple genetic, environmental, and lifestyle factors in their pathogenesis. The rapid advancement of genome-wide association studies (GWASs) has enabled the identification of numerous single nucleotide polymorphisms (SNPs) associated with RD susceptibility. Based on these SNPs, polygenic risk scores (PRSs) have emerged as promising tools for quantifying genetic risk in this disease group. This chapter reviews the current status of PRSs in assessing the risk of RDs and discusses their potential to improve the accuracy of the diagnosis of these complex diseases through their ability to discriminate among different RDs. PRSs demonstrate a high discriminatory capacity for various RDs and show potential clinical utility. As GWASs continue to evolve, PRSs are expected to enable more precise risk stratification by integrating genetic, environmental, and lifestyle factors, thereby refining individual risk predictions and advancing disease management strategies.
Collapse
Affiliation(s)
- Lucía Santiago-Lamelas
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Centro Nacional de Genotipado, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Raquel Dos Santos-Sobrín
- Reumatología, Hospital Clínico Universitario, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Ángel Carracedo
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Centro Nacional de Genotipado, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Grupo de Medicina Xenómica, CIMUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Patricia Castro-Santos
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Centro Nacional de Genotipado, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Faculty of Health Sciences, Universidad Autónoma de Chile, Talca, Chile.
| | - Roberto Díaz-Peña
- Fundación Pública Galega de Medicina Xenómica (SERGAS), Centro Nacional de Genotipado, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain; Faculty of Health Sciences, Universidad Autónoma de Chile, Talca, Chile.
| |
Collapse
|
7
|
Kozlowska J, Humphryes-Kirilov N, Pavlovets A, Connolly M, Kuncheva Z, Horner J, Manso AS, Murray C, Fox JC, McCarthy A. Unveiling new genetic insights in rheumatoid arthritis for drug discovery through Taxonomy3 analysis. Sci Rep 2024; 14:14153. [PMID: 38898196 PMCID: PMC11186831 DOI: 10.1038/s41598-024-64970-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 06/14/2024] [Indexed: 06/21/2024] Open
Abstract
Genetic support for a drug target has been shown to increase the probability of success in drug development, with the potential to reduce attrition in the pharmaceutical industry alongside discovering novel therapeutic targets. It is therefore important to maximise the detection of genetic associations that affect disease susceptibility. Conventional statistical methods such as genome-wide association studies (GWAS) only identify some of the genetic contribution to disease, so novel analytical approaches are required to extract additional insights. C4X Discovery has developed Taxonomy3, a unique method for analysing genetic datasets based on mathematics that is novel in drug discovery. When applied to a previously published rheumatoid arthritis GWAS dataset, Taxonomy3 identified many additional novel genetic signals associated with this autoimmune disease. Follow-up studies using tool compounds support the utility of the method in identifying novel biology and tractable drug targets with genetic support for further investigation.
Collapse
Affiliation(s)
- Justyna Kozlowska
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, UK.
| | | | - Anastasia Pavlovets
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, UK
| | - Martin Connolly
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, UK
| | - Zhana Kuncheva
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, UK
| | - Jonathan Horner
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, UK
| | - Ana Sousa Manso
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, UK
| | - Clare Murray
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, UK
| | - J Craig Fox
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, UK
| | - Alun McCarthy
- C4X Discovery Ltd, Manchester One, 53 Portland Street, Manchester, M1 3LD, UK
| |
Collapse
|
8
|
Kasher M, Freidin MB, Williams FMK, Cherny SS, Ashkenazi S, Livshits G. Glycoprotein Acetyls Is a Novel Biomarker Predicting Cardiovascular Complications in Rheumatoid Arthritis. Int J Mol Sci 2024; 25:5981. [PMID: 38892172 PMCID: PMC11173129 DOI: 10.3390/ijms25115981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/25/2024] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The relationship between rheumatoid arthritis (RA) and early onset atherosclerosis is well depicted, each with an important inflammatory component. Glycoprotein acetyls (GlycA), a novel biomarker of inflammation, may play a role in the manifestation of these two inflammatory conditions. The present study examined a potential mediating role of GlycA within the RA-atherosclerosis relationship to determine whether it accounts for the excess risk of cardiovascular disease over that posed by lipid risk factors. The UK Biobank dataset was acquired to establish associations among RA, atherosclerosis, GlycA, and major lipid factors: total cholesterol (TC), high- and low-density lipoprotein (HDL, LDL) cholesterol, and triglycerides (TGs). Genome-wide association study summary statistics were collected from various resources to perform genetic analyses. Causality among variables was tested using Mendelian Randomization (MR) analysis. Genes of interest were identified using colocalization analysis and gene enrichment analysis. MR results appeared to indicate that the genetic relationship between GlycA and RA and also between RA and atherosclerosis was explained by horizontal pleiotropy (p-value = 0.001 and <0.001, respectively), while GlycA may causally predict atherosclerosis (p-value = 0.017). Colocalization analysis revealed several functionally relevant genes shared between GlycA and all the variables assessed. Two loci were apparent in all relationships tested and included the HLA region as well as SLC22A1. GlycA appears to mediate the RA-atherosclerosis relationship through several possible pathways. GlycA, although pleiotropically related to RA, appears to causally predict atherosclerosis. Thus, GlycA is suggested as a significant factor in the etiology of atherosclerosis development in RA.
Collapse
Affiliation(s)
- Melody Kasher
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4070000, Israel; (M.K.); (S.A.)
| | - Maxim B. Freidin
- Department of Biology, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK;
| | - Frances M. K. Williams
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London WC2R 2LS, UK;
| | - Stacey S. Cherny
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel;
- Department of Epidemiology and Preventive Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shai Ashkenazi
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4070000, Israel; (M.K.); (S.A.)
| | - Gregory Livshits
- Department of Morphological Sciences, Adelson School of Medicine, Ariel University, Ariel 4070000, Israel; (M.K.); (S.A.)
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King’s College London, London WC2R 2LS, UK;
- Human Population Biology Research Unit, Department of Anatomy and Anthropology, School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel;
| |
Collapse
|
9
|
Gonzalez-Ponce F, Ramirez-Villafaña M, Gomez-Ramirez EE, Saldaña-Cruz AM, Gallardo-Moya SG, Rodriguez-Jimenez NA, Jacobo-Cuevas H, Nava-Valdivia CA, Avalos-Salgado FA, Totsuka-Sutto S, Cardona-Muñoz EG, Valdivia-Tangarife ER. Role of Myostatin in Rheumatoid Arthritis: A Review of the Clinical Impact. Diagnostics (Basel) 2024; 14:1085. [PMID: 38893612 PMCID: PMC11171688 DOI: 10.3390/diagnostics14111085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/12/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease that affects synovial joints and that frequently involves extra-articular organs. A multiplicity of interleukins (IL) participates in the pathogenesis of RA, including IL-6, IL-1β, transforming growth factor-beta (TGF-β), and tumor necrosis factor (TNF)-α; immune cells such as monocytes, T and B lymphocytes, and macrophages; and auto-antibodies, mainly rheumatoid factor and anti-citrullinated protein antibodies (ACPAs). Skeletal muscle is also involved in RA, with many patients developing muscle wasting and sarcopenia. Several mechanisms are involved in the myopenia observed in RA, and one of them includes the effects of some interleukins and myokines on myocytes. Myostatin is a myokine member of the TGF-β superfamily; the overproduction of myostatin acts as a negative regulator of growth and differentiates the muscle fibers, limiting their number and size. Recent studies have identified abnormalities in the serum myostatin levels of RA patients, and these have been found to be associated with muscle wasting and other manifestations of severe RA. This review analyzes recent information regarding the relationship between myostatin levels and clinical manifestations of RA and the relevance of myostatin as a therapeutic target for future research.
Collapse
Affiliation(s)
- Fabiola Gonzalez-Ponce
- Instituto de Terapeutica Experimental y Clínica, Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (F.G.-P.); (M.R.-V.); (E.E.G.-R.); (A.M.S.-C.); (N.A.R.-J.); (S.T.-S.); (E.G.C.-M.)
| | - Melissa Ramirez-Villafaña
- Instituto de Terapeutica Experimental y Clínica, Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (F.G.-P.); (M.R.-V.); (E.E.G.-R.); (A.M.S.-C.); (N.A.R.-J.); (S.T.-S.); (E.G.C.-M.)
| | - Eli Efrain Gomez-Ramirez
- Instituto de Terapeutica Experimental y Clínica, Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (F.G.-P.); (M.R.-V.); (E.E.G.-R.); (A.M.S.-C.); (N.A.R.-J.); (S.T.-S.); (E.G.C.-M.)
| | - Ana Miriam Saldaña-Cruz
- Instituto de Terapeutica Experimental y Clínica, Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (F.G.-P.); (M.R.-V.); (E.E.G.-R.); (A.M.S.-C.); (N.A.R.-J.); (S.T.-S.); (E.G.C.-M.)
| | - Sergio Gabriel Gallardo-Moya
- Programa de Doctorado en Farmacología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico; (S.G.G.-M.); (F.A.A.-S.)
| | - Norma Alejandra Rodriguez-Jimenez
- Instituto de Terapeutica Experimental y Clínica, Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (F.G.-P.); (M.R.-V.); (E.E.G.-R.); (A.M.S.-C.); (N.A.R.-J.); (S.T.-S.); (E.G.C.-M.)
| | - Heriberto Jacobo-Cuevas
- Programa de Postdoctorado, Departamento de Psicología Básica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Cesar Arturo Nava-Valdivia
- Departamento de Microbiología y Patología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico;
| | - Felipe Alexis Avalos-Salgado
- Programa de Doctorado en Farmacología, Centro Universitario de Ciencias de la Salud (CUCS), Universidad de Guadalajara, Guadalajara 44340, Mexico; (S.G.G.-M.); (F.A.A.-S.)
| | - Sylvia Totsuka-Sutto
- Instituto de Terapeutica Experimental y Clínica, Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (F.G.-P.); (M.R.-V.); (E.E.G.-R.); (A.M.S.-C.); (N.A.R.-J.); (S.T.-S.); (E.G.C.-M.)
| | - Ernesto German Cardona-Muñoz
- Instituto de Terapeutica Experimental y Clínica, Programa de Doctorado en Farmacología, Departamento de Fisiología, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara 44340, Mexico; (F.G.-P.); (M.R.-V.); (E.E.G.-R.); (A.M.S.-C.); (N.A.R.-J.); (S.T.-S.); (E.G.C.-M.)
| | | |
Collapse
|
10
|
Sharma SD, Bluett J. Towards Personalized Medicine in Rheumatoid Arthritis. Open Access Rheumatol 2024; 16:89-114. [PMID: 38779469 PMCID: PMC11110814 DOI: 10.2147/oarrr.s372610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 05/03/2024] [Indexed: 05/25/2024] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, incurable, multisystem, inflammatory disease characterized by synovitis and extra-articular features. Although several advanced therapies targeting inflammatory mechanisms underlying the disease are available, no advanced therapy is universally effective. Therefore, a ceiling of treatment response is currently accepted where no advanced therapy is superior to another. The current challenge for medical research is the discovery and integration of predictive markers of drug response that can be used to personalize medicine so that the patient is started on "the right drug at the right time". This review article summarizes our current understanding of predicting response to anti-rheumatic drugs in RA, obstacles impeding the development of personalized medicine approaches and future research priorities to overcome these barriers.
Collapse
Affiliation(s)
- Seema D Sharma
- Centre for Musculoskeletal Research, Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| | - James Bluett
- Centre for Musculoskeletal Research, Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
11
|
Hum RM, Sharma SD, Stadler M, Viatte S, Ho P, Nair N, Shi C, Yap CF, Soomro M, Plant D, Humphreys JH, MacGregor A, Yates M, Verstappen S, Barton A, Bowes J. Using Polygenic Risk Scores to Aid Diagnosis of Patients With Early Inflammatory Arthritis: Results From the Norfolk Arthritis Register. Arthritis Rheumatol 2024; 76:696-703. [PMID: 38010198 DOI: 10.1002/art.42760] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 09/29/2023] [Accepted: 10/10/2023] [Indexed: 11/29/2023]
Abstract
OBJECTIVE There is growing evidence that genetic data are of benefit in the rheumatology outpatient setting by aiding early diagnosis. A genetic probability tool (G-PROB) has been developed to aid diagnosis has not yet been tested in a real-world setting. Our aim was to assess whether G-PROB could aid diagnosis in the rheumatology outpatient setting using data from the Norfolk Arthritis Register (NOAR), a prospective observational cohort of patients presenting with early inflammatory arthritis. METHODS Genotypes and clinician diagnoses were obtained from patients from NOAR. Six G-probabilities (0%-100%) were created for each patient based on known disease-associated odds ratios of published genetic risk variants, each corresponding to one disease of rheumatoid arthritis, systemic lupus erythematosus, psoriatic arthritis, spondyloarthropathy, gout, or "other diseases." Performance of the G-probabilities compared with clinician diagnosis was assessed. RESULTS We tested G-PROB on 1,047 patients. Calibration of G-probabilities with clinician diagnosis was high, with regression coefficients of 1.047, where 1.00 is ideal. G-probabilities discriminated clinician diagnosis with pooled areas under the curve (95% confidence interval) of 0.85 (0.84-0.86). G-probabilities <5% corresponded to a negative predictive value of 96.0%, for which it was possible to suggest >2 unlikely diseases for 94% of patients and >3 for 53.7% of patients. G-probabilities >50% corresponded to a positive predictive value of 70.4%. In 55.7% of patients, the disease with the highest G-probability corresponded to clinician diagnosis. CONCLUSION G-PROB converts complex genetic information into meaningful and interpretable conditional probabilities, which may be especially helpful at eliminating unlikely diagnoses in the rheumatology outpatient setting.
Collapse
Affiliation(s)
- Ryan M Hum
- Centre for Musculoskeletal Research, NIHR Manchester Biomedical Research Centre, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK
| | - Seema D Sharma
- Centre for Musculoskeletal Research, NIHR Manchester Biomedical Research Centre, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK
| | - Michael Stadler
- Centre for Musculoskeletal Research, NIHR Manchester Biomedical Research Centre, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK
| | - Sebastien Viatte
- Centre for Musculoskeletal Research, NIHR Manchester Biomedical Research Centre, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK
| | - Pauline Ho
- Centre for Musculoskeletal Research, NIHR Manchester Biomedical Research Centre, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK
| | - Nisha Nair
- Centre for Musculoskeletal Research, NIHR Manchester Biomedical Research Centre, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK
| | - Chenfu Shi
- Centre for Musculoskeletal Research, NIHR Manchester Biomedical Research Centre, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK
| | - Chuan Fu Yap
- Centre for Musculoskeletal Research, NIHR Manchester Biomedical Research Centre, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK
| | - Mehreen Soomro
- Centre for Musculoskeletal Research, NIHR Manchester Biomedical Research Centre, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK
| | - Darren Plant
- Centre for Musculoskeletal Research, NIHR Manchester Biomedical Research Centre, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK
| | - Jenny H Humphreys
- Centre for Musculoskeletal Research, NIHR Manchester Biomedical Research Centre, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK
| | | | - Max Yates
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Suzanne Verstappen
- Centre for Musculoskeletal Research, NIHR Manchester Biomedical Research Centre, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK
| | - Anne Barton
- Centre for Musculoskeletal Research, NIHR Manchester Biomedical Research Centre, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK
| | - John Bowes
- Centre for Musculoskeletal Research, NIHR Manchester Biomedical Research Centre, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Manchester, UK
| |
Collapse
|
12
|
Kang HS, Kim JH, Kim JH, Bang WJ, Choi HG, Yoo DM, Lee NE, Han KM, Kim NY, Park HY, Min KW, Kwon MJ. The Association of Chronic Periodontitis as a Potential Risk Factor with Rheumatoid Arthritis: A Nested Case-Control Study Using a Korean National Health Screening Cohort. Biomedicines 2024; 12:936. [PMID: 38790898 PMCID: PMC11118670 DOI: 10.3390/biomedicines12050936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/11/2024] [Accepted: 04/20/2024] [Indexed: 05/26/2024] Open
Abstract
Growing research has proposed that rheumatoid arthritis (RA) and chronic periodontitis (CP) share similar pathophysiological mechanisms involving inflammation and tissue destruction. However, the potential correlation of CP as a contributing factor for the occurrence of RA warrants validation in the Korean population, where both diseases are prevalent, especially considering the increasingly aging demographic in Korea. This study examined 5139 RA cases and 509,727 matched controls from a Korean national cohort dataset (2002-2019) by carefully employing propensity score matching to ensure comparability between groups. Baseline characteristics were compared using standardized differences, and logistic regression was employed to estimate the impact of CP history on RA likelihood while controlling for covariates. We fully examined medical records documenting CP occurrences within the two-year period leading up to the index date, conducting comprehensive subgroup analyses. While a 1-year history of CP did not show a significant association with likelihood of RA, a 2-year history of CP increased RA likelihood by 12%, particularly among older adults, females, rural residents, and those with certain comorbidities such as hypercholesterolemia. Interestingly, this association persisted even among individuals with non-smoking habits, normal weight, and infrequent alcohol consumption. These findings suggest that chronic CP exposure for at least 2 years may independently elevate RA risk in Korean adults. The association in certain subgroups appears to suggest a predisposition toward genetic susceptibilities over lifestyle and environmental factors. Predicting RA in CP patients may be challenging, emphasizing the importance of regular RA screening, especially in high-risk subgroups.
Collapse
Affiliation(s)
- Ho Suk Kang
- Division of Gastroenterology, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea;
| | - Joo-Hee Kim
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Internal Medicine, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea;
| | - Ji Hee Kim
- Department of Neurosurgery, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea;
| | - Woo Jin Bang
- Department of Urology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea;
| | - Hyo Geun Choi
- Suseo Seoul E.N.T. Clinic, 10, Bamgogae-ro 1-gil, Gangnam-gu, Seoul 06349, Republic of Korea;
| | - Dae Myoung Yoo
- Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang 14068, Republic of Korea; (D.M.Y.); (N.-E.L.); (K.M.H.)
- Laboratory of Brain and Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Na-Eun Lee
- Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang 14068, Republic of Korea; (D.M.Y.); (N.-E.L.); (K.M.H.)
- Laboratory of Brain and Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Kyeong Min Han
- Hallym Data Science Laboratory, Hallym University College of Medicine, Anyang 14068, Republic of Korea; (D.M.Y.); (N.-E.L.); (K.M.H.)
- Laboratory of Brain and Cognitive Sciences for Convergence Medicine, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| | - Nan Young Kim
- Hallym Institute of Translational Genomics and Bioinformatics, Hallym University Medical Center, Anyang 14068, Republic of Korea;
| | - Ha Young Park
- Department of Pathology, Busan Paik Hospital, Inje University College of Medicine, Busan 47392, Republic of Korea;
| | - Kyueng-Whan Min
- Department of Pathology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, 712, Dongil-ro, Uijeongbu 11759, Republic of Korea;
| | - Mi Jung Kwon
- Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang 14068, Republic of Korea
| |
Collapse
|
13
|
Cho J, Kim J, Song JS, Uh Y, Lee JH, Lee HS. Whole-Exome Sequencing and Analysis of the T Cell Receptor β and γ Repertoires in Rheumatoid Arthritis. Diagnostics (Basel) 2024; 14:529. [PMID: 38473001 DOI: 10.3390/diagnostics14050529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
This study investigated the potential genetic variants of rheumatoid arthritis (RA) using whole-exome sequencing (WES) and evaluated the disease course using T cell receptor (TCR) repertoire analysis. Fourteen patients with RA and five healthy controls (HCs) were enrolled. For the RA patient group, only treatment-naïve patients were recruited, and data were collected at baseline as well as at 6 and 12 months following the initiation of the disease-modifying antirheumatic drug (DMARD) treatment. Laboratory data and disease parameters were also collected. Genetic variants were detected using WES, and the diversity of the TCR repertoire was assessed using the Shannon-Wiener diversity index. While some variants were detected by WES, their clinical significance should be confirmed by further studies. The diversity of the TCR repertoire in the RA group was lower than that in the HCs; however, after DMARD treatment, it increased significantly. The diversity was negatively correlated with the laboratory findings and disease measures with statistical significance. Variants with a potential for RA pathogenesis were identified, and the clinical significance of the TCR repertoire was evaluated in Korean patients with RA. Further studies are required to confirm the findings of the present study.
Collapse
Affiliation(s)
- Jooyoung Cho
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Juwon Kim
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Ju Sun Song
- GC Genome, GC Labs, Yongin 16924, Republic of Korea
| | - Young Uh
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Jong-Han Lee
- Department of Laboratory Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| | - Hyang Sun Lee
- Division of Rheumatology, Department of Internal Medicine, Yonsei University Wonju College of Medicine, Wonju 26426, Republic of Korea
| |
Collapse
|
14
|
Galita G, Sarnik J, Brzezinska O, Budlewski T, Poplawska M, Sakowski S, Dudek G, Majsterek I, Makowska J, Poplawski T. The Association between Inefficient Repair of DNA Double-Strand Breaks and Common Polymorphisms of the HRR and NHEJ Repair Genes in Patients with Rheumatoid Arthritis. Int J Mol Sci 2024; 25:2619. [PMID: 38473866 DOI: 10.3390/ijms25052619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/05/2024] [Accepted: 02/21/2024] [Indexed: 03/14/2024] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by chronic inflammation affecting up to 2.0% of adults around the world. The molecular background of RA has not yet been fully elucidated, but RA is classified as a disease in which the genetic background is one of the most significant risk factors. One hallmark of RA is impaired DNA repair observed in patient-derived peripheral blood mononuclear cells (PBMCs). The aim of this study was to correlate the phenotype defined as the efficiency of DNA double-strand break (DSB) repair with the genotype limited to a single-nucleotide polymorphism (SNP) of DSB repair genes. We also analyzed the expression level of key DSB repair genes. The study population contained 45 RA patients and 45 healthy controls. We used a comet assay to study DSB repair after in vitro exposure to bleomycin in PBMCs from patients with rheumatoid arthritis. TaqMan SNP Genotyping Assays were used to determine the distribution of SNPs and the Taq Man gene expression assay was used to assess the RNA expression of DSB repair-related genes. PBMCs from patients with RA had significantly lower bleomycin-induced DNA lesion repair efficiency and we identified more subjects with inefficient DNA repair in RA compared with the control (84.5% vs. 24.4%; OR 41.4, 95% CI, 4.8-355.01). Furthermore, SNPs located within the RAD50 gene (rs1801321 and rs1801320) increased the OR to 53.5 (95% CI, 4.7-613.21) while rs963917 and rs3784099 (RAD51B) to 73.4 (95% CI, 5.3-1011.05). These results were confirmed by decision tree (DT) analysis (accuracy 0.84; precision 0.87, and specificity 0.86). We also found elevated expression of RAD51B, BRCA1, and BRCA2 in PBMCs isolated from RA patients. The findings indicated that impaired DSB repair in RA may be related to genetic variations in DSB repair genes as well as their expression levels. However, the mechanism of this relation, and whether it is direct or indirect, needs to be elucidated.
Collapse
Affiliation(s)
- Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Joanna Sarnik
- Department of Rheumatology, Medical University of Lodz, 92-115 Lodz, Poland
| | - Olga Brzezinska
- Department of Rheumatology, Medical University of Lodz, 92-115 Lodz, Poland
| | - Tomasz Budlewski
- Department of Rheumatology, Medical University of Lodz, 92-115 Lodz, Poland
| | - Marta Poplawska
- Biobank, Department of Immunology and Allergy, Medical University of Lodz, 92-213 Lodz, Poland
| | - Sebastian Sakowski
- Faculty of Mathematics and Computer Science, University of Lodz, 90-238 Lodz, Poland
- Centre for Data Analysis, Modelling and Computational Sciences, University of Lodz, 90-128 Lodz, Poland
| | - Grzegorz Dudek
- Faculty of Mathematics and Computer Science, University of Lodz, 90-238 Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Joanna Makowska
- Department of Rheumatology, Medical University of Lodz, 92-115 Lodz, Poland
| | - Tomasz Poplawski
- Department of Pharmaceutical Microbiology and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| |
Collapse
|
15
|
Yamamoto K, Ishigaki K, Okada Y. How can genetics analysis allow for early detection of rheumatoid arthritis. Semin Arthritis Rheum 2024; 64S:152323. [PMID: 38151400 DOI: 10.1016/j.semarthrit.2023.152323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 09/23/2023] [Indexed: 12/29/2023]
Abstract
Early detection and diagnosis of rheumatoid arthritis (RA) is crucial for initiating appropriate therapy promptly, thereby leading to increase the likelihood of achieving remission and eventual cure. In this article, we will discuss the contribution of genetic information in predicting and detecting RA.
Collapse
Affiliation(s)
| | | | - Yukinori Okada
- RIKEN Center for Integrative Medical Sciences, Yokohama, Japan; The University of Tokyo, Tokyo, Japan; Osaka University, Osaka, Japan
| |
Collapse
|
16
|
Zhang Y, Mei Y, Yu W, Guo M, Li B, Zhou H, Wang C, Du C. Association of indoor dampness indicators with rheumatic diseases/symptoms in older adults: A comparative cross-sectional study in Chongqing and Beijing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11633-11646. [PMID: 38221562 DOI: 10.1007/s11356-024-31971-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/07/2024] [Indexed: 01/16/2024]
Abstract
Dampness is strongly associated with rheumatic diseases, which particularly affect the older adults. Tackling dampness is therefore important, especially given that climate change is expected to exacerbate rheumatic diseases; however, limited studies have compared the risk of rheumatic diseases in older adults based on humidity levels across different regions. To explore this, a comparative cross-sectional study was conducted to collect information on the residential characteristics, lifestyles, and health outcomes of 2000 individuals aged 60-74 years from Chongqing and Beijing. From this data, we tested for an association between six indoor dampness indicators and rheumatic related diseases/symptoms. The results showed that the risk values for joint pain were higher in Chongqing than in Beijing. Moreover, the risk of joint stiffness increased more strongly in Chongqing than in Beijing as the cumulative number of dampness exposure indicators increased. The key indoor dampness indicators affecting rheumatic diseases were different for Chongqing and Beijing. Overall, this study compared the risk of rheumatic diseases in older adults in the north and south of China because of dampness exposure and, from these, provided suggestions for modifying the indoor environments to prevent or reduce rheumatic symptoms.
Collapse
Affiliation(s)
- Yan Zhang
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China
- National Centre for International Research of Low-Carbon and Green Buildings, Ministry of Science and Technology), Chongqing University, Chongqing, 400045, China
| | - Yong Mei
- Institute of Defense Engineering, AMS, Beijing, 100036, China
| | - Wei Yu
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China.
- National Centre for International Research of Low-Carbon and Green Buildings, Ministry of Science and Technology), Chongqing University, Chongqing, 400045, China.
| | - Miao Guo
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China
- National Centre for International Research of Low-Carbon and Green Buildings, Ministry of Science and Technology), Chongqing University, Chongqing, 400045, China
| | - Baizhan Li
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China
- National Centre for International Research of Low-Carbon and Green Buildings, Ministry of Science and Technology), Chongqing University, Chongqing, 400045, China
| | - Haixia Zhou
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China
- National Centre for International Research of Low-Carbon and Green Buildings, Ministry of Science and Technology), Chongqing University, Chongqing, 400045, China
| | - Chenyang Wang
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China
- National Centre for International Research of Low-Carbon and Green Buildings, Ministry of Science and Technology), Chongqing University, Chongqing, 400045, China
| | - Chenqiu Du
- Joint International Research Laboratory of Green Buildings and Built Environments (Ministry of Education), Chongqing University, Chongqing, 400045, China
- National Centre for International Research of Low-Carbon and Green Buildings, Ministry of Science and Technology), Chongqing University, Chongqing, 400045, China
| |
Collapse
|
17
|
Magnusson K, Turkiewicz A, Rydén M, Englund M. Genetic Influence on Osteoarthritis Versus Other Rheumatic Diseases. Arthritis Rheumatol 2024; 76:206-215. [PMID: 37691153 DOI: 10.1002/art.42696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/21/2023] [Accepted: 09/01/2023] [Indexed: 09/12/2023]
Abstract
OBJECTIVE We aimed to compare the genetic contribution to osteoarthritis (OA) versus other rheumatic/musculoskeletal diseases (RMDs) in the same population and to explore the role for any shared genetics between OA and other RMDs. METHODS In 59,970 Swedish twins aged 35 years or older, we estimated the heritability (the variance explained by genetic factors) of OA in peripheral joints, back and neck pain, shoulder pain (adhesive capsulitis, impingement syndrome, etc), rheumatoid arthritis, spondyloarthritis (SpA) and psoriatic arthritis, myalgia, and osteoporosis diagnosed in specialist and inpatient care. We also studied how much covariance between OA and each of the RMDs could be explained by genetics by studying phenotypic correlations in bivariate classical twin models. RESULTS Any-site OA and hip OA (50% and 64%) were among the most heritable RMDs (as compared with 23% for fibromyalgia [lowest] and 63% for SpA [highest]). The highest phenotypic correlations were between OA (any joint site) and shoulder pain in the same individual (r = 0.33, 95% confidence interval 0.31-0.35), of which 70% (95% confidence interval 52-88) could be explained by shared genetics. The phenotypic correlation between OA and back/neck pain was r = 0.25, with 25% to 75% explained by genetics. Phenotypic correlations between OA and each of the other RMDs were lower (r ~ 0.1 to r ~ 0.2), with inconclusive sources of variation. CONCLUSION OA has relatively large heritability as compared with other RMDs. The coexistence of OA and shoulder pain, as well as back pain, was common and could often be explained by genetic factors. Findings imply similar etiologies of OA and several pain conditions.
Collapse
Affiliation(s)
- Karin Magnusson
- Lund University, Lund, Sweden and Norwegian Institute of Public Health, Oslo, Norway
| | - Aleksandra Turkiewicz
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Lund, Sweden
| | - Martin Rydén
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Lund, Sweden
| | - Martin Englund
- Lund University, Faculty of Medicine, Department of Clinical Sciences Lund, Orthopaedics, Clinical Epidemiology Unit, Lund, Sweden
| |
Collapse
|
18
|
Guo D, Diao Z, Wang K, Pang C. Causal association between rheumatoid arthritis and pregnancy loss and intrauterine growth retardation: A bidirectional two-sample Mendelian randomization study. Medicine (Baltimore) 2024; 103:e36873. [PMID: 38215086 PMCID: PMC10783369 DOI: 10.1097/md.0000000000036873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 12/15/2023] [Indexed: 01/14/2024] Open
Abstract
OBJECTIVE To investigate the causal relationship between rheumatoid arthritis (RA) and pregnancy loss and intrauterine growth retardation (IUGR) using Mendelian randomization (MR). METHODS Genetic variants associated with RA (12,555 cases and 240,862 controls), miscarriage (1475 cases and 149,622 controls), and IUGR (3558 cases and 207,312 controls) were obtained from the FinnGen consortium, and supplementary data on RA (5201 cases and 457,732 controls) and miscarriage (7069 cases and 250,492 controls) were obtained from the Medical Research Council Integrated Epidemiology Unit (MRC-IEU). 47 Single nucleotide polymorphisms (SNPs) associated with RA were screened as instrumental variables (IV). The causal relationship between RA and pregnancy loss and IUGR were assessed by 5 MR methods, mainly inverse variance weighting (IVW). Sensitivity analyses were also performed to test the stability of the results. RESULTS Bidirectional MR showed that genetically predicted RA was causally associated with pregnancy loss and IUGR in forward MR analyses, and that RA significantly increased pregnancy loss [odds ratio (OR) = 1.13, 95% confidence interval (CI): 1.00-1.33, P = .03] and IUGR (OR = 1.08, 95% CI: 1.01-1.15, P = .019). In the reverse MR, there was no causal association between pregnancy loss (P = .15) and IUGR (P = .87) and RA. CONCLUSION This study found a significant genetic association between RA and pregnancy loss and IUGR. RA is considered to be a high-risk factor for adverse maternal outcomes. Pre-pregnancy prophylaxis and intra-pregnancy control of patients should be emphasized to reduce the incidence of adverse pregnancy outcomes such as pregnancy loss and IUGR.
Collapse
Affiliation(s)
- Danyang Guo
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Zhihao Diao
- School of Acupuncture and Tuina, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Kehua Wang
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Conghui Pang
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
19
|
Barnett EJ, Onete DG, Salekin A, Faraone SV. Genomic Machine Learning Meta-regression: Insights on Associations of Study Features With Reported Model Performance. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2024; 21:169-177. [PMID: 38109236 DOI: 10.1109/tcbb.2023.3343808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Many studies have been conducted with the goal of correctly predicting diagnostic status of a disorder using the combination of genomic data and machine learning. It is often hard to judge which components of a study led to better results and whether better reported results represent a true improvement or an uncorrected bias inflating performance. We extracted information about the methods used and other differentiating features in genomic machine learning models. We used these features in linear regressions predicting model performance. We tested for univariate and multivariate associations as well as interactions between features. Of the models reviewed, 46% used feature selection methods that can lead to data leakage. Across our models, the number of hyperparameter optimizations reported, data leakage due to feature selection, model type, and modeling an autoimmune disorder were significantly associated with an increase in reported model performance. We found a significant, negative interaction between data leakage and training size. Our results suggest that methods susceptible to data leakage are prevalent among genomic machine learning research, resulting in inflated reported performance. Best practice guidelines that promote the avoidance and recognition of data leakage may help the field avoid biased results.
Collapse
|
20
|
Parolini C. The Role of Marine n-3 Polyunsaturated Fatty Acids in Inflammatory-Based Disease: The Case of Rheumatoid Arthritis. Mar Drugs 2023; 22:17. [PMID: 38248642 PMCID: PMC10817514 DOI: 10.3390/md22010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/15/2023] [Accepted: 12/26/2023] [Indexed: 01/23/2024] Open
Abstract
Inflammation is a conserved process that involves the activation of immune and non-immune cells aimed at protecting the host from bacteria, viruses, toxins and injury. However, unresolved inflammation and the permanent release of pro-inflammatory mediators are responsible for the promotion of a condition called "low-grade systemic chronic inflammation", which is characterized by tissue and organ damage, metabolic changes and an increased susceptibility to non-communicable diseases. Several studies have demonstrated that different dietary components may influence modifiable risk factors for diverse chronic human pathologies. Marine n-3 polyunsaturated fatty acids (n-3 PUFAs), mainly eicosapentaenoic (EPA) and docosahexaenoic acid (DHA), are well-recognized anti-inflammatory and immunomodulatory agents that are able to influence many aspects of the inflammatory process. The aim of this article is to review the recent literature that relates to the modulation of human disease, such as rheumatoid arthritis, by n-3 PUFAs.
Collapse
Affiliation(s)
- Cinzia Parolini
- Department of Pharmacological and Biomolecular Sciences, Rodolfo Paoletti, Università degli Studi di Milano, Via Balzaretti 9, 20133 Milano, Italy
| |
Collapse
|
21
|
Buckner JH. Translational immunology: Applying fundamental discoveries to human health and autoimmune diseases. Eur J Immunol 2023; 53:e2250197. [PMID: 37101346 PMCID: PMC10600327 DOI: 10.1002/eji.202250197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/10/2023] [Accepted: 04/25/2023] [Indexed: 04/28/2023]
Abstract
Studying the human immune system is challenging. These challenges stem from the complexity of the immune system itself, the heterogeneity of the immune system between individuals, and the many factors that lead to this heterogeneity including the influence of genetics, environment, and immune experience. Studies of the human immune system in the context of disease are increased in complexity as multiple combinations and variations in immune pathways can lead to a single disease. Thus, although individuals with a disease may share clinical features, the underlying disease mechanisms and resulting pathophysiology can be diverse among individuals with the same disease diagnosis. This has consequences for the treatment of diseases, as no single therapy will work for everyone, therapeutic efficacy varies among patients, and targeting a single immune pathway is rarely 100% effective. This review discusses how to address these challenges by identifying and managing the sources of variation, improving access to high-quality, well-curated biological samples by building cohorts, applying new technologies such as single-cell omics and imaging technologies to interrogate samples, and bringing to bear computational expertise in conjunction with immunologists and clinicians to interpret those results. The review has a focus on autoimmune diseases, including rheumatoid arthritis, MS, systemic lupus erythematosus, and type 1 diabetes, but its recommendations are also applicable to studies of other immune-mediated diseases.
Collapse
Affiliation(s)
- Jane H Buckner
- Center for Translational Immunology, Benaroya Research Institute, Virginia Mason Hospital, Seattle, WA, USA
| |
Collapse
|
22
|
You JM, Zhang YC, Fan KY, Bai SK, Zhang ZY, Zhang HY, Cheng T, Huo YH, Wang CH, Li XF, Zhang SX. Genetic evidence for causal effects of leukocyte counts on risk for rheumatoid arthritis. Sci Rep 2023; 13:20768. [PMID: 38008752 PMCID: PMC10679084 DOI: 10.1038/s41598-023-46888-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023] Open
Abstract
Rheumatoid arthritis (RA) is an autoimmune disease characterized by the accumulation of leukocytes and inflammatory mediators within the synovial tissue. Leukocyte counts are proposed to play a role in the pathogenesis of RA. However, the causality remains unclear. To investigate the causal relationship between various leukocytes and RA by implementing two-sample univariable Mendelian Randomization (MR) and multivariable MR. MR analysis was performed using respective genome-wide association study (GWAS) summary statistics for the exposure traits (eosinophil counts, neutrophil counts, lymphocyte counts, monocyte counts, basophil counts, and white blood cell counts) and outcome trait (RA). Summary statistics for leukocytes were extracted from the Blood Cell Consortium meta-analysis and INTERVAL studies. Public GWAS information for RA included 14,361 cases and 43,923 controls. Inverse variance weighted, weighted median, MR-Egger regression, MR pleiotropy residual sum and outlier, and multivariable MR analyses were performed in MR analysis. Univariable MR found elevated eosinophil counts (OR 1.580, 95% CI 1.389-2.681, p = 1.30 × 10-7) significantly increased the risk of RA. Multivariable MR further confirmed that eosinophil counts were a risk factor for RA. Increased eosinophils were associated with higher risk of RA. Further elucidations of the causality and mechanisms underlying are likely to identify feasible interventions to promote RA prevention.
Collapse
Affiliation(s)
- Jin-Mei You
- Department of Clinicallaboratory, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China
| | - Yao-Chen Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Ke-Yi Fan
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Shang-Kai Bai
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Zi-Yu Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - He-Yi Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
| | - Ting Cheng
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Yue-Hong Huo
- Department of Rheumatology, The Fifth People's Hospital of Datong, Datong, Shanxi Province, China
| | - Cai-Hong Wang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Xiao-Feng Li
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China
| | - Sheng-Xiao Zhang
- Shanxi Provincial Key Laboratory of Rheumatism Immune Microecology, Taiyuan, Shanxi Province, China.
- Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, Taiyuan, Shanxi Province, China.
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi Province, China.
| |
Collapse
|
23
|
Ul Islam Z, Baneen U, Khaliq T, Nurulain SM, Muneer Z, Hussain S. Association analysis of miRNA-146a and miRNA-499 polymorphisms with rheumatoid arthritis: a case-control and trio-family study. Clin Exp Med 2023; 23:1667-1675. [PMID: 36303006 DOI: 10.1007/s10238-022-00916-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/08/2022] [Indexed: 11/03/2022]
Abstract
Single nucleotide polymorphism is known to alter the expression and processing of miRNAs leading to a variety of diseases including rheumatoid arthritis (RA). However, disagreement is present up to date regarding the association of miRNA-146a and miRNA-499 polymorphisms with RA. The goal of this study was to assess the association of polymorphisms at miRNA-146a and miRNA-499 with the pathogenesis of RA in patients originating from Pakistan. Initially, eleven hundred subjects (1100) comprises of 550 RA patients and 550 healthy controls were investigated in the case-control analysis. Spectrophotometric measurement of lipids and C-reactive protein was used, whereas interleukin-1 receptor associated kinase-1 and TNF-receptor associated factor-6 values were quantified by an enzyme-linked immunosorbent assay. Secondly, heritability of susceptible alleles was tested from 70 trio-families. The miRNA-146a rs2910164 and miRNA-499 rs3746444 polymorphisms were genotyped using the polymerase chain reaction followed by restriction digestion. A Significant association of miRNA-146a and miRNA-499 genotypes was observed with RA patients (P < 0.05, respectively). The miRNA-146a rs2910164 G (OR = 1.4, P < 0.05) and miRNA-499 rs3746444 C (OR = 1.6, P < 0.0001) allele was significantly associated with RA in comparison with controls, respectively. Besides, the transmission analysis revealed a significant (P < 0.05) inheritance of rs2910164 G and rs3746444 C allele from parents to affected offspring. The current research concludes that miRNA-146a (rs2910164; C > G) and miRNA-499 (rs3746444; T > C) polymorphisms are linked to RA in the population studied. Furthermore, it was demonstrated for the first time in our high-risk cohort that the rs2910164 G and rs3746444 C allele was strongly related to familial RA.
Collapse
Affiliation(s)
- Zia Ul Islam
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, 45550, Pakistan
| | - Umul Baneen
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, 45550, Pakistan
| | - Taqdees Khaliq
- Department of Rheumatology, Federal Government Polyclinic Hospital, 44 Luqman Hakeem Road G/6, Islamabad, 46000, Pakistan
| | - Syed Muhammad Nurulain
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, 45550, Pakistan
| | - Zahid Muneer
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, 45550, Pakistan
| | - Sabir Hussain
- Department of Biosciences, COMSATS University Islamabad, Park Road, Tarlai Kalan, Islamabad, 45550, Pakistan.
| |
Collapse
|
24
|
Reynolds G. Rheumatic complications of checkpoint inhibitors: Lessons from autoimmunity. Immunol Rev 2023; 318:51-60. [PMID: 37435963 PMCID: PMC10952967 DOI: 10.1111/imr.13242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 06/26/2023] [Indexed: 07/13/2023]
Abstract
Immune checkpoint inhibitors are now an established treatment in the management of a range of cancers. Their success means that their use is likely to increase in future in terms of the numbers of patients treated, the indications and the range of immune checkpoints targeted. They function by counteracting immune evasion by the tumor but, as a consequence, can breach self-tolerance at other sites leading to a range of immune-related adverse events. Included among these complications are a range of rheumatologic complications, including inflammatory arthritis and keratoconjunctivitis sicca. These superficially resemble immune-mediated rheumatic diseases (IMRDs) such as rheumatoid arthritis and Sjogren's disease but preliminary studies suggest they are clinically and immunologically distinct entities. However, there appear to be common processes that predispose to the development of both that may inform preventative interventions and predictive tools. Both groups of conditions highlight the centrality of immune checkpoints in controlling tolerance and how it can be restored. Here we will discuss some of these commonalities and differences between rheumatic irAEs and IMRDs.
Collapse
Affiliation(s)
- Gary Reynolds
- Institute of Cellular MedicineNewcastle UniversityNewcastle upon TyneUK
- Center for Immunology and Inflammatory DiseasesMassachusetts General HospitalBostonMassachusettsUSA
| |
Collapse
|
25
|
Rasmussen EB, Thiele LS, Stengaard-Pedersen K, Hetland ML, Hørslev-Petersen K, Junker P, Østergaard M, Hansen AS, Hvid M, Deleuran B, Greisen SR. Baseline serum levels of IgA anti-cyclic citrullinated protein antibodies in early rheumatoid arthritis predict radiographic progression after 11 years of treatment: a secondary analysis of the CIMESTRA study. Scand J Rheumatol 2023; 52:493-497. [PMID: 36255383 DOI: 10.1080/03009742.2022.2127245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/19/2022] [Indexed: 10/24/2022]
Abstract
OBJECTIVE Smoking and periodontitis are risk factors for developing rheumatoid arthritis (RA), suggesting a break of tolerance on mucosal surfaces. Immunoglobulin A (IgA) antibodies are part of the mucosal immune system. The dominant autoantibodies in RA are anti-cyclic citrullinated protein antibodies (ACPAs), and IgG and IgA subclasses exist simultaneously. This study aimed to investigate the association of ACPA IgA subtypes with disease activity and long-term radiographic outcomes in RA, compared with ACPA IgG. METHOD Total ACPA IgG, IgA, IgA1, and IgA2 were quantified in serum from patients with early RA (n = 97). Patient characteristics, IgM rheumatoid factor (IgM-RF) status, clinical and biochemical disease activity scores, and radiographic status evaluated by total Sharp score (TSS), were assessed at baseline and after 2 and 11 years of treatment. RESULTS All patients with ACPA IgA also had ACPA IgG. ACPA IgA positivity was associated with IgM-RF and male gender. Both ACPA IgA and IgG levels at baseline were weakly associated with disease activity markers. Baseline ACPA IgA and IgG did not show a linear correlation with radiographic status after 10 years, but could predict radiographic progression (ΔTSS ≥ 5 from 0 to 11 years), with positive likelihood ratios of 3.7 and 4.0, respectively. CONCLUSION ACPA IgA and IgG were weakly associated with disease activity in early RA. RA patients with a ΔTSS ≥ 5 after 11 years of treatment had higher ACPA IgG and ACPA IgA levels at baseline; however, none of the ACPA subtypes was superior in predicting long-term radiographic progression.
Collapse
Affiliation(s)
- E B Rasmussen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - L S Thiele
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - K Stengaard-Pedersen
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - M L Hetland
- Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Glostrup, Denmark
| | - K Hørslev-Petersen
- Department of Rheumatology, King Christian X Hospital for Rheumatic Diseases, Graasten, Denmark
- Institute for Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - P Junker
- Department of Rheumatology, Odense University Hospital, University of Southern Denmark, Denmark
| | - M Østergaard
- Copenhagen Center for Arthritis Research, Center for Rheumatology and Spine Diseases, Rigshospitalet, Glostrup, Denmark
| | - A S Hansen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - M Hvid
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - B Deleuran
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| | - S R Greisen
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Department of Rheumatology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
26
|
Duquenne L, Hensor EM, Wilson M, Garcia-Montoya L, Nam JL, Wu J, Harnden K, Anioke IC, Di Matteo A, Chowdhury R, Sidhu N, Ponchel F, Mankia K, Emery P. Predicting Inflammatory Arthritis in At-Risk Persons: Development of Scores for Risk Stratification. Ann Intern Med 2023; 176:1027-1036. [PMID: 37523695 DOI: 10.7326/m23-0272] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2023] Open
Abstract
BACKGROUND Inflammatory arthritis (IA) is an immune-related condition defined by the presence of clinical synovitis. Its most common form is rheumatoid arthritis. OBJECTIVE To develop scores for predicting IA in at-risk persons using multidimensional biomarkers. DESIGN Prospective observational cohort study. SETTING Single-center, Leeds, United Kingdom. PARTICIPANTS Persons with new musculoskeletal symptoms, a positive test result for anticitrullinated protein antibodies, and no clinical synovitis and followed for 48 weeks or more or until IA occurred. MEASUREMENTS A simple score was developed using logistic regression, and a comprehensive score was developed using the least absolute shrinkage and selection operator Cox proportional hazards regression. Internal validation with bootstrapping was estimated, and a decision curve analysis was done. RESULTS Of 455 participants, 32.5% (148 of 455) developed IA, and 15.4% (70 of 455) developed it within 1 year. The simple score identified 249 low-risk participants with a false negative rate of 5% (and 206 high-risk participants with a false-positive rate of 72%). The comprehensive score identified 119 high-risk participants with a false-positive rate of 29% (and 336 low-risk participants with a false-negative rate of 19%); 40% of high-risk participants developed IA within 1 year and 71% within 5 years. LIMITATIONS External validation is required. Recruitment occurred over 13 years, with lower rates of IA in later years. There was geographic variation in laboratory testing and recruitment availability. CONCLUSION The simple score identified persons at low risk for IA who were less likely to need secondary care. The comprehensive score identified high-risk persons who could benefit from risk stratification and preventive measures. Both scores may be useful in clinical care and should also be useful in clinical trials. PRIMARY FUNDING SOURCE National Institute for Health and Care Research Leeds Biomedical Research Centre.
Collapse
Affiliation(s)
- Laurence Duquenne
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, and NIHR Leeds Biomedical Research Centre, Leeds, United Kingdom (L.D., E.M.H., M.W., L.G., J.L.N., K.H., A.D.M., R.C., N.S., K.M., P.E.)
| | - Elizabeth M Hensor
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, and NIHR Leeds Biomedical Research Centre, Leeds, United Kingdom (L.D., E.M.H., M.W., L.G., J.L.N., K.H., A.D.M., R.C., N.S., K.M., P.E.)
| | - Michelle Wilson
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, and NIHR Leeds Biomedical Research Centre, Leeds, United Kingdom (L.D., E.M.H., M.W., L.G., J.L.N., K.H., A.D.M., R.C., N.S., K.M., P.E.)
| | - Leticia Garcia-Montoya
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, and NIHR Leeds Biomedical Research Centre, Leeds, United Kingdom (L.D., E.M.H., M.W., L.G., J.L.N., K.H., A.D.M., R.C., N.S., K.M., P.E.)
| | - Jacqueline L Nam
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, and NIHR Leeds Biomedical Research Centre, Leeds, United Kingdom (L.D., E.M.H., M.W., L.G., J.L.N., K.H., A.D.M., R.C., N.S., K.M., P.E.)
| | - Jianhua Wu
- Leeds Institute for Data Analytics, University of Leeds, Leeds, and Wolfson Institute of Population Health, Queen Mary University of London, London, United Kingdom (J.W.)
| | - Kate Harnden
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, and NIHR Leeds Biomedical Research Centre, Leeds, United Kingdom (L.D., E.M.H., M.W., L.G., J.L.N., K.H., A.D.M., R.C., N.S., K.M., P.E.)
| | - Innocent Chidi Anioke
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom, and Department of Medical Laboratory Sciences, University of Nigeria, Nigeria (I.C.A.)
| | - Andrea Di Matteo
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, and NIHR Leeds Biomedical Research Centre, Leeds, United Kingdom (L.D., E.M.H., M.W., L.G., J.L.N., K.H., A.D.M., R.C., N.S., K.M., P.E.)
| | - Rahaymin Chowdhury
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, and NIHR Leeds Biomedical Research Centre, Leeds, United Kingdom (L.D., E.M.H., M.W., L.G., J.L.N., K.H., A.D.M., R.C., N.S., K.M., P.E.)
| | - Navkiran Sidhu
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, and NIHR Leeds Biomedical Research Centre, Leeds, United Kingdom (L.D., E.M.H., M.W., L.G., J.L.N., K.H., A.D.M., R.C., N.S., K.M., P.E.)
| | - Frederique Ponchel
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom (F.P.)
| | - Kulveer Mankia
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, and NIHR Leeds Biomedical Research Centre, Leeds, United Kingdom (L.D., E.M.H., M.W., L.G., J.L.N., K.H., A.D.M., R.C., N.S., K.M., P.E.)
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, and NIHR Leeds Biomedical Research Centre, Leeds, United Kingdom (L.D., E.M.H., M.W., L.G., J.L.N., K.H., A.D.M., R.C., N.S., K.M., P.E.)
| |
Collapse
|
27
|
Thompson KN, Bonham KS, Ilott NE, Britton GJ, Colmenero P, Bullers SJ, McIver LJ, Ma S, Nguyen LH, Filer A, Brough I, Pearson C, Moussa C, Kumar V, Lam LH, Jackson MA, Pawluk A, Kiriakidis S, Taylor PC, Wedderburn LR, Marsden B, Young SP, Littman DR, Faith JJ, Pratt AG, Bowness P, Raza K, Powrie F, Huttenhower C. Alterations in the gut microbiome implicate key taxa and metabolic pathways across inflammatory arthritis phenotypes. Sci Transl Med 2023; 15:eabn4722. [PMID: 37494472 DOI: 10.1126/scitranslmed.abn4722] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 06/22/2023] [Indexed: 07/28/2023]
Abstract
Musculoskeletal diseases affect up to 20% of adults worldwide. The gut microbiome has been implicated in inflammatory conditions, but large-scale metagenomic evaluations have not yet traced the routes by which immunity in the gut affects inflammatory arthritis. To characterize the community structure and associated functional processes driving gut microbial involvement in arthritis, the Inflammatory Arthritis Microbiome Consortium investigated 440 stool shotgun metagenomes comprising 221 adults diagnosed with rheumatoid arthritis, ankylosing spondylitis, or psoriatic arthritis and 219 healthy controls and individuals with joint pain without an underlying inflammatory cause. Diagnosis explained about 2% of gut taxonomic variability, which is comparable in magnitude to inflammatory bowel disease. We identified several candidate microbes with differential carriage patterns in patients with elevated blood markers for inflammation. Our results confirm and extend previous findings of increased carriage of typically oral and inflammatory taxa and decreased abundance and prevalence of typical gut clades, indicating that distal inflammatory conditions, as well as local conditions, correspond to alterations to the gut microbial composition. We identified several differentially encoded pathways in the gut microbiome of patients with inflammatory arthritis, including changes in vitamin B salvage and biosynthesis and enrichment of iron sequestration. Although several of these changes characteristic of inflammation could have causal roles, we hypothesize that they are mainly positive feedback responses to changes in host physiology and immune homeostasis. By connecting taxonomic alternations to functional alterations, this work expands our understanding of the shifts in the gut ecosystem that occur in response to systemic inflammation during arthritis.
Collapse
Affiliation(s)
- Kelsey N Thompson
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Kevin S Bonham
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Nicholas E Ilott
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - Graham J Britton
- Marc and Jennifer Lipschultz Precision Immunology Institute and Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Paula Colmenero
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - Samuel J Bullers
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - Lauren J McIver
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Siyuan Ma
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Long H Nguyen
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Division of Gastroenterology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Andrew Filer
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham B15 2TT, UK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and Research Into Inflammatory Arthritis Centre Versus Arthritis, University of Birmingham, Chesterfield S41 7TD, UK
| | - India Brough
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Claire Pearson
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - Caroline Moussa
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - Vinod Kumar
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - Lilian H Lam
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - Matthew A Jackson
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - April Pawluk
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| | - Serafim Kiriakidis
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Peter C Taylor
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Lucy R Wedderburn
- Centre for Adolescent Rheumatology Versus Arthritis, University College London, UCLH, and GOSH, Chesterfield S41 7TD, UK
- NIHR Great Ormond Street Biomedical Research Centre, University College London, London WC1N 1EH, UK
- UCL GOS Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Brian Marsden
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - Stephen P Young
- Department of Rheumatology, Sandwell & West Birmingham NHS Trust, West Bromwich B71 4HJ, UK
| | - Dan R Littman
- Howard Hughes Medical Institute and the Kimmel Center for Biology and Medicine of the Skirball Institute, New York University School of Medicine, New York, NY 10016, USA
| | - Jeremiah J Faith
- Marc and Jennifer Lipschultz Precision Immunology Institute and Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Arthur G Pratt
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
- Research into Inflammatory Arthritis Centre Versus Arthritis, Newcastle Birmingham, Glasgow, and Oxford, Chesterfield S41 7TD, UK
- Department of Rheumatology, Musculoskeletal Services Directorate, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne NE7 7DN, UK
| | - Paul Bowness
- Botnar Research Centre, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, Oxford OX3 7LD, UK
| | - Karim Raza
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Queen Elizabeth Hospital, Birmingham B15 2TT, UK
- MRC Versus Arthritis Centre for Musculoskeletal Ageing Research and Research Into Inflammatory Arthritis Centre Versus Arthritis, University of Birmingham, Chesterfield S41 7TD, UK
- Department of Rheumatology, Sandwell & West Birmingham NHS Trust, West Bromwich B71 4HJ, UK
| | - Fiona Powrie
- Kennedy Institute of Rheumatology, Nuffield Department of Orthopaedic, Rheumatology and Musculoskeletal Sciences, Oxford University, Oxford OX3 7FY, UK
| | - Curtis Huttenhower
- Department of Biostatistics, T. H. Chan School of Public Health, Harvard University, Boston, MA 02115, USA
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Harvard Chan Microbiome in Public Health Center, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
28
|
Wang SS, Lewis MJ, Pitzalis C. DNA Methylation Signatures of Response to Conventional Synthetic and Biologic Disease-Modifying Antirheumatic Drugs (DMARDs) in Rheumatoid Arthritis. Biomedicines 2023; 11:1987. [PMID: 37509625 PMCID: PMC10377185 DOI: 10.3390/biomedicines11071987] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/03/2023] [Accepted: 07/11/2023] [Indexed: 07/30/2023] Open
Abstract
Rheumatoid arthritis (RA) is a complex condition that displays heterogeneity in disease severity and response to standard treatments between patients. Failure rates for conventional, target synthetic, and biologic disease-modifying rheumatic drugs (DMARDs) are significant. Although there are models for predicting patient response, they have limited accuracy, require replication/validation, or for samples to be obtained through a synovial biopsy. Thus, currently, there are no prediction methods approved for routine clinical use. Previous research has shown that genetics and environmental factors alone cannot explain the differences in response between patients. Recent studies have demonstrated that deoxyribonucleic acid (DNA) methylation plays an important role in the pathogenesis and disease progression of RA. Importantly, specific DNA methylation profiles associated with response to conventional, target synthetic, and biologic DMARDs have been found in the blood of RA patients and could potentially function as predictive biomarkers. This review will summarize and evaluate the evidence for DNA methylation signatures in treatment response mainly in blood but also learn from the progress made in the diseased tissue in cancer in comparison to RA and autoimmune diseases. We will discuss the benefits and challenges of using DNA methylation signatures as predictive markers and the potential for future progress in this area.
Collapse
Affiliation(s)
- Susan Siyu Wang
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts Health NIHR BRC & NHS Trust, London EC1M 6BQ, UK
| | - Myles J Lewis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts Health NIHR BRC & NHS Trust, London EC1M 6BQ, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine and Rheumatology, William Harvey Research Institute, Queen Mary University of London and Barts Health NIHR BRC & NHS Trust, London EC1M 6BQ, UK
| |
Collapse
|
29
|
Chen DP, Wen YH, Lin WT, Hsu FP, Yu KH. Exploration of the association between the single-nucleotide polymorphism of co-stimulatory system and rheumatoid arthritis. Front Immunol 2023; 14:1123832. [PMID: 37457686 PMCID: PMC10344454 DOI: 10.3389/fimmu.2023.1123832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 06/01/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction The human leukocyte antigen (HLA) has been linked to the majority of autoimmune diseases (ADs). However, non-HLA genes may be risk factors for ADs. A number of genes encoding proteins involved in regulating T-cell and B-cell function have been identified as rheumatoid arthritis (RA) susceptibility genes. Methods In this study, we investigated the association between RA and single-nucleotide polymorphisms (SNPs) of co-stimulatory or co-inhibitory molecules in 124 RA cases and 100 healthy controls without immune-related diseases [including tumor necrosis factor superfamily member 4 (TNFSF4), CD28, cytotoxic T-lymphocyte-associated protein 4 (CTLA4), and programmed cell death protein 1 (PDCD1)]. Results The results showed that there were 13 SNPs associated with RA, including rs181758110 of TNFSF4 (CC vs. CT, p = 0.038); rs3181096 of CD28 (TT vs. CC + CT, p = 0.035; CC vs. TT, p = 0.047); rs11571315 (TT vs. CT, p = 0.045), rs733618 (CC vs. TT + CT, p = 0.043), rs4553808 (AA vs. AG vs. GG, p = 0.035), rs11571316 (GG vs. AG vs. AA, p = 0.048; GG vs. AG + AA, p = 0.026; GG vs. AG, p = 0.014), rs16840252 (CC vs. CT vs. TT, p = 0.007; CC vs. CT, p = 0.011), rs5742909 (CC vs. CT vs. TT, p = 0.040), and rs11571319 of CTLA4 (GG vs. AG vs. AA, p < 0.001; GG vs. AG + AA, p = 0.048; AA vs. GG + AG, p = 0.001; GG vs. AA, p = 0.008; GG vs. AG, p ≤ 0.001); and rs10204525 (TT vs. CT + CC, p = 0.024; TT vs. CT, p = 0.021), rs2227982 (AA vs. GG, p = 0.047), rs36084323 (TT vs. CT vs. CC, p = 0.022; TT vs. CT + CC, p = 0.013; CC vs. TT + CT, p = 0.048; TT vs. CC, p = 0.008), and rs5839828 of PDCD1 (DEL vs. DEL/G vs. GG, p = 0.014; DEL vs. DEL/G + GG, p = 0.014; GG vs. DEL + DEL/G, p = 0.025; DEL vs. GG, p = 0.007). Discussion Consequently, these SNPs may play an important role in immune regulation, and further research into the role of these SNPs of immune regulatory genes in the pathogenesis of RA is required.
Collapse
Affiliation(s)
- Ding-Ping Chen
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ying-Hao Wen
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
- School of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Wei-Tzu Lin
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Fang-Ping Hsu
- Department of Laboratory Medicine, Linkou Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuang-Hui Yu
- Division of Rheumatology, Allergy, and Immunology, Linkou Chang Gung University and Memorial Hospital, Taoyuan, Taiwan
| |
Collapse
|
30
|
Yuan YG, Wang JL, Zhang YX, Li L, Reza AMMT, Gurunathan S. Biogenesis, Composition and Potential Therapeutic Applications of Mesenchymal Stem Cells Derived Exosomes in Various Diseases. Int J Nanomedicine 2023; 18:3177-3210. [PMID: 37337578 PMCID: PMC10276992 DOI: 10.2147/ijn.s407029] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 05/31/2023] [Indexed: 06/21/2023] Open
Abstract
Exosomes are nanovesicles with a wide range of chemical compositions used in many different applications. Mesenchymal stem cell-derived exosomes (MSCs-EXOs) are spherical vesicles that have been shown to mediate tissue regeneration in a variety of diseases, including neurological, autoimmune and inflammatory, cancer, ischemic heart disease, lung injury, and liver fibrosis. They can modulate the immune response by interacting with immune effector cells due to the presence of anti-inflammatory compounds and are involved in intercellular communication through various types of cargo. MSCs-EXOs exhibit cytokine storm-mitigating properties in response to COVID-19. This review discussed the potential function of MSCs-EXOs in a variety of diseases including neurological, notably epileptic encephalopathy and Parkinson's disease, cancer, angiogenesis, autoimmune and inflammatory diseases. We provided an overview of exosome biogenesis and factors that regulate exosome biogenesis. Additionally, we highlight the functions and potential use of MSCs-EXOs in the treatment of the inflammatory disease COVID-19. Finally, we covered a strategies and challenges of MSCs-EXOs. Finally, we discuss conclusion and future perspectives of MSCs-EXOs.
Collapse
Affiliation(s)
- Yu-Guo Yuan
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Jia-Lin Wang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Ya-Xin Zhang
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Ling Li
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
- Jiangsu Co-Innovation Center of Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, Jiangsu, People’s Republic of China
| | - Abu Musa Md Talimur Reza
- Department of Molecular Biology and Genetics, Faculty of Science, Gebze Technical University, Gebze, Kocaeli, Türkiye
| | | |
Collapse
|
31
|
Wen YP, Yu ZG. Identifying shared genetic loci and common risk genes of rheumatoid arthritis associated with three autoimmune diseases based on large-scale cross-trait genome-wide association studies. Front Immunol 2023; 14:1160397. [PMID: 37377963 PMCID: PMC10291128 DOI: 10.3389/fimmu.2023.1160397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Introduction Substantial links between autoimmune diseases have been shown by an increasing number of studies, and one hypothesis for this comorbidity is that there is a common genetic cause. Methods In this paper, a large-scale cross-trait Genome-wide Association Studies (GWAS) was conducted to investigate the genetic overlap among rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease and type 1 diabetes. Results and discussion Through the local genetic correlation analysis, 2 regions with locally significant genetic associations between rheumatoid arthritis and multiple sclerosis, and 4 regions with locally significant genetic associations between rheumatoid arthritis and type 1 diabetes were discovered. By cross-trait meta-analysis, 58 independent loci associated with rheumatoid arthritis and multiple sclerosis, 86 independent loci associated with rheumatoid arthritis and inflammatory bowel disease, and 107 independent loci associated with rheumatoid arthritis and type 1 diabetes were identified with genome-wide significance. In addition, 82 common risk genes were found through genetic identification. Based on gene set enrichment analysis, it was found that shared genes are enriched in exposed dermal system, calf, musculoskeletal, subcutaneous fat, thyroid and other tissues, and are also significantly enriched in 35 biological pathways. To verify the association between diseases, Mendelian randomized analysis was performed, which shows possible causal associations between rheumatoid arthritis and multiple sclerosis, and between rheumatoid arthritis and type 1 diabetes. The common genetic structure of rheumatoid arthritis, multiple sclerosis, inflammatory bowel disease and type 1 diabetes was explored by these studies, and it is believed that this important discovery will lead to new ideas for clinical treatment.
Collapse
Affiliation(s)
- Ya-Ping Wen
- National Center for Applied Mathematics in Hunan, Xiangtan University, Hunan, China
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Hunan, China
| | - Zu-Guo Yu
- National Center for Applied Mathematics in Hunan, Xiangtan University, Hunan, China
- Key Laboratory of Intelligent Computing and Information Processing of Ministry of Education, Xiangtan University, Hunan, China
| |
Collapse
|
32
|
Mannion JM, McLoughlin RM, Lalor SJ. The Airway Microbiome-IL-17 Axis: a Critical Regulator of Chronic Inflammatory Disease. Clin Rev Allergy Immunol 2023; 64:161-178. [PMID: 35275333 PMCID: PMC10017631 DOI: 10.1007/s12016-022-08928-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 02/07/2023]
Abstract
The respiratory tract is home to a diverse microbial community whose influence on local and systemic immune responses is only beginning to be appreciated. Increasing reports have linked changes in this microbiome to a range of pulmonary and extrapulmonary disorders, including asthma, chronic obstructive pulmonary disease and rheumatoid arthritis. Central to many of these findings is the role of IL-17-type immunity as an important driver of inflammation. Despite the crucial role played by IL-17-mediated immune responses in protection against infection, overt Th17 cell responses have been implicated in the pathogenesis of several chronic inflammatory diseases. However, our knowledge of the influence of bacteria that commonly colonise the respiratory tract on IL-17-driven inflammatory responses remains sparse. In this article, we review the current knowledge on the role of specific members of the airway microbiota in the modulation of IL-17-type immunity and discuss how this line of research may support the testing of susceptible individuals and targeting of inflammation at its earliest stages in the hope of preventing the development of chronic disease.
Collapse
Affiliation(s)
- Jenny M Mannion
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rachel M McLoughlin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Stephen J Lalor
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
33
|
Expression of Non-T Cell Activation Linker (NTAL) in Jurkat Cells Negatively Regulates TCR Signaling: Potential Role in Rheumatoid Arthritis. Int J Mol Sci 2023; 24:ijms24054574. [PMID: 36902005 PMCID: PMC10003381 DOI: 10.3390/ijms24054574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
T lymphocytes are key players in adaptive immune responses through the recognition of peptide antigens through the T Cell Receptor (TCR). After TCR engagement, a signaling cascade is activated, leading to T cell activation, proliferation, and differentiation into effector cells. Delicate control of activation signals coupled to the TCR is needed to avoid uncontrolled immune responses involving T cells. It has been previously shown that mice deficient in the expression of the adaptor NTAL (Non-T cell activation linker), a molecule structurally and evolutionarily related to the transmembrane adaptor LAT (Linker for the Activation of T cells), develop an autoimmune syndrome characterized by the presence of autoantibodies and enlarged spleens. In the present work we intended to deepen investigation into the negative regulatory functions of the NTAL adaptor in T cells and its potential relationship with autoimmune disorders. For this purpose, in this work we used Jurkat cells as a T cell model, and we lentivirally transfected them to express the NTAL adaptor in order to analyze the effect on intracellular signals associated with the TCR. In addition, we analyzed the expression of NTAL in primary CD4+ T cells from healthy donors and Rheumatoid Arthritis (RA) patients. Our results showed that NTAL expression in Jurkat cells decreased calcium fluxes and PLC-γ1 activation upon stimulation through the TCR complex. Moreover, we showed that NTAL was also expressed in activated human CD4+ T cells, and that the increase of its expression was reduced in CD4+ T cells from RA patients. Our results, together with previous reports, suggest a relevant role for the NTAL adaptor as a negative regulator of early intracellular TCR signaling, with a potential implication in RA.
Collapse
|
34
|
Bashir M, Mateen W, Khurshid S, Mehmood Malik J, Agha Z, Khan F, Ajmal M, Ali SHB. A common missense variant rs874881 of PADI4 gene and rheumatoid arthritis: Genetic association study and in-silico analysis. Gene 2023; 854:147123. [PMID: 36535460 DOI: 10.1016/j.gene.2022.147123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/26/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
The peptidylarginine-deiminase 4 (PADI4) is involved in the post-translational catalytic conversion of arginine into citrulline. The autoantibodies including anti-citrullinated protein antibodies (ACPAs) produced in response to hypercitrullinated proteins are a hallmark of rheumatoid arthritis (RA) autoimmunity. Therefore, the role of a missense variant rs874881 (Gly112Ala) of PADI4 in RA susceptibility was analyzed, along with in-silico analysis of structural and functional impacts of this substitution. We did a case-control association study and in-silico analysis. For the case-control study, confirmed RA cases and healthy controls were recruited. Genotyping for rs874881 (n = 750) was performed through polymerase chain reaction-restriction fragment length polymorphism. Multivariate logistic regression analysis was employed to determine association. The in-silico analysis was carried out through HOPE, VarMap, MutationAssessor, MutPred2, SIFT, PolyPhen, CADD, REVEL and MetaLR. In the case-control study, the rs874881 exhibited a strong association with increased RA susceptibility (G vs C odds ratio = 3.85, 95 % confidence interval = 2.81-5.27). Interaction analysis revealed significant interaction of genotype with smoking and gender (p < 0.05). Significant results (p < 0.05) were also obtained in stratified analysis by presence/absence of comorbidities and radiographic damage. According to in-silico pathogenicity prediction analysis, this Gly112Ala substitution does not exert a major effect on protein structure and function including its enzymatic activity. We report a significant association of PADI4 rs874881 with overall RA susceptibility. To our knowledge, this is the first study to do the interaction and stratified analyses on the PADI4 rs874881 in RA. Similar detailed studies should also be performed in other populations.
Collapse
Affiliation(s)
- Mutshaba Bashir
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Wajeeha Mateen
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Sadia Khurshid
- Pakistan Institute of Medical Sciences, Islamabad, Pakistan; Abbottabad International Medical College, Abbottabad, Pakistan
| | | | - Zehra Agha
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Fariha Khan
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Ajmal
- Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | |
Collapse
|
35
|
Galita G, Sarnik J, Brzezinska O, Budlewski T, Dragan G, Poplawska M, Majsterek I, Poplawski T, Makowska JS. Polymorphisms in DNA Repair Genes and Association with Rheumatoid Arthritis in a Pilot Study on a Central European Population. Int J Mol Sci 2023; 24:ijms24043804. [PMID: 36835215 PMCID: PMC9964492 DOI: 10.3390/ijms24043804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/09/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Rheumatoid arthritis (RA) is a chronic, multifactorial autoimmune disease characterized by chronic arthritis, a tendency to develop joint deformities, and involvement of extra-articular tissues. The risk of malignant neoplasms among patients with RA is the subject of ongoing research due to the autoimmune pathogenesis that underlies RA, the common etiology of rheumatic disease and malignancies, and the use of immunomodulatory therapy, which can alter immune system function and thus increase the risk of malignant neoplasms. This risk can also be increased by impaired DNA repair efficiency in individuals with RA, as reported in our recent study. Impaired DNA repair may reflect the variability in the genes that encode DNA repair proteins. The aim of our study was to evaluate the genetic variation in RA within the genes of the DNA damage repair system through base excision repair (BER), nucleotide excision repair (NER), and the double strand break repair system by homologous recombination (HR) and non-homologous end joining (NHEJ). We genotyped a total of 28 polymorphisms in 19 genes encoding DNA repair-related proteins in 100 age- and sex-matched RA patients and healthy subjects from Central Europe (Poland). Polymorphism genotypes were determined using the Taq-man SNP Genotyping Assay. We found an association between the RA occurrence and rs25487/XRCC1, rs7180135/RAD51, rs1801321/RAD51, rs963917/RAD51B, rs963918/RAD51B, rs2735383/NBS1, rs132774/XRCC6, rs207906/XRCC5, and rs861539/XRCC3 polymorphisms. Our results suggest that polymorphisms of DNA damage repair genes may play a role in RA pathogenesis and may be considered as potential markers of RA.
Collapse
Affiliation(s)
- Grzegorz Galita
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
- Doctoral Study in Molecular Genetics, Cytogenetics and Medical Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland
| | - Joanna Sarnik
- Department of Rheumatology, Medical University of Lodz, 92-115 Lodz, Poland
| | - Olga Brzezinska
- Department of Rheumatology, Medical University of Lodz, 92-115 Lodz, Poland
| | - Tomasz Budlewski
- Department of Rheumatology, Medical University of Lodz, 92-115 Lodz, Poland
| | - Grzegorz Dragan
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Marta Poplawska
- Biobank, Department of Immunology and Allergy, Medical University of Lodz, 92-213 Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Tomasz Poplawski
- Department of Pharmaceutical Microbiology and Biochemistry, Medical University of Lodz, 92-215 Lodz, Poland
| | - Joanna S. Makowska
- Department of Rheumatology, Medical University of Lodz, 92-115 Lodz, Poland
- Correspondence:
| |
Collapse
|
36
|
Maurits MP, Wouters F, Niemantsverdriet E, Huizinga TWJ, van den Akker EB, Le Cessie S, van der Helm-van Mil AHM, Knevel R. The Role of Genetics in Clinically Suspect Arthralgia and Rheumatoid Arthritis Development: A Large Cross-Sectional Study. Arthritis Rheumatol 2023; 75:178-186. [PMID: 36514807 PMCID: PMC10107764 DOI: 10.1002/art.42323] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 06/21/2022] [Accepted: 07/30/2022] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To investigate whether established genetic predictors for rheumatoid arthritis (RA) differentiate healthy controls, patients with clinically suspect arthralgia (CSA), and RA patients. METHODS Using analyses of variance, chi-square tests, and mean risk difference analyses, we investigated the association of an RA polygenic risk score (PRS) and HLA shared epitope (HLA-SE) with all participant groups, both unstratified and stratified for anti-citrullinated protein antibody (ACPA) status. We used 3 separate data sets sampled from the same Dutch population (1,015 healthy controls, 479 CSA patients, and 1,146 early classified RA patients). CSA patients were assessed for conversion to inflammatory arthritis over a period of 2 years, after which they were classified as either CSA converters (n = 84) or CSA nonconverters (n = 395). RESULTS The PRS was increased in RA patients (mean ± SD PRS 1.31 ± 0.96) compared to the complete CSA group (1.07 ± 0.94) and compared to CSA converters (1.12 ± 0.94). In ACPA- strata, PRS distributions differed strongly when comparing the complete CSA group (mean ± SD PRS 1.05 ± 0.94) and CSA converters (0.97 ± 0.87) to RA patients (1.20 ± 0.94), while in the ACPA+ strata, the complete CSA group (1.25 ± 0.99) differed clearly from healthy controls (1.05 ± 0.94) and RA patients (1.41 ± 0.96). HLA-SE was more prevalent in the RA group (prevalence 0.64) than the complete CSA group (0.45), with small differences between RA patients and CSA converters (0.64 versus 0.60) and larger differences between CSA converters and CSA nonconverters (0.60 versus 0.42). HLA-SE prevalence differed more strongly within the ACPA+ strata as follows: healthy controls (prevalence 0.43), CSA nonconverters (0.48), complete CSA group (0.59), CSA converters (0.66), and RA patients (0.79). CONCLUSION We observed that genetic predisposition increased across pre-RA participant groups. The RA PRS differed in early classified RA and inflammatory pre-disease stages, regardless of ACPA stratification. HLA-SE prevalence differed between arthritis patients, particularly ACPA+ patients, and healthy controls. Genetics seem to fulfill different etiologic roles.
Collapse
Affiliation(s)
- Marc P Maurits
- Department of Rheumatology, Leiden University Medical Center, The Netherlands
| | - Fenne Wouters
- Department of Rheumatology, Leiden University Medical Center, The Netherlands
| | | | - Thomas W J Huizinga
- Department of Rheumatology, Leiden University Medical Center, The Netherlands
| | - Erik B van den Akker
- Department of Biomedical Data Sciences Leiden, Leiden University Medical Center, The Netherlands
| | - Saskia Le Cessie
- Department of Medical Statistics, Leiden University Medical Center, The Netherlands
| | | | - Rachel Knevel
- Department of Rheumatology, Leiden University Medical Center, The Netherlands, and Translational & Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
37
|
Immune dysregulation and pathogenic pathways mediated by common infections in rheumatoid arthritis. Folia Microbiol (Praha) 2023; 68:325-335. [PMID: 36680729 DOI: 10.1007/s12223-023-01036-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 01/12/2023] [Indexed: 01/22/2023]
Abstract
Rheumatoid arthritis (RA) is one of the world's most prevalent inflammatory autoimmune diseases, affecting between 0.4 and 1.3% of the population. The susceptibility to RA appears to be influenced by a complex interaction between a favorable genetic background and the existence of a specific immune reaction against a wide range of environmental variables. Among the known environmental variables, infections are believed to have a significant role in promoting the formation of autoimmune disorders, which are frequently caused by specific microorganisms. Infections have been linked to RA in recent medical studies. In this study, we selected the most prevalent infections associated with RA from the literature and described the data confirming their pathogenic role in RA. Our investigation included Mycobacterium, Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans, Proteus mirabilis, Epstein-Barr virus, parvovirus, and Prevotella copri.
Collapse
|
38
|
Zhou TT, Sun JJ, Tang LD, Yuan Y, Wang JY, Zhang L. Potential diagnostic markers and therapeutic targets for rheumatoid arthritis with comorbid depression based on bioinformatics analysis. Front Immunol 2023; 14:1007624. [PMID: 36911710 PMCID: PMC9995708 DOI: 10.3389/fimmu.2023.1007624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023] Open
Abstract
Background Rheumatoid arthritis (RA) and depression are prevalent diseases that have a negative impact on the quality of life and place a significant economic burden on society. There is increasing evidence that the two diseases are closely related, which could make the disease outcomes worse. In this study, we aimed to identify diagnostic markers and analyzed the therapeutic potential of key genes. Methods We assessed the differentially expressed genes (DEGs) specific for RA and Major depressive disorder (MDD) and used weighted gene co-expression network analysis (WGCNA) to identify co-expressed gene modules by obtaining the Gene expression profile data from Gene Expression Omnibus (GEO) database. By using the STRING database, a protein-protein interaction (PPI) network constructed and identified key genes. We also employed two types of machine learning techniques to derive diagnostic markers, which were assessed for their association with immune cells and potential therapeutic effects. Molecular docking and in vitro experiments were used to validate these analytical results. Results In total, 48 DEGs were identified in RA with comorbid MDD. The PPI network was combined with WGCNA to identify 26 key genes of RA with comorbid MDD. Machine learning-based methods indicated that RA combined with MDD is likely related to six diagnostic markers: AURKA, BTN3A2, CXCL10, ERAP2, MARCO, and PLA2G7. CXCL10 and MARCO are closely associated with diverse immune cells in RA. However, apart from PLA2G7, the expression levels of the other five genes were associated with the composition of the majority of immune cells in MDD. Molecular docking and in vitro studies have revealed that Aucubin (AU) exerts the therapeutic effect through the downregulation of CXCL10 and BTN3A2 gene expression in PC12 cells. Conclusion Our study indicates that six diagnostic markers were the basis of the comorbidity mechanism of RA and MDD and may also be potential therapeutic targets. Further mechanistic studies of the pathogenesis and treatment of RA and MDD may be able to identify new targets using these shared pathways.
Collapse
Affiliation(s)
- Tao-Tao Zhou
- Department of Mathematics and Physics, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ji-Jia Sun
- Department of Mathematics and Physics, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li-Dong Tang
- Teaching and Research Section of Chinese Materia Medica, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ying Yuan
- Teaching and Research Section of Chinese Materia Medica, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jian-Ying Wang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Zhang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
39
|
Ponchel F, Duquenne L, Xie X, Corscadden D, Shuweihdi F, Mankia K, Trouw LA, Emery P. Added value of multiple autoantibody testing for predicting progression to inflammatory arthritis in at-risk individuals. RMD Open 2022; 8:rmdopen-2022-002512. [PMID: 36535711 PMCID: PMC9764647 DOI: 10.1136/rmdopen-2022-002512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 08/22/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Predicting progression to clinical arthritis in individuals at-risk of developing rheumatoid arthritis is a prerequisite to developing stratification groups for prevention strategies. Selecting accurate predictive criteria is the critical step to define the population at-risk. While positivity for anti-citrullinated protein antibodies (ACPA) remains the main recruitment biomarker, positivity for other autoantibodies (AutoAbs) identified before the onset of symptoms, may provide additional predictive accuracy for stratification. OBJECTIVE To perform a multiple AutoAbs analysis for both the prediction and the time of progression to inflammatory arthritis (IA). METHODS 392 individuals were recruited based on a new musculoskeletal complaint and positivity for ACPA or rheumatoid factor (RF). ELISAs were performed for ACPA, RF, anti-nuclear Ab, anti-carbamylated protein (anti-CarP) and anti-collagen AutoAbs. Logistic and COX regression were used for analysis. RESULTS Progression to IA was observed in 125/392 (32%) of cases, of which 78 progressed within 12 months. The AutoAbs ACPA, RF, anti-CarP were individually associated with progression (p<0.0001) and improved prediction when combined with demographic/clinical data (Accuracy >77%; area under the curve (AUC) >0.789), compared with prediction using only demographic/clinical data (72.9%, AUC=0.760). Multiple AutoAbs testing provided added value, with +6.4% accuracy for number of positive AutoAbs (AUC=0.852); +5.4% accuracy for AutoAbs levels (ACPA/anti-CarP, AUC=0.832); and +6.2% accuracy for risk-groups based on high/low levels (ACPA/RF/anti-CarP, AUC=0.837). Time to imminent progression was best predicted using ACPA/anti-CarP levels (AUC=0.779), while the number of positive AutoAbs was/status/risk were as good (AUC=0.778). CONCLUSION We confirm added value of multiple AutoAbs testing for identifying progressors to clinical disease, allowing more specific stratification for intervention studies.
Collapse
Affiliation(s)
- Frederique Ponchel
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Laurence Duquenne
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Xuanxiao Xie
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Diane Corscadden
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - Farag Shuweihdi
- Leeds Institute of Health Sciences, Faculty of Medicine, University of Leeds, Leeds, UK
| | - K Mankia
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK
| | - L A Trouw
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Paul Emery
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, UK,Leeds NIHR Biomedical Research Centre, Leeds Teaching Hospitals Trust, Leeds, UK
| |
Collapse
|
40
|
Ammitzbøll-Danielsen M, Terslev L. Optimizing the anti-inflammatory strategies in (osteo)arthritis: local or systemic? THE QUARTERLY JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING : OFFICIAL PUBLICATION OF THE ITALIAN ASSOCIATION OF NUCLEAR MEDICINE (AIMN) [AND] THE INTERNATIONAL ASSOCIATION OF RADIOPHARMACOLOGY (IAR), [AND] SECTION OF THE SOCIETY OF... 2022; 66:311-318. [PMID: 35838028 DOI: 10.23736/s1824-4785.22.03477-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Arthritis is affecting millions of people globally, involvement and distribution depending on the type of arthritis. The most common arthritic conditions are osteoarthritis (OA) and rheumatoid arthritis (RA). Despite the pathogeneses being fundamentally different, both joint diseases share the same need for local treatment of synovitis. No current treatment can stop the progression of OA. Local articulate treatment including glucocorticoid (GC) injections, radiosynoviorthesis (RSO) and surgical synovectomy are the only options to relieve pain and temporally improve movability before surgical intervention. For RA, despite effective systemic treatments, similarly need for local articulate treatment is still present, especially early in the disease, but also in case of recurrent episodes of disease flare. Current evidence supports local GC injection as first line treatment for persistent synovitis in a single or a few joints. RSO provides an evident and effective alternative for GC refractory synovitis, especially in early RA. Surgical synovectomy is an invasive alternative, but with less documented efficacy. Whether one unsuccessful intraarticular GC injection is enough to change of mode of action for local treatment is still unclear and needs to be further investigated. In conclusion persistent single joint synovitis in OA and RA is well treated with local treatment. Intra-articular GC injection is considered as first line of treatment, but RSO provides an additional treatment alternative with less side effects and better evidence of efficacy than surgical synovectomy.
Collapse
Affiliation(s)
- Mads Ammitzbøll-Danielsen
- Center for Rheumatology and Spine Diseases, Rigshospitalet, Denmark -
- Copenhagen Center for Arthritis Research, Rigshospitalet, Denmark -
| | - Lene Terslev
- Center for Rheumatology and Spine Diseases, Rigshospitalet, Denmark
- Copenhagen Center for Arthritis Research, Rigshospitalet, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
41
|
Tang G, Sun C, Lv H, Zhang M, Jiang Y, Xu J. Identification of novel meQTLs strongly associated with rheumatoid arthritis by large-scale epigenome-wide analysis. FEBS Open Bio 2022; 12:2227-2235. [PMID: 36342317 PMCID: PMC9714356 DOI: 10.1002/2211-5463.13517] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/26/2022] [Accepted: 11/07/2022] [Indexed: 11/09/2022] Open
Abstract
Rheumatoid arthritis (RA) is highly heritable, and previous studies have suggested that genetic variation may affect susceptibility to RA by altering epigenetic modifications (e.g. DNA methylation). Here we examined how genetic variation influences DNA methylation (DNAm) in RA by integrating individual genetic variation and DNAm data. Epigenome-wide meQTL (methylation quantitative trait loci) analysis was performed on 354 RA patients and 335 controls, scanning 30,101,744 relationships between 62 SNPs and 485,512 DNA methylation sites. Two regulatory relationship pairs (FDR < 0.05) showed very strong associations with RA risk. One was rs10796216-cg00475509, and the DNAm decreased by 0.0168 per addition of allele rs10796216-A. The other was rs6546473-cg13358873, for which a 0.0365 reduction of DNAm at cg13358873 was observed for each addition of allele rs6546473-A, and lower DNAm was found to be significantly associated with RA risk (P = 2.0407e-28). Moreover, both pairs of meQTL showed a strong regulatory relationship only in RA samples, so they can be subsequently considered as risk markers for RA. In conclusion, our integrated analysis of genetic and epigenetic variation suggests that genetic variation may affect the risk of RA by regulating DNA methylation levels. Alterations of DNAm at cg00475509 and cg13358873 loci conferred by rs10796216-A and rs6546473-A allele may suggest a potential risk for RA. Our results deepen our understanding of the genetic and epigenetic mechanisms of RA and provide novel associations that can be further investigated in future studies.
Collapse
Affiliation(s)
- Guoping Tang
- The Fourth Affiliated HospitalZhejiang University School of MedicineChina
| | - Chen Sun
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Hongchao Lv
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Mingming Zhang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Yongshuai Jiang
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| | - Jing Xu
- College of Bioinformatics Science and TechnologyHarbin Medical UniversityChina
| |
Collapse
|
42
|
Szostak B, Gorący A, Pala B, Rosik J, Ustianowski Ł, Pawlik A. Latest models for the discovery and development of rheumatoid arthritis drugs. Expert Opin Drug Discov 2022; 17:1261-1278. [PMID: 36184990 DOI: 10.1080/17460441.2022.2131765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
INTRODUCTION Rheumatoid arthritis (RA) is a chronic autoimmune disease that reduces the quality of life. The current speed of development of therapeutic agents against RA is not satisfactory. Models on which initial experiments are conducted do not fully reflect human pathogenesis. Overcoming this oversimplification might be a crucial step to accelerate studies on RA treatment. AREAS COVERED The current approaches to produce novel models or to improve currently available models for the development of RA drugs have been discussed. Advantages and drawbacks of two- and three-dimensional cell cultures and animal models have been described based on recently published results of the studies. Moreover, approaches such as tissue engineering or organ-on-a-chip have been reviewed. EXPERT OPINION The cell cultures and animal models used to date appear to be of limited value due to the complexity of the processes involved in RA. Current models in RA research should take into account the heterogeneity of patients in terms of disease subtypes, course, and activity. Several advanced models and tools using human cells and tissues have been developed, including three-dimensional tissues, liquid bioreactors, and more complex joint-on-a-chip devices. This may increase knowledge of the molecular mechanisms leading to disease development, to help identify new biomarkers for early detection, and to develop preventive strategies and more effective treatments.
Collapse
Affiliation(s)
- Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Anna Gorący
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, Szczecin, Poland
| | - Bartłomiej Pala
- Department of Neurosurgery, Pomeranian Medical University Hospital No. 1, Szczecin, Poland
| | - Jakub Rosik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland.,Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Łukasz Ustianowski
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| | - Andrzej Pawlik
- Department of Physiology, Pomeranian Medical University, Szczecin, Poland
| |
Collapse
|
43
|
Ishigaki K, Sakaue S, Terao C, Luo Y, Sonehara K, Yamaguchi K, Amariuta T, Too CL, Laufer VA, Scott IC, Viatte S, Takahashi M, Ohmura K, Murasawa A, Hashimoto M, Ito H, Hammoudeh M, Emadi SA, Masri BK, Halabi H, Badsha H, Uthman IW, Wu X, Lin L, Li T, Plant D, Barton A, Orozco G, Verstappen SMM, Bowes J, MacGregor AJ, Honda S, Koido M, Tomizuka K, Kamatani Y, Tanaka H, Tanaka E, Suzuki A, Maeda Y, Yamamoto K, Miyawaki S, Xie G, Zhang J, Amos CI, Keystone E, Wolbink G, van der Horst-Bruinsma I, Cui J, Liao KP, Carroll RJ, Lee HS, Bang SY, Siminovitch KA, de Vries N, Alfredsson L, Rantapää-Dahlqvist S, Karlson EW, Bae SC, Kimberly RP, Edberg JC, Mariette X, Huizinga T, Dieudé P, Schneider M, Kerick M, Denny JC, Matsuda K, Matsuo K, Mimori T, Matsuda F, Fujio K, Tanaka Y, Kumanogoh A, Traylor M, Lewis CM, Eyre S, Xu H, Saxena R, Arayssi T, Kochi Y, Ikari K, Harigai M, Gregersen PK, Yamamoto K, Louis Bridges S, Padyukov L, Martin J, Klareskog L, Okada Y, Raychaudhuri S. Multi-ancestry genome-wide association analyses identify novel genetic mechanisms in rheumatoid arthritis. Nat Genet 2022; 54:1640-1651. [PMID: 36333501 PMCID: PMC10165422 DOI: 10.1038/s41588-022-01213-w] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
Abstract
Rheumatoid arthritis (RA) is a highly heritable complex disease with unknown etiology. Multi-ancestry genetic research of RA promises to improve power to detect genetic signals, fine-mapping resolution and performances of polygenic risk scores (PRS). Here, we present a large-scale genome-wide association study (GWAS) of RA, which includes 276,020 samples from five ancestral groups. We conducted a multi-ancestry meta-analysis and identified 124 loci (P < 5 × 10-8), of which 34 are novel. Candidate genes at the novel loci suggest essential roles of the immune system (for example, TNIP2 and TNFRSF11A) and joint tissues (for example, WISP1) in RA etiology. Multi-ancestry fine-mapping identified putatively causal variants with biological insights (for example, LEF1). Moreover, PRS based on multi-ancestry GWAS outperformed PRS based on single-ancestry GWAS and had comparable performance between populations of European and East Asian ancestries. Our study provides several insights into the etiology of RA and improves the genetic predictability of RA.
Collapse
Affiliation(s)
- Kazuyoshi Ishigaki
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Laboratory for Human Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Saori Sakaue
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Chikashi Terao
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Clinical Research Center, Shizuoka General Hospital, Shizuoka, Japan
- The Department of Applied Genetics, The School of Pharmaceutical Sciences, University of Shizuoka, Shizuoka, Japan
| | - Yang Luo
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Kyuto Sonehara
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
| | - Kensuke Yamaguchi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tiffany Amariuta
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
| | - Chun Lai Too
- Immunogenetics Unit, Allergy and Immunology Research Center, Institute for Medical Research, National Institutes of Health Complex, Ministry of Health, Kuala Lumpur, Malaysia
- Department of Medicine, Division of Rheumatology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Vincent A Laufer
- Department of Clinical Immunology and Rheumatology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
- Department of Pathology, Michigan Medicine, Ann Arbor, MI, USA
| | - Ian C Scott
- Haywood Academic Rheumatology Centre, Haywood Hospital, Midlands Partnership NHS Foundation Trust, Burslem, UK
- Primary Care Centre Versus Arthritis, School of Medicine, Keele University, Keele, UK
| | - Sebastien Viatte
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University Foundation Trust, Manchester, UK
| | - Meiko Takahashi
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Koichiro Ohmura
- Department of Rheumatology and Clinical immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Akira Murasawa
- Department of Rheumatology, Niigata Rheumatic Center, Niigata, Japan
| | - Motomu Hashimoto
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Clinical Immunology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Hiromu Ito
- Department of Advanced Medicine for Rheumatic Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Orthopaedic Surgery, Kurashiki Central Hospital, Kurashiki, Japan
| | - Mohammed Hammoudeh
- Rheumatology Division, Department of Internal Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Samar Al Emadi
- Rheumatology Division, Department of Internal Medicine, Hamad Medical Corporation, Doha, Qatar
| | - Basel K Masri
- Department of Internal Medicine, Jordan Hospital, Amman, Jordan
| | - Hussein Halabi
- Section of Rheumatology, Department of Internal Medicine, King Faisal Specialist Hospital and Research Center, Jeddah, Saudi Arabia
| | - Humeira Badsha
- Dr. Humeira Badsha Medical Center, Emirates Hospital, Dubai, United Arab Emirates
| | - Imad W Uthman
- Department of Rheumatology, American University of Beirut, Beirut, Lebanon
| | - Xin Wu
- Department of Rheumatology and Immunology, Shanghai Changzeng Hospital, The Second Military Medical University, Shanghai, China
| | - Li Lin
- Department of Rheumatology and Immunology, Shanghai Changzeng Hospital, The Second Military Medical University, Shanghai, China
| | - Ting Li
- Department of Rheumatology and Immunology, Shanghai Changzeng Hospital, The Second Military Medical University, Shanghai, China
| | - Darren Plant
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Anne Barton
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University Foundation Trust, Manchester, UK
| | - Gisela Orozco
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University Foundation Trust, Manchester, UK
| | - Suzanne M M Verstappen
- NIHR Manchester Biomedical Research Centre, Manchester University Foundation Trust, Manchester, UK
- Centre for Epidemiology Versus Arthritis, Centre for Musculoskeletal Research, Division of Musculoskeletal and Dermatological Sciences, The University of Manchester, Manchester, UK
| | - John Bowes
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University Foundation Trust, Manchester, UK
| | | | - Suguru Honda
- Institute of Rheumatology, Tokyo Women's Medical University Hospital, Tokyo, Japan
- Department of Rheumatology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Masaru Koido
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kohei Tomizuka
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yoichiro Kamatani
- Laboratory for Statistical and Translational Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory of Complex Trait Genomics, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroaki Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Eiichi Tanaka
- Institute of Rheumatology, Tokyo Women's Medical University Hospital, Tokyo, Japan
- Department of Rheumatology, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Akari Suzuki
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Yuichi Maeda
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Kenichi Yamamoto
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, Suita, Japan
| | - Satoru Miyawaki
- Department of Neurosurgery, Faculty of Medicine, the University of Tokyo, Tokyo, Japan
| | - Gang Xie
- Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Jinyi Zhang
- Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
- Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Gertjan Wolbink
- Department of Rheumatology, Amsterdam Rheumatology and Immunology Center (ARC), Reade, Amsterdam, the Netherlands
| | - Irene van der Horst-Bruinsma
- Department of Rheumatology & Clinical Immunology/ARC, Amsterdam Institute for Infection and Immunity, Amsterdam UMC location Vrije Universiteit, Amsterdam, the Netherlands
| | - Jing Cui
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Katherine P Liao
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
- Massachusetts Veterans Epidemiology Research and Information Center, VA Boston Healthcare System, Boston, MA, USA
| | - Robert J Carroll
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Hye-Soon Lee
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
- Hanyang University Institute for Rheumatology Research, Seoul, Korea
| | - So-Young Bang
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
- Hanyang University Institute for Rheumatology Research, Seoul, Korea
| | - Katherine A Siminovitch
- Lunenfeld-Tanenbaum Research Institute, Toronto, Ontario, Canada
- Departments of Medicine and Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Niek de Vries
- Department of Rheumatology & Clinical Immunology/ARC, Amsterdam Institute for Infection and Immunity, Amsterdam UMC location AMC/University of Amsterdam, Amsterdam, the Netherlands
| | - Lars Alfredsson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Elizabeth W Karlson
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Sang-Cheol Bae
- Department of Rheumatology, Hanyang University Hospital for Rheumatic Diseases, Seoul, Korea
- Hanyang University Institute for Rheumatology Research, Seoul, Korea
| | - Robert P Kimberly
- Center for Clinical and Translational Science, Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jeffrey C Edberg
- Center for Clinical and Translational Science, Division of Clinical Immunology and Rheumatology, Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Xavier Mariette
- Department of Rheumatology, Université Paris-Saclay, Assistance Pubique - Hôpitaux de Paris, Hôpital Bicêtre, INSERM UMR1184, Le Kremlin Bicêtre, France
| | - Tom Huizinga
- Leiden University Medical Center, Leiden, the Netherlands
| | - Philippe Dieudé
- University of Paris Cité, Inserm, PHERE, F-75018, Paris, France
- Department of Rheumatology, Hôpital Bichat, APHP, Paris, France
| | - Matthias Schneider
- Department of Rheumatology & Hiller Research Unit Rheumatology, UKD, Heinrich-Heine University, Düsseldorf, Germany
| | - Martin Kerick
- Institute of Parasitology and Biomedicine Lopez-Neyra, CSIC, Granada, Spain
| | - Joshua C Denny
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
- All of Us Research Program, Office of the Director, National Institutes of Health, Bethesda, MD, USA
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Koichi Matsuda
- Laboratory of Genome Technology, Human Genome Center, Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Clinical Genome Sequencing, Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Keitaro Matsuo
- Division of Cancer Epidemiology and Prevention, Department of Preventive Medicine, Aichi Cancer Center Research Institute, Nagoya, Japan
- Department of Cancer Epidemiology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Tsuneyo Mimori
- Department of Rheumatology and Clinical immunology, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Keishi Fujio
- Department of Allergy and Rheumatology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health Japan, Kitakyushu, Japan
| | - Atsushi Kumanogoh
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- Department of Respiratory Medicine and Clinical Immunology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Immunopathology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan
| | - Matthew Traylor
- Department of Medical & Molecular Genetics, King's College London, London, UK
- Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK
- Clinical Pharmacology, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Cathryn M Lewis
- Department of Medical & Molecular Genetics, King's College London, London, UK
- Social, Genetic and Developmental Psychiatry Centre, King's College London, London, UK
| | - Stephen Eyre
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
- NIHR Manchester Biomedical Research Centre, Manchester University Foundation Trust, Manchester, UK
| | - Huji Xu
- Department of Rheumatology and Immunology, Shanghai Changzeng Hospital, The Second Military Medical University, Shanghai, China
- School of Clinical Medicine Tsinghua University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Tsinghua University, Beijing, China
| | - Richa Saxena
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Thurayya Arayssi
- Department of Internal Medicine, Weill Cornell Medicine-Qatar, Education City, Doha, Qatar
| | - Yuta Kochi
- Department of Genomic Function and Diversity, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Katsunori Ikari
- Institute of Rheumatology, Tokyo Women's Medical University Hospital, Tokyo, Japan
- Department of Orthopedic Surgery, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
- Division of Multidisciplinary Management of Rheumatic Diseases, Tokyo Women's Medical University, Tokyo, Japan
| | - Masayoshi Harigai
- Institute of Rheumatology, Tokyo Women's Medical University Hospital, Tokyo, Japan
- Division of Rheumatology, Department of Internal Medicine, Tokyo Women's Medical University School of Medicine, Tokyo, Japan
| | - Peter K Gregersen
- Robert S. Boas Center for Genomics and Human Genetics, Feinstein Institutes for Medical Research, Northwell Health, Manhasset, NY, USA
| | - Kazuhiko Yamamoto
- Laboratory for Autoimmune Diseases, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - S Louis Bridges
- Department of Medicine, Hospital for Special Surgery, New York, NY, USA
- Division of Rheumatology, Weill Cornell Medicine, New York, NY, USA
| | - Leonid Padyukov
- Department of Medicine, Division of Rheumatology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Javier Martin
- Institute of Parasitology and Biomedicine Lopez-Neyra, CSIC, Granada, Spain
| | - Lars Klareskog
- Department of Medicine, Division of Rheumatology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Yukinori Okada
- Department of Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan.
- Integrated Frontier Research for Medical Science Division, Institute for Open and Transdisciplinary Research Initiatives, Osaka University, Suita, Japan.
- Laboratory of Statistical Immunology, Immunology Frontier Research Center (WPI-IFReC), Osaka University, Suita, Japan.
- Laboratory for Systems Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Suita, Japan.
- Department of Genome Informatics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
| | - Soumya Raychaudhuri
- Center for Data Sciences, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Program in Medical and Population Genetics, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
- Division of Rheumatology, Inflammation, and Immunity, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA.
- Centre for Genetics and Genomics Versus Arthritis, Division of Musculoskeletal and Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
44
|
Meta-analysis for Association of Interleukin 4 VNTR Polymorphism with Rheumatoid Arthritis Risk and Severity. Biochem Genet 2022; 61:823-846. [PMID: 36258103 DOI: 10.1007/s10528-022-10288-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 10/02/2022] [Indexed: 11/02/2022]
Abstract
Rheumatoid Arthritis (RA) is a chronic autoimmune disease characterized by severe joint pain. There are conflicting results for the association of Interleukin 4 (IL4) variable number tandem repeats (VNTR; rs8179190) polymorphism with RA. Therefore, we performed a meta-analysis of the available studies to investigate the association of IL4 VNTR polymorphism with RA risk and severity in the overall populations and Asian, Egyptian, European, and Turkish ethnicities by sub-group analyses. Eight studies involving 1993 RA patients and 1732 controls were included in this meta-analysis. We found increased RA risk for the susceptible "R2R2" genotype and "R2" allele under heterozygous, recessive, and allelic models in the Asian populations (p < 0.00001, p < 0.0001, p = 0.001). We observed a significant association between "R2R2" genotype and "R2" allele for RA protection in the Turkish population under heterozygous, recessive, and allelic models (p = 0.01, p = 0.004, p = 0.002). Disease severity-based analysis revealed significant association for "R2R2" genotype and "R2" allele with RA severity under homozygous, heterozygous, recessive, dominant, and allelic models(p = 0.0004, p = 0.03, p = 0.02, p = 0.003, p = 0.01), specifically in Asian populations (p = 0.009, p = 0.02, p = 0.003, p = 0.03, p = 0.01) and under heterozygous, dominant, and allelic genetic models in Egyptian (p = 0.0001, p < 0.0001, p < 0.0001) and European (p = 0.002, p = 0.0007, p = 0.0006) populations. In silico analysis suggested that the susceptible "R2" allele changes the RNA secondary structure to a stable form by changing minimum free energy(ΔG) from - 115.20 to - 136.40 kcal/mol, which might lead to increased stability of IL-4 in RA patients. Overall, the meta-analysis suggests for the involvement of susceptible "R2" allele with RA risk in the Asian populations, RA severity in the overall populations (specifically in Asian, Egyptian, & European populations), and RA protection in the Turkish population.
Collapse
|
45
|
Abstract
PURPOSE OF REVIEW Rheumatoid arthritis (RA) is an autoimmune disease that primarily affects the joints. Extra-articular manifestations (EAMs) are common and may affect up to 40.6% of patients. Ocular EAM can occur in 39% of the patients. The cornea is involved by different pathogenic mechanisms and corneal disease varies from mild symptoms to severe corneal ulceration and melting with visual loss. Severe corneal involvement is associated with increased mortality in RA patients. We aimed to review the prevalence, mechanisms, management and overall impact of corneal involvement in RA patients. RECENT FINDINGS Corneal involvement is frequent among RA patients. With the wider use of systemic immunosuppression, in particular the disease-modifying antirheumatic drugs (DMARDs), and with improvement of surgical techniques, spontaneous and surgery-related corneal ulceration and melting is becoming less common. However, RA patients are still at risk and should be carefully managed. SUMMARY RA-related corneal complications are associated with a decreased quality of life and poor ocular and systemic prognosis. Prompt recognition and a multidisciplinary approach involving topical ophthalmic management and systemic immunosuppression are the key factors to maintain ocular integrity and avoid a lethal outcome.
Collapse
Affiliation(s)
- Denise Wajnsztajn
- Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | | | | |
Collapse
|
46
|
Andreev D, Kachler K, Schett G, Bozec A. Rheumatoid arthritis and osteoimmunology: The adverse impact of a deregulated immune system on bone metabolism. Bone 2022; 162:116468. [PMID: 35688359 DOI: 10.1016/j.bone.2022.116468] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 11/20/2022]
Abstract
The term osteoimmunology describes an interdisciplinary research field that links the investigation of osteology (bone cells) with immunology. The crosstalk between innate and adaptive immune cells and cells involved in bone remodeling, mainly bone-resorbing osteoclasts and bone-forming osteoblasts, becomes particularly obvious in the inflammatory autoimmune disease rheumatoid arthritis (RA). Besides striking inflammation of the joints, RA causes bone loss, leading to joint damage and disabilities as well as generalized osteoporosis. Mechanistically, RA-associated immune cells (macrophages, T cells, B cells etc.) produce high levels of pro-inflammatory cytokines, receptor activator of nuclear factor κB ligand (RANKL) and autoantibodies that promote bone degradation and at the same time counteract new bone formation. Today, antirheumatic therapy effectively ceases joint inflammation and arrests bone erosion. However, the repair of established bone lesions still presents a challenging task and requires improved treatment options. In this review, we outline the knowledge gained over the past years about the immunopathogenesis of RA and the impact of a dysregulated immune system on bone metabolism.
Collapse
Affiliation(s)
- Darja Andreev
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Katerina Kachler
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany.
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany
| | - Aline Bozec
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany; Deutsches Zentrum für Immuntherapie (DZI), Erlangen, Germany.
| |
Collapse
|
47
|
Ni J, Wang P, Yin KJ, Yang XK, Cen H, Sui C, Wu GC, Pan HF. Novel insight into the aetiology of rheumatoid arthritis gained by a cross-tissue transcriptome-wide association study. RMD Open 2022; 8:e002529. [PMID: 37582060 PMCID: PMC9462377 DOI: 10.1136/rmdopen-2022-002529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/23/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND Although genome-wide association studies (GWASs) have identified more than 100 loci associated with rheumatoid arthritis (RA) susceptibility, the causal genes and biological mechanisms remain largely unknown. METHODS A cross-tissue transcriptome-wide association study (TWAS) using the unified test for molecular signaturestool was performed to integrate GWAS summary statistics from 58 284 individuals (14 361 RA cases and 43 923 controls) with gene-expression matrix in the Genotype-Tissue Expression project. Subsequently, a single tissue by using FUSION software was conducted to validate the significant associations. We also compared the TWAS with different gene-based methodologies, including Summary Data Based Mendelian Randomization (SMR) and Multimarker Analysis of Genomic Annotation (MAGMA). Further in silico analyses (conditional and joint analysis, differential expression analysis and gene-set enrichment analysis) were used to deepen our understanding of genetic architecture and comorbidity aetiology of RA. RESULTS We identified a total of 47 significant candidate genes for RA in both cross-tissue and single-tissue test after multiple testing correction, of which 40 TWAS-identified genes were verified by SMR or MAGMA. Among them, 13 genes were situated outside of previously reported significant loci by RA GWAS. Both TWAS-based and MAGMA-based enrichment analyses illustrated the shared genetic determinants among autoimmune thyroid disease, asthma, type I diabetes mellitus and RA. CONCLUSION Our study unveils 13 new candidate genes whose predicted expression is associated with risk of RA, providing new insights into the underlying genetic architecture of RA.
Collapse
Affiliation(s)
- Jing Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Peng Wang
- Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, China
| | - Kang-Jia Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Xiao-Ke Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Han Cen
- Department of Preventive Medicine, Ningbo University Medical School, Ningbo, Zhejiang, China
| | - Cong Sui
- Department of Orthopedics Trauma, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Guo-Cui Wu
- Department of Obstetrics and Gynecological Nursing, School of Nursing, Anhui Medical University, Hefei, Anhui, China
| | - Hai-Feng Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
48
|
Krutyhołowa A, Strzelec K, Dziedzic A, Bereta GP, Łazarz-Bartyzel K, Potempa J, Gawron K. Host and bacterial factors linking periodontitis and rheumatoid arthritis. Front Immunol 2022; 13:980805. [PMID: 36091038 PMCID: PMC9453162 DOI: 10.3389/fimmu.2022.980805] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/27/2022] [Indexed: 02/05/2023] Open
Abstract
Observations from numerous clinical, epidemiological and serological studies link periodontitis with severity and progression of rheumatoid arthritis. The strong association is observed despite totally different aetiology of these two diseases, periodontitis being driven by dysbiotic microbial flora on the tooth surface below the gum line, while rheumatoid arthritis being the autoimmune disease powered by anti-citrullinated protein antibodies (ACPAs). Here we discuss genetic and environmental risk factors underlying development of both diseases with special emphasis on bacteria implicated in pathogenicity of periodontitis. Individual periodontal pathogens and their virulence factors are argued as potentially contributing to putative causative link between periodontal infection and initiation of a chain of events leading to breakdown of immunotolerance and development of ACPAs. In this respect peptidylarginine deiminase, an enzyme unique among prokaryotes for Porphyromonas gingivalis, is elaborated as a potential mechanistic link between this major periodontal pathogen and initiation of rheumatoid arthritis development.
Collapse
Affiliation(s)
- Anna Krutyhołowa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Karolina Strzelec
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Agata Dziedzic
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Grzegorz P. Bereta
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Katarzyna Łazarz-Bartyzel
- Department of Periodontology and Oral Medicine, Faculty of Medicine, Medical College, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland,Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY, United States,*Correspondence: Katarzyna Gawron, ; Jan Potempa,
| | - Katarzyna Gawron
- Department of Molecular Biology and Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland,*Correspondence: Katarzyna Gawron, ; Jan Potempa,
| |
Collapse
|
49
|
How does age determine the development of human immune-mediated arthritis? Nat Rev Rheumatol 2022; 18:501-512. [PMID: 35948692 PMCID: PMC9363867 DOI: 10.1038/s41584-022-00814-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2022] [Indexed: 11/08/2022]
Abstract
Does age substantially affect the emergence of human immune-mediated arthritis? Children do not usually develop immune-mediated articular inflammation during their first year of life. In patients with juvenile idiopathic arthritis, this apparent ‘immune privilege’ disintegrates, and chronic inflammation is associated with variable autoantibody signatures and patterns of disease that resemble adult arthritis phenotypes. Numerous mechanisms might be involved in this shift, including genetic and epigenetic predisposing factors, maturation of the immune system with a progressive modulation of putative tolerogenic controls, parallel development of microbial dysbiosis, accumulation of a pro-inflammatory burden driven by environmental exposures (the exposome) and comorbidity-related drivers. By exploring these mechanisms, we expand the discussion of three (not mutually exclusive) hypotheses on how these factors can contribute to the differences and similarities between the loss of immune tolerance in children and the development of established immune-mediated arthritis in adults. These three hypotheses relate to a critical window in genetics and epigenetics, immune maturation, and the accumulation of burden. The varied manifestation of the underlying mechanisms among individuals is only beginning to be clarified, but the establishment of a framework can facilitate the development of an integrated understanding of the pathogenesis of arthritis across all ages. In this Review, the authors discuss age-related arthropathy and the similarities and differences between childhood loss of immune tolerance and adult development of immune-mediated arthritis, and develop three hypotheses describing age-related mechanisms that contribute to the onset of arthritis. The arthritis-free ‘immune privilege’ of early childhood is overridden by multiple mechanisms, progressively and age-dependently, generating recognizable patterns of chronic inflammatory arthritis. The emergence of arthritis involves interconnected mechanisms related to immune priming, to a situational susceptibility and to the accumulation of an inflammatory burden. The accumulation of epigenetic drift may contribute to differences across ages. The exposome is expected to contribute to arthritis emergence in adults as well as in children.
Collapse
|
50
|
Attur M, Scher JU, Abramson SB, Attur M. Role of Intestinal Dysbiosis and Nutrition in Rheumatoid Arthritis. Cells 2022; 11:2436. [PMID: 35954278 PMCID: PMC9368368 DOI: 10.3390/cells11152436] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Rheumatoid arthritis is a chronic systemic immune-mediated disease caused by genetic and environmental factors. It is often characterized by the generation of autoantibodies that lead to synovial inflammation and eventual multi-joint destruction. A growing number of studies have shown significant differences in the gut microbiota composition of rheumatoid arthritis (RA) patients compared to healthy controls. Environmental factors, and changes in diet and nutrition are thought to play a role in developing this dysbiosis. This review aims to summarize the current knowledge of intestinal dysbiosis, the role of nutritional factors, and its implications in the pathogenesis of rheumatoid arthritis and autoimmunity. The future direction focuses on developing microbiome manipulation therapeutics for RA disease management.
Collapse
Affiliation(s)
- Malavikalakshmi Attur
- Drexel University College of Medicine, Drexel University, Philadelphia, PA 19129, USA
| | - Jose U Scher
- Division of Rheumatology, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY 10003, USA
| | - Steven B. Abramson
- Division of Rheumatology, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY 10003, USA
| | - Mukundan Attur
- Division of Rheumatology, Department of Medicine, NYU Grossman School of Medicine, NYU Langone Health, New York, NY 10003, USA
| |
Collapse
|