1
|
Zalaquett NG, Salameh E, Kim JM, Ghanbarian E, Tawk K, Abouzari M. The Dawn and Advancement of the Knowledge of the Genetics of Migraine. J Clin Med 2024; 13:2701. [PMID: 38731230 PMCID: PMC11084801 DOI: 10.3390/jcm13092701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 05/13/2024] Open
Abstract
Background: Migraine is a prevalent episodic brain disorder known for recurrent attacks of unilateral headaches, accompanied by complaints of photophobia, phonophobia, nausea, and vomiting. Two main categories of migraine are migraine with aura (MA) and migraine without aura (MO). Main body: Early twin and population studies have shown a genetic basis for these disorders, and efforts have been invested since to discern the genes involved. Many techniques, including candidate-gene association studies, loci linkage studies, genome-wide association, and transcription studies, have been used for this goal. As a result, several genes were pinned with concurrent and conflicting data among studies. It is important to understand the evolution of techniques and their findings. Conclusions: This review provides a chronological understanding of the different techniques used from the dawn of migraine genetic investigations and the genes linked with the migraine subtypes.
Collapse
Affiliation(s)
- Nader G. Zalaquett
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Elio Salameh
- Faculty of Medicine, American University of Beirut, Beirut 1107, Lebanon
| | - Jonathan M. Kim
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| | - Elham Ghanbarian
- Department of Neurology, University of California, Irvine, CA 92617, USA
| | - Karen Tawk
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| | - Mehdi Abouzari
- Department of Otolaryngology-Head and Neck Surgery, University of California, Irvine, CA 92697, USA
| |
Collapse
|
2
|
Enck P, Goebel-Stengel M, Rieß O, Hübener-Schmid J, Kagan KO, Nieß AM, Tümmers H, Wiesing U, Zipfel S, Stengel A. [Twin research in Germany]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2021; 64:1298-1306. [PMID: 34524474 PMCID: PMC8441034 DOI: 10.1007/s00103-021-03400-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 07/23/2021] [Indexed: 12/16/2022]
Abstract
Nach dem Zweiten Weltkrieg wurden weltweit Zwillingskohorten aufgebaut, die inzwischen ca. 1,5 Mio. Zwillinge umfassen und zwischen 1950 und 2012 über 2748 Zwillingsstudien hervorgebracht haben. Diese Zahl steigt jedes Jahr um weitere 500 bis 1000. Die Unterrepräsentanz deutscher Zwillingsstudien in diesen Datenbanken lässt sich nicht allein durch den Missbrauch medizinischer Forschung im Nationalsozialismus erklären. Entwicklung und Ausbau großer Zwillingskohorten sind ethisch und datenschutzrechtlich eine Herausforderung. Zwillingskohorten ermöglichen jedoch die Langzeit- und Echtzeiterforschung vieler medizinischer Fragestellungen; und die Zwillingsstudien tragen auch nach der Entschlüsselung des Humangenoms erheblich zur Beantwortung der Frage nach Anlage oder Umwelt als mögliche Erkrankungsauslöser bei. Derzeit gibt es 2 deutsche Zwillingskohorten: die biomedizinische Kohorte HealthTwiSt mit ca. 1500 Zwillingspaaren und TwinLife, eine soziologisch-psychologische Kohorte mit ca. 4000 Zwillingspaaren. Daneben gibt es krankheitsspezifische Kohorten. 2016 startete das TwinHealth-Konsortium der Medizinischen Fakultät der Universität Tübingen mit dem Ziel, eine forschungsoffene und nachhaltige Zwillingsforschung am Standort Tübingen zur Bearbeitung unterschiedlicher Fragestellungen zu etablieren. Der Artikel bietet mithilfe einer systematischen Literaturrecherche und einer medizinhistorischen Betrachtung einen Überblick über die weltweite und nationale Entwicklung von Zwillingsstudien und -datenbanken der letzten 100 Jahre. Anhand der Tübinger TwinHealth-Initiative beleuchtet er den Aufbau eines Zwillingskollektivs und dessen juristische, ethische und Datenschutzaspekte.
Collapse
Affiliation(s)
- Paul Enck
- Innere Medizin VI, Psychosomatische Medizin und Psychotherapie, Universitätsklinikum Tübingen, Osianderstr. 5, 72076, Tübingen, Deutschland
| | - Miriam Goebel-Stengel
- Innere Medizin VI, Psychosomatische Medizin und Psychotherapie, Universitätsklinikum Tübingen, Osianderstr. 5, 72076, Tübingen, Deutschland. .,Klinik für Innere Medizin, Helios Klinik Rottweil, Rottweil, Deutschland.
| | - Olaf Rieß
- Institut für Medizinische Genetik und Angewandte Genomik, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - Jeannette Hübener-Schmid
- Institut für Medizinische Genetik und Angewandte Genomik, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - Karl Oliver Kagan
- Department für Frauengesundheit, Universitäts-Frauenklinik, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - Andreas Michael Nieß
- Innere Medizin V, Sportmedizin, Universitätsklinikum Tübingen, Tübingen, Deutschland
| | - Henning Tümmers
- Institut für Ethik und Geschichte der Medizin, Universität Tübingen, Tübingen, Deutschland
| | - Urban Wiesing
- Institut für Ethik und Geschichte der Medizin, Universität Tübingen, Tübingen, Deutschland
| | - Stephan Zipfel
- Innere Medizin VI, Psychosomatische Medizin und Psychotherapie, Universitätsklinikum Tübingen, Osianderstr. 5, 72076, Tübingen, Deutschland
| | - Andreas Stengel
- Innere Medizin VI, Psychosomatische Medizin und Psychotherapie, Universitätsklinikum Tübingen, Osianderstr. 5, 72076, Tübingen, Deutschland
| | | |
Collapse
|
3
|
de Boer I, Terwindt GM, van den Maagdenberg AMJM. Genetics of migraine aura: an update. J Headache Pain 2020; 21:64. [PMID: 32503413 PMCID: PMC7275514 DOI: 10.1186/s10194-020-01125-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/19/2020] [Indexed: 12/20/2022] Open
Abstract
Migraine is a common brain disorder with a large genetic component. Of the two main migraine types, migraine with aura and migraine without aura, the genetic underpinning in the former is least understood. Given the evidence from epidemiological studies in cohorts and families that the genetic contribution is highest in migraine with aura, this seems paradoxical. Various genetic approaches have been applied to identify genetic factors that confer risk for migraine. Initially, so-called candidate gene associations studies (CGAS) have been performed that test DNA variants in genes prioritized based on presumed a priori knowledge of migraine pathophysiology. More recently, genome-wide association studies (GWAS) tested variants in any gene in an hypothesis-free manner. Whereas GWAS in migraine without aura, or the more general diagnosis migraine have already identified dozens of gene variants, the specific hunt for gene variants in migraine with aura has been disappointing. The only GWAS specifically investigating migraine with aura yielded only one single associated single nucleotide polymorphism (SNP), near MTDH and PGCP, with genome-wide significance. However, interrogation of all genotyped SNPs, so beyond this one significant hit, was more successful and led to the notion that migraine with aura and migraine without aura are genetically more alike than different. Until now, most relevant genetic discoveries related to migraine with aura came from investigating monogenetic syndromes with migraine aura as a prominent phenotype (i.e. FHM, CADASIL and FASPS). This review will highlight the genetic findings relevant to migraine with aura.
Collapse
Affiliation(s)
- Irene de Boer
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | - Arn M J M van den Maagdenberg
- Department of Neurology, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands. .,Department of Human Genetics, Leiden University Medical Center, Albinusdreef 2, PO Box 9600, 2300 RC, Leiden, The Netherlands.
| |
Collapse
|
4
|
Ling YH, Chen SP, Fann CSJ, Wang SJ, Wang YF. TRPM8 genetic variant is associated with chronic migraine and allodynia. J Headache Pain 2019; 20:115. [PMID: 31842742 PMCID: PMC6916225 DOI: 10.1186/s10194-019-1064-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/02/2019] [Indexed: 11/25/2022] Open
Abstract
Background Many single nucleotide polymorphisms (SNPs) have been reported to be associated with migraine susceptibility. However, evidences for their associations with migraine endophenotypes or subtypes are scarce. We aimed to investigate the associations of pre-identified migraine susceptibility loci in Taiwanese with migraine endophenotypes or subtypes, including chronic migraine and allodynia. Methods The associations of six SNPs identified from our previous study, including TRPM8 rs10166942, LRP1 rs1172113, DLG2 rs655484, GFRA1 rs3781545, UPP2 rs7565931, and GPR39 rs10803531, and migraine endophenotypes, including chronic migraine and allodynia were tested. Significant associations in the discovery cohort were validated in the replication cohort. The adjusted odds ratios (aOR) were calculated after controlling for confounders. Results In total, 1904 patients (mean age 37.5 ± 12.2 years old, female ratio: 77.7%) including 1077 in the discovery cohort and 827 in the replication cohort were recruited. Of them, 584 (30.7%) had chronic migraine. Of the 6 investigated SNPs, TRPM8 rs10166942 T allele-carrying patients were more likely to have chronic migraine than non-T allele carriers in both discovery and replication cohorts and combined samples (33.7% vs. 25.8%, p = 0.004, aOR = 1.62). In addition, T allele carriers reported more allodynic symptoms than non-T allele carriers (3.5 ± 3.7 vs. 2.6 ± 2.8, p < 0.001). However, allodynia severity did not differ between episodic and chronic migraine patients. No further correlations between genetic variants and endophenotypes were noted for the other SNPs. Conclusions TRPM8 may contribute to the pathogenesis of chronic migraine. However, our study did not support allodynia as a link between them. The underlying mechanisms deserve further investigations.
Collapse
Affiliation(s)
- Yu-Hsiang Ling
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Shih-Pin Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.,Department of Medical Research, Taipei Veterans General Hospital, Taipei, Taiwan
| | | | - Shuu-Jiun Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan.,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan.,Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yen-Feng Wang
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan. .,Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
5
|
Gelfand AA, Buse DC, Cabana MD, Grimes B, Goadsby PJ, Allen IE. The Association Between Parental Migraine and Infant Colic: A Cross-Sectional, Web-Based, U.S. Survey Study. Headache 2019; 59:988-1001. [PMID: 31222745 DOI: 10.1111/head.13575] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/22/2019] [Indexed: 12/29/2022]
Abstract
BACKGROUND Infant colic, or excessive crying in an otherwise healthy infant, is common, although the cause(s) are not known. This study aimed to determine whether parental migraine is associated with infant colic. METHODS This was a cross-sectional online survey study of biological parents of 4-8 week olds in the United States during February and March 2017 and October 2017-April 2018. Parents self-reported information about their and their infant's health using validated instruments wherever possible. Parents were recruited using social media advertisements and completed the survey online. Migraine was identified with a validated screener using modified International Classification of Headache Disorders 3rd edition criteria. Parental depression and anxiety were screened with the Patient Health Questionnaire-2 (PHQ-2) and Generalized Anxiety Disorder Scale-2 (GAD-2). Parental seasonal allergies and asthma were assessed by self-report. Infant colic was determined based on parental response to the question, "Has your baby cried for at least 3 hours on at least 3 days in the last week?" RESULTS A total of 1,715 surveys were completed over 2 recruitment periods; 1,419 formed the analysis set. Eight hundred twenty-seven were completed by biological mothers and 592 by biological fathers. Mean (SD) maternal age: 28.9 (5.1) years; 33.5% had migraine/probable migraine. Maternal migraine was associated with increased odds of infant colic: OR 1.7 (1.3-2.4). Among mothers with migraine, headache frequency ≥15 days/month was associated with higher risk of infant colic (OR 2.5 (1.2-5.3)); and anxiety was borderline associated (OR 1.7 (1.0-2.9)). Mean (SD) paternal age was 31.6 (4.5) years; 20.8% had migraine/probable migraine. Paternal migraine was not associated with infant colic: OR 1.0 (0.7-1.5). Fathers with depression (OR 2.4 (1.4-4.3)) or anxiety (OR 1.7 (1.1-2.7)) were more likely to have a baby with colic but having a girl infant was protective: (OR 0.7 (0.5-0.97)). CONCLUSIONS Mothers with migraine are more likely to have a baby with colic, while fathers with migraine are not. Further research is needed to determine the mechanisms underlying these findings. In the meantime, clinicians may wish to counsel parents with a maternal history of migraine about the increased possibility of having a colicky infant and provide resources and education about infant crying.
Collapse
Affiliation(s)
- Amy A Gelfand
- Department of Neurology, Child & Adolescent Headache Program, University of California San Francisco, San Francisco, CA, USA
| | - Dawn C Buse
- Department of Neurology, Albert Einstein College of Medicine, New York, NY, USA
| | - Michael D Cabana
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA.,Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Barbara Grimes
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Peter J Goadsby
- Department of Neurology, Child & Adolescent Headache Program, University of California San Francisco, San Francisco, CA, USA.,NIHR-Wellcome Trust King's Clinical Research Facility, King's College London, London, UK
| | - I Elaine Allen
- Department of Epidemiology & Biostatistics, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
6
|
Vollesen ALH, Ashina M. PACAP38: Emerging Drug Target in Migraine and Cluster Headache. Headache 2018; 57 Suppl 2:56-63. [PMID: 28485845 DOI: 10.1111/head.13076] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 03/06/2017] [Indexed: 01/24/2023]
Abstract
Here, we review the role of pituitary adenylate cyclase-activating peptide-38 (PACAP38) in migraine and cluster headache (CH). Mounting evidence implicates signaling molecule PACAP38 in the pathophysiology of migraine. Human provocation studies show PACAP38 induces migraine attacks in migraine patients without aura and marked and sustained dilation of extracerebral arteries. PACAP38 selectively targets the PAC1 receptor making this receptor a promising candidate for targeted migraine therapy. Randomized clinical trials are warranted to pursue this possible treatment pathway. PACAP38 provocation studies in CH could elucidate possible involvement of PACAP38 in CH pathophysiology and predict efficacy of PACAP38 antagonists in this primary headache.
Collapse
Affiliation(s)
- Anne Luise Haulund Vollesen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Copenhagen, 2600, Denmark
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Copenhagen, 2600, Denmark
| |
Collapse
|
7
|
Co-occurrence of migraine and atopy in children and adolescents: myth or a casual relationship? Curr Opin Neurol 2018; 30:287-291. [PMID: 28248699 DOI: 10.1097/wco.0000000000000439] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
PURPOSE OF REVIEW To clarify the causal relationship between migraine and atopic disorders in children and adolescents. RECENT FINDINGS Migraine headache and atopic disorders including asthma are both common functional syndromes of childhood in which nature of the relationship is still debated. Attacks may induce in both disorders upon exposure to potential triggers in genetically susceptible individuals. Clinical phenotype manifests by temporary dysfunction of target tissue mediated by inflammation triggered by specific agents. Clinical features also change after puberty because of the partial effect of female sex hormones on the process. Appropriate definition of the syndrome and differentiating from other disorders are necessary not only for correct diagnosis, but also for planning of management strategies in children. Allergic rhinosinusitis needs to be differentiated from migraine even in experienced clinics. Questioning the presence of cranial autonomic symptoms is important clue in the differential diagnosis. Atopic disorder screening is particularly required in the diagnosis of migraine in childhood and adolescents. The link between both disorders of childhood seems to be far from a coincidence and some common inflammatory mechanisms are shared. SUMMARY On the basis of clinical features, laboratory findings and some practical clues in children, accurate diagnosis of migraine and atopic disorders are very critical for physicians, pediatricians and algologists.
Collapse
|
8
|
Ashina H, Guo S, Vollesen ALH, Ashina M. PACAP38 in human models of primary headaches. J Headache Pain 2017; 18:110. [PMID: 29453754 PMCID: PMC5815979 DOI: 10.1186/s10194-017-0821-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Accepted: 11/14/2017] [Indexed: 02/08/2023] Open
Abstract
Background To review the role of PACAP38 in human models of primary headaches, discuss possible mechanisms of PACAP38-induced migraine, and outline future directions. Discussion Experimental studies have established PACAP38 as a potent pharmacological “trigger” molecule of migraine-like attacks. These studies have also revealed a heterogeneous PACAP38 migraine response in migraine without aura patients. In addition, findings from brain imaging studies have demonstrated neuronal and vascular changes in migraine patients both ictally and interictally after PACAP38 infusion. Conclusion Human migraine models have shed light on the importance of PACAP38 in the pathophysiology of primary headaches. These studies have also pointed to the PAC1 receptor and the PACAP38 molecule itself as target sites for drug testing. Future research should seek to understand the mechanisms underlying PACAP38-induced migraine. The results from an ongoing proof of concept randomized clinical trial may reveal the therapeutic potential of anti-PAC1 receptor antibodies for migraine prevention.
Collapse
Affiliation(s)
- Håkan Ashina
- Department of Neurology, Danish Headache Center, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Song Guo
- Department of Neurology, Danish Headache Center, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Anne L H Vollesen
- Department of Neurology, Danish Headache Center, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Messoud Ashina
- Department of Neurology, Danish Headache Center, Rigshospitalet Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
9
|
Abstract
Headache disorders cause significant disability. The public and most health professionals tend to perceive migraine as a minor or trivial complaint. In the past decade, important epidemiologic studies enjoining extensive surveys, pathophysiologic and genetic insights, and revised headache classification paradigms have produced clear evidence of the public health importance of headache disorders. The Global Campaign to reduce the burden of headache worldwide known as "Lifting the Burden" was launched in 2004 by the World Health Organization, the International Headache Society, the World Headache Alliance, and the European Headache Federation. This paper reviews salient progress in the neuroepidemiology of migraine headaches.
Collapse
Affiliation(s)
- David S Younger
- Division of Neuroepidemiology, Department of Neurology, New York University School of Medicine, New York, NY, USA; College of Global Public Health, New York University, New York, NY, USA.
| |
Collapse
|
10
|
Goadsby PJ, Holland PR, Martins-Oliveira M, Hoffmann J, Schankin C, Akerman S. Pathophysiology of Migraine: A Disorder of Sensory Processing. Physiol Rev 2017; 97:553-622. [PMID: 28179394 PMCID: PMC5539409 DOI: 10.1152/physrev.00034.2015] [Citation(s) in RCA: 1071] [Impact Index Per Article: 153.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Plaguing humans for more than two millennia, manifest on every continent studied, and with more than one billion patients having an attack in any year, migraine stands as the sixth most common cause of disability on the planet. The pathophysiology of migraine has emerged from a historical consideration of the "humors" through mid-20th century distraction of the now defunct Vascular Theory to a clear place as a neurological disorder. It could be said there are three questions: why, how, and when? Why: migraine is largely accepted to be an inherited tendency for the brain to lose control of its inputs. How: the now classical trigeminal durovascular afferent pathway has been explored in laboratory and clinic; interrogated with immunohistochemistry to functional brain imaging to offer a roadmap of the attack. When: migraine attacks emerge due to a disorder of brain sensory processing that itself likely cycles, influenced by genetics and the environment. In the first, premonitory, phase that precedes headache, brain stem and diencephalic systems modulating afferent signals, light-photophobia or sound-phonophobia, begin to dysfunction and eventually to evolve to the pain phase and with time the resolution or postdromal phase. Understanding the biology of migraine through careful bench-based research has led to major classes of therapeutics being identified: triptans, serotonin 5-HT1B/1D receptor agonists; gepants, calcitonin gene-related peptide (CGRP) receptor antagonists; ditans, 5-HT1F receptor agonists, CGRP mechanisms monoclonal antibodies; and glurants, mGlu5 modulators; with the promise of more to come. Investment in understanding migraine has been very successful and leaves us at a new dawn, able to transform its impact on a global scale, as well as understand fundamental aspects of human biology.
Collapse
Affiliation(s)
- Peter J Goadsby
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Philip R Holland
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Margarida Martins-Oliveira
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Jan Hoffmann
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Christoph Schankin
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| | - Simon Akerman
- Basic and Clinical Neurosciences, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, United Kingdom; Department of Neurology, University of California, San Francisco, San Francisco, California; Department of Neurology, University of Hamburg-Eppendorf, Hamburg, Germany; and Department of Neurology, University Hospital Bern-Inselspital, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Russell MB. Genetics of Migraine without Aura, Migraine with Aura, Migrainous Disorder, Head Trauma Migraine without Aura and Tension-Type Headache. Cephalalgia 2016. [DOI: 10.1177/033310240102100709] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This review is a tribute to Professor Jes Olesen involvement in the genetics of migraine and tension-type headache as it is coming up to his 60th birthday.
Collapse
Affiliation(s)
- MB Russell
- Department of Neurology, Gentofte Hospital, University of Copenhagen, Hellerup, Denmark
| |
Collapse
|
12
|
Guo S, Christensen AF, Liu ML, Janjooa BN, Olesen J, Ashina M. Calcitonin gene-related peptide induced migraine attacks in patients with and without familial aggregation of migraine. Cephalalgia 2016; 37:114-124. [DOI: 10.1177/0333102416639512] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Background Calcitonin gene-related peptide provokes migraine attacks in 65% of patients with migraine without aura. Whether aggregation of migraine in first-degree relatives (family load) or a high number of risk-conferring single nucleotide polymorphisms contributes to migraine susceptibility to calcitonin gene-related peptide infusion in migraine patients is unknown. We hypothesized that genetic enrichment plays a role in triggering of migraine and, therefore, migraine without aura patients with high family load would report more migraine attacks after calcitonin gene-related peptide infusion than patients with low family load. Methods We allocated 40 previously genotyped migraine without aura patients to receive intravenous infusion of 1.5 µg/min calcitonin gene-related peptide and recorded migraine attacks including headache characteristics and associated symptoms. Information of familial aggregation was obtained by telephone interview of first-degree relatives using a validated semi-structured questionnaire. Results Calcitonin gene-related peptide infusion induced a migraine-like attack in 75% (12 out of 16) of patients with high family load compared to 52% (12 out of 23) with low family load ( P = 0.150). In addition, we found that the migraine response after calcitonin gene-related peptide was not associated with specific or a high number of risk-conferring single nucleotide polymorphisms of migraine without aura. Conclusion We found no statistical association between familial aggregation of migraine and hypersensitivity to calcitonin gene-related peptide infusion in migraine without aura patients. We also demonstrated that the currently known single nucleotide polymorphisms conferring risk of migraine without aura have no additive effect on calcitonin gene-related peptide induced migraine-like attacks.
Collapse
Affiliation(s)
- Song Guo
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup Hospital, Denmark
| | | | - Marie Louise Liu
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup Hospital, Denmark
| | - Benjamin Naveed Janjooa
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup Hospital, Denmark
| | - Jes Olesen
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup Hospital, Denmark
| | - Messoud Ashina
- Danish Headache Center and Department of Neurology, Rigshospitalet Glostrup Hospital, Denmark
| |
Collapse
|
13
|
Chen SP, Tolner EA, Eikermann-Haerter K. Animal models of monogenic migraine. Cephalalgia 2016; 36:704-21. [PMID: 27154999 DOI: 10.1177/0333102416645933] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 04/01/2016] [Indexed: 01/18/2023]
Abstract
Migraine is a highly prevalent and disabling neurological disorder with a strong genetic component. Rare monogenic forms of migraine, or syndromes in which migraine frequently occurs, help scientists to unravel pathogenetic mechanisms of migraine and its comorbidities. Transgenic mouse models for rare monogenic mutations causing familial hemiplegic migraine (FHM), cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy (CADASIL), and familial advanced sleep-phase syndrome (FASPS), have been created. Here, we review the current state of research using these mutant mice. We also discuss how currently available experimental approaches, including epigenetic studies, biomolecular analysis and optogenetic technologies, can be used for characterization of migraine genes to further unravel the functional and molecular pathways involved in migraine.
Collapse
Affiliation(s)
- Shih-Pin Chen
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taiwan Faculty of Medicine, National Yang-Ming University School of Medicine, Taiwan Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, USA
| | - Else A Tolner
- Departments of Human Genetics and Neurology, Leiden University Medical Centre, the Netherlands
| | - Katharina Eikermann-Haerter
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, USA
| |
Collapse
|
14
|
Alicandri-Ciufelli M, Aggazzotti-Cavazza E, Cunsolo E, Marchioni D, Monzani D, Genovese E, Presutti L. Is Ménière’s disease the ‘inner ear migraine’? A neurovascular region-based hypothesis supported by epidemiological appraisal and pathophysiological considerations. HEARING BALANCE AND COMMUNICATION 2016. [DOI: 10.3109/21695717.2016.1132938] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
15
|
|
16
|
Barros J, Barreto R, Brandão AF, Domingos J, Damásio J, Ramos C, Lemos C, Sequeiros J, Alonso I, Pereira-Monteiro J. Monozygotic twin sisters discordant for familial hemiplegic migraine. J Headache Pain 2013; 14:77. [PMID: 24041236 PMCID: PMC3848118 DOI: 10.1186/1129-2377-14-77] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Accepted: 09/13/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The high concordance rate of migraine in monozygotic twin pairs has long been recognised. In the current study, we present a monozygotic twin pair discordant for familial hemiplegic migraine (FHM). CASE PRESENTATIONS We evaluated 12 adult family members in 2012. The twin pair was separately examined by neurologists at different time points. Mutation screening was performed for known FHM-related genes. The monozygosity of the twins was verified. Eleven individuals had a history of migraine or paroxysmal neurological symptoms, including four patients with motor aura. No mutations were detected in the CACNA1A, ATP1A2, SCN1A, PRRT2 or NOTCH3 genes. The monozygotic twin sisters, aged 52, were discordant for age of onset, motor aura and neuropsychological aura (forced thinking). Overall, the family members presented a wide range of phenotypical features. CONCLUSIONS Familial hemiplegic migraine is a monogenic disorder that is distinct from migraine with typical aura. However, in certain families with motor aura, such as this one, it is possible that the most severe phenotype is caused by an unlikely combination of polygenic traits and non-genetic factors. In these kindreds, we propose that hemiplegic aura is only a severe and complex form of typical aura.
Collapse
Affiliation(s)
- José Barros
- Serviço de Neurologia, Departamento de Neurociências, Hospital de Santo António (HSA), Centro Hospitalar do Porto (CHP), Largo Prof, Abel Salazar, 4099-001 Porto, Portugal.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Maher BH, Taylor M, Stuart S, Okolicsanyi RK, Roy B, Sutherland HG, Haupt LM, Griffiths LR. Analysis of 3 common polymorphisms in the KCNK18 gene in an Australian Migraine case-control cohort. Gene 2013; 528:343-6. [PMID: 23911303 DOI: 10.1016/j.gene.2013.07.030] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 06/14/2013] [Accepted: 07/07/2013] [Indexed: 10/26/2022]
Abstract
Migraine is a common neurological disorder characterised by temporary disabling attacks of severe head pain and associated disturbances. There is significant evidence to suggest a genetic aetiology to the disease however few causal mutations have been conclusively linked to the migraine subtypes Migraine with (MA) or without Aura (MO). The Potassium Channel, Subfamily K, member 18 (KCNK18) gene, coding the potassium channel TRESK, is the first gene in which a rare mutation resulting in a non-functional truncated protein has been identified and causally linked to MA in a multigenerational family. In this study, three common polymorphisms in the KCNK18 gene were analysed for genetic variation in an Australian case-control migraine population consisting of 340 migraine cases and 345 controls. No association was observed for the polymorphisms examined with the migraine phenotype or with any haplotypes across the gene. Therefore even though the KCNK18 gene is the only gene to be causally linked to MA our studies indicate that common genetic variation in the gene is not a contributor to MA.
Collapse
Affiliation(s)
- B H Maher
- Genomics Research Centre, Griffith Health Institute, School of Medical Science, Griffith University Gold Coast, Parklands Drive, Southport, Queensland 4215, Australia
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Eising E, de Vries B, Ferrari MD, Terwindt GM, van den Maagdenberg AMJM. Pearls and pitfalls in genetic studies of migraine. Cephalalgia 2013; 33:614-25. [DOI: 10.1177/0333102413484988] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Purpose of review Migraine is a prevalent neurovascular brain disorder with a strong genetic component, and different methodological approaches have been implemented to identify the genes involved. This review focuses on pearls and pitfalls of these approaches and genetic findings in migraine. Summary Common forms of migraine (i.e. migraine with and without aura) are thought to have a polygenic make-up, whereas rare familial hemiplegic migraine (FHM) presents with a monogenic pattern of inheritance. Until a few years ago only studies in FHM yielded causal genes, which were identified by a classical linkage analysis approach. Functional analyses of FHM gene mutations in cellular and transgenic animal models suggest abnormal glutamatergic neurotransmission as a possible key disease mechanism. Recently, a number of genes were discovered for the common forms of migraine using a genome-wide association (GWA) approach, which sheds first light on the pathophysiological mechanisms involved. Conclusions Novel technological strategies such as next-generation sequencing, which can be implemented in future genetic migraine research, may aid the identification of novel FHM genes and promote the search for the missing heritability of common migraine.
Collapse
Affiliation(s)
- Else Eising
- Department of Human Genetics, Leiden University Medical Centre, The Netherlands
| | - Boukje de Vries
- Department of Human Genetics, Leiden University Medical Centre, The Netherlands
| | - Michel D Ferrari
- Department of Neurology, Leiden University Medical Centre, The Netherlands
| | - Gisela M Terwindt
- Department of Neurology, Leiden University Medical Centre, The Netherlands
| | - Arn MJM van den Maagdenberg
- Department of Human Genetics, Leiden University Medical Centre, The Netherlands
- Department of Neurology, Leiden University Medical Centre, The Netherlands
| |
Collapse
|
19
|
Cutrer FM, Smith JH. Human Studies in the Pathophysiology of Migraine: Genetics and Functional Neuroimaging. Headache 2012; 53:401-12. [DOI: 10.1111/head.12024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/12/2012] [Indexed: 12/14/2022]
|
20
|
Basic mechanisms of migraine and its acute treatment. Pharmacol Ther 2012; 136:319-33. [DOI: 10.1016/j.pharmthera.2012.08.011] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Accepted: 08/13/2012] [Indexed: 12/27/2022]
|
21
|
Oikari LE, Stuart S, Okolicsanyi RK, Cox HC, Dixit S, Lea RA, Haupt LM, Griffiths LR. Investigation of lymphotoxin α genetic variants in migraine. Gene 2012; 512:527-31. [PMID: 23051989 DOI: 10.1016/j.gene.2012.09.116] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 09/29/2012] [Indexed: 11/26/2022]
Abstract
Migraine is a common neurological disease with a genetic basis affecting approximately 12% of the population. Pain during a migraine attack is associated with activation of the trigeminal nerve system, which carries pain signals from the meninges and the blood vessels infusing the meninges to the trigeminal nucleus in the brain stem. The release of inflammatory mediators following cortical spreading depression (CSD) may further promote and sustain the activation and sensitization of meningeal nociceptors, inducing the persistent throbbing headache characterised in migraine. Lymphotoxin α (LTA) is a cytokine secreted by lymphocytes and is a member of the tumour necrosis factor (TNF) family. Genetic variation with the TNF and LTA genes may contribute to threshold brain excitability, propagation of neuronal hyperexcitability and thus initiation and maintenance of a migraine attack. Three LTA variants rs2009658, rs2844482 and rs2229094 were identified in a recent pGWAS study conducted in the Norfolk Island population as being potentially implicated in migraine with nominally significant p values of p=0.0093, p=0.0088 and p=0.033 respectively. To determine whether these SNPs played a role in migraine in a general outbred population these SNPs were gentoyped in a large case control Australian Caucasian population and tested for association with migraine. All three SNPs showed no association in our cohort (p>0.05). Validation of GWAS data in independent case-controls cohorts is essential to establish risk validity within specific population groups. The importance of cytokines in modulating neural inflammation and pain threshold in addition to other studies showing associations between TNF-α and SNPs in the LTA gene with migraine, suggests that LTA could be an important factor contributing to migraine. Although the present study did not support a role for the tested LTA variants in migraine, investigation of other variants within the LTA gene is still warranted.
Collapse
Affiliation(s)
- Lotta E Oikari
- Genomics Research Centre, Griffith Health Institute, Griffith University, Gold Coast Campus, Building G05, Griffith University QLD 4222, Australia
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Migraine with and without aura (MA and MO, respectively) have a strong genetic basis. Different approaches using linkage-, candidate gene- and genome-wide association studies have been explored, yielding limited results. This may indicate that the genetic component in migraine is due to rare variants; capturing these will require more detailed sequencing in order to be discovered. Next-generation sequencing (NGS) techniques such as whole exome and whole genome sequencing have been successful in finding genes in especially monogenic disorders. As the molecular genetics research progresses, the technology will follow, rendering these approaches more applicable in the search for causative migraine genes in MO and MA. To date, no studies using NGS in migraine genetics have been published. In order to gain insight into the future possibilities of migraine genetics, we have looked at NGS studies in other diseases and have interviewed three experts in the field of genetics and complex traits. The experts’ ideas suggest that the preferred NGS approach depends on the expected effect size and the frequency of the variants of interest. Family-specific variants can be found by sequencing a small number of individuals, while a large number of unrelated cases are needed to find common and rare variants. NGS is currently hampered by high cost and technical problems concurrent with analyzing large amounts of data generated, especially by whole genome sequencing. As genome-wide association chips, exome sequencing and whole genome sequencing gradually become more affordable, these approaches will be used on a larger scale. This may reveal new risk variants in migraine which may offer previously unsuspected biological insights.
Collapse
|
23
|
Abstract
An important genetic component of migraine was systematically established by epidemiological studies in the 1990s. Over the past 15 years, significant progress has been made in unraveling the genetic basis and pathophysiological mechanisms of familial hemiplegic migraine, a rare and severe autosomal-dominant subtype of migraine with aura. Three different causative genes (CACNA1A, ATP1A2 and SCN1A), all of which are involved in cerebral ion translocation, have been identified. Functional studies and mouse models have shown that mutations in these genes, by different mechanisms, cause a disturbed cerebral glutamate homeostasis and, thus, increase susceptibility to cortical spreading depression, the likely correlate of migraine aura. More recently, genome-wide association studies have, for the first time, detected robust risk variants associated with the more common, genetically complex types of migraine, which has generated new perspectives for genetic research in migraine. This review summarizes the current knowledge about migraine genetics, with a focus on both familial hemiplegic migraine and recent results of genome-wide association studies.
Collapse
Affiliation(s)
- Tobias M Freilinger
- Department of Neurology, Klinikum Großhadern der Ludwig-Maximilians-Universität München, Marchioninistr, 15, 81377 München, Germany and Institute of Stroke & Dementia Research, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
24
|
Inflammatory cytokines as an underlying mechanism of the comorbidity between bipolar disorder and migraine. Med Hypotheses 2012; 78:601-5. [DOI: 10.1016/j.mehy.2012.01.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Revised: 11/24/2011] [Accepted: 01/19/2012] [Indexed: 01/16/2023]
|
25
|
|
26
|
Svensson DA, Larsson B, Waldenlind E, Pedersen NL. Genetic and Environmental Influences on Expression of Recurrent Headache as a Function of the Reporting Age in Twins. ACTA ACUST UNITED AC 2012. [DOI: 10.1375/twin.5.4.277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
AbstractTo explore age-related mechanisms in the expression of recurrent headache, we evaluated whether genetic and environmental influences are a function of the reporting age using questionnaire information that was gathered in 1973 for 15- to 47-year-old Swedish twins (n =12,606 twin pairs). Liability to mixed headache (mild migraine and tension-type headache) was explained by non-additive genetic influences (49%) in men aged from 15 to 30 years and additive genetic plus shared environmental influences (28%) in men aged from 31 to 47 years. In women, the explained proportion of variance, which was mainly due to additive genetic effects, ranged from 61% in adolescent twins to 12% in twins aged from 41 to 47 years, whereas individual specific environmental variance was significantly lower in twins aged from 15 to 20 years than in twins aged from 21 to 30 years. Liability to migrainous headache (more severe migraine) was explained by non-addi-tive genetic influences in men, 32% in young men and 45% in old men, while total phenotypic variance was significantly lower in young men than in old men. In women, the explained proportion of variance ranged from 91% in the youngest age group to 37% in the oldest age group, with major contributions from non-additive effects in young and old women (15–20 years and 41–47 years, respectively) and additive genetic effects in intermediate age groups (21–40 years). While total variance showed a positive age trend, genetic variance tended to be stable across age groups, whereas individual specific environmental variance was significantly lower in adolescent women as compared to older women.
Collapse
|
27
|
Tropeano M, Wöber-Bingöl C, Karwautz A, Wagner G, Vassos E, Campos-de-Sousa S, Graggaber A, Zesch HE, Kienbacher C, Natriashvili S, Kanbur I, Wöber C, Collier DA. Association analysis of STX1A gene variants in common forms of migraine. Cephalalgia 2012; 32:203-12. [PMID: 22250207 DOI: 10.1177/0333102411433300] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
OBJECTIVES To examine the association of genetic variants in the syntaxin 1A gene (STX1A) with common forms of migraine, and perform a combined analysis of the data from the current study and previously published reports. METHODS We investigated the parent-to-offspring transmission of rs6951030, rs4363087 and rs2293489 in 191 family trios, each with a proband with childhood-onset migraine, and performed a case-control analysis between the probands and 223 unrelated controls. In addition, we performed a combined data analysis with an overall sample of 567 migraine patients and 720 unrelated controls and performed a migraine-specific gene-network analysis. RESULTS The transmission disequilibrium test revealed significant transmission distortion of rs4363087 in migraine overall (OR = 1.56, p = 0.006; p = 0.01 after correction for multiple testing) and migraine without aura (OR = 1.58, p = 0.01; corrected p = 0.04). Two-marker haplotype analysis revealed transmission distortion of A-G (rs6951030-rs4363087; OR = 1.47, p = 0.01) and A-C (rs4363087-rs2293489; OR = 0.66, p = 0.01). Combined analysis showed significant association of rs941298 with migraine overall (OR = 1.28, p = 0.004) and migraine without aura (OR = 1.3, p = 0.008). Network analysis identified 24 genes relating STX1A to other migraine candidate genes, including KCNK18 (TRESK channel) involved in the cytoplasmatic calcium signalling together with syntaxin 1A. CONCLUSION Our results provide support for the hypothesis that STX1A represents a susceptibility gene for migraine.
Collapse
Affiliation(s)
- Maria Tropeano
- Social, Genetic and Developmental Psychiatry Centre at the Institute of Psychiatry, King's College London, UK
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Christensen AF, Le H, Kirchmann M, Olesen J. Genotype-phenotype correlation in migraine without aura focusing on the rs1835740 variant on 8q22.1. J Headache Pain 2011; 13:21-7. [PMID: 21964821 PMCID: PMC3253151 DOI: 10.1007/s10194-011-0386-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Accepted: 09/02/2011] [Indexed: 11/27/2022] Open
Abstract
A large two-stage GWAS by Antilla et al. reported the minor allele of rs1835740 on 8q22.1 to be associated with common types of migraine. The objective of the present study was to determine the clinical correlate of the variant in migraine without aura (MO). Clinical data on 339 successfully genotyped MO patients (patients with attacks of migraine without aura and no attacks of migraine with aura) were obtained by an extensive validated semi-structured telephone interview performed by a physician or a trained senior medical student. Reliable, systematic and extensive data on symptoms, age of onset, attack frequencies and duration, relevant comorbidity, specific provoking factors including different hormonal factors in females, and effect and use of medication, both abortive and prophylactic, were thereby obtained. A comparison of carriers and non-carriers were performed. Comparison of homozygotes with heterozygotes was not performed as the number of homozygotes was too small for statistical purposes. Data from other MO populations in the GWAS by Antilla et al. were not included as phenotype and clinical data were obtained differently. While thousands of patients are needed to detect a genetic variant like rs1835740, 339 are sufficient to detect meaningful clinical differences. 136 of 339 patients were carriers of the variant, 15 were homozygous. Comparison of carriers with non-carriers showed no significant difference in any of the parameters studied. In conclusion, the rs1835740 variant has no significant influence on the clinical expression of MO.
Collapse
Affiliation(s)
- Anne Francke Christensen
- Department of Neurology, Danish Headache Center, University of Copenhagen, Glostrup University Hospital, Nordre Ringvej 57, Glostrup, 2600, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
29
|
van Oosterhout WPJ, Weller CM, Stam AH, Bakels F, Stijnen T, Ferrari MD, Terwindt GM. Validation of the web-based LUMINA questionnaire for recruiting large cohorts of migraineurs. Cephalalgia 2011; 31:1359-67. [DOI: 10.1177/0333102411418846] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective: To assess validity of a self-administered web-based migraine-questionnaire in diagnosing migraine aura for the use of epidemiological and genetic studies. Methods: Self-reported migraineurs enrolled via the LUMINA website and completed a web-based questionnaire on headache and aura symptoms, after fulfilling screening criteria. Diagnoses were calculated using an algorithm based on the International Classification of Headache Disorders (ICHD-2), and semi-structured telephone-interviews were performed for final diagnoses. Logistic regression generated a prediction rule for aura. Algorithm-based diagnoses and predicted diagnoses were subsequently compared to the interview-derived diagnoses. Results: In 1 year, we recruited 2397 migraineurs, of which 1067 were included in the validation. A seven-question subset provided higher sensitivity (86% vs. 45%), slightly lower specificity (75% vs. 95%), and similar positive predictive value (86% vs. 88%) in assessing aura when comparing with the ICHD-2-based algorithm. Conclusions: This questionnaire is accurate and reliable in diagnosing migraine aura among self-reported migraineurs and enables detection of more aura cases with low false-positive rate.
Collapse
Affiliation(s)
| | | | - AH Stam
- Leiden University, The Netherlands
| | - F Bakels
- Leiden University, The Netherlands
| | | | | | | |
Collapse
|
30
|
Colson N, Fernandez F, Griffiths L. Genetics of menstrual migraine: the molecular evidence. Curr Pain Headache Rep 2011; 14:389-95. [PMID: 20625856 DOI: 10.1007/s11916-010-0129-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Migraine is considered to be a multifactorial disorder in which genetic, environmental, and, in the case of menstrual and menstrually related migraine, hormonal events influence the phenotype. Certainly, the role of female sex hormones in migraine has been well established, yet the mechanism behind this well-known relationship remains unclear. This review focuses on the potential role of hormonally related genes in migraine, summarizes results of candidate gene studies to date, and discusses challenges and issues involved in interpreting hormone-related gene results. In light of the molecular evidence presented, we discuss future approaches for analysis with the view to elucidate the complex genetic architecture that underlies the disorder.
Collapse
Affiliation(s)
- Natalie Colson
- Genomics Research Centre, Griffith Health Institute, School of Medical Science, Griffith University, Gold Coast, Queensland, 4222, Australia
| | | | | |
Collapse
|
31
|
Identification of molecular genetic factors that influence migraine. Mol Genet Genomics 2011; 285:433-46. [DOI: 10.1007/s00438-011-0622-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Accepted: 04/08/2011] [Indexed: 01/04/2023]
|
32
|
Wöber-Bingöl C, Tropeano M, Karwautz A, Wagner G, Campos-de-Sousa S, Zesch HE, Kienbacher C, Natriashvili S, Kanbur I, Ray M, Wöber C, Collier DA. No association between bipolar disorder risk polymorphisms in ANK3 and CACNA1C and common migraine. Headache 2011; 51:796-803. [PMID: 21395576 DOI: 10.1111/j.1526-4610.2011.01858.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
BACKGROUND Migraine and bipolar disorder are characterized by a high level of co-morbidity, and a common familial-genetic basis has recently been hypothesized for the 2 disorders. Genome-wide association studies have reported strong evidence of association between the polymorphisms rs10994336[T] in the ANK3 gene and rs1006737[A] in the CACNA1C gene and risk of bipolar disorder. OBJECTIVE The aim of this study was to evaluate the hypothesis of a genetic linkage between migraine and bipolar disorder by investigating the familial transmission of the 2 bipolar disorder risk polymorphisms, in a sample of family trios with probands with childhood migraine, and unrelated controls. METHODS Our sample comprised 192 family trios, each with a proband with childhood migraine (137 migraine without aura, 44 migraine with aura) and 228 unrelated controls. The markers rs10994336 and rs1006737 were genotyped using a TaqMan single nucleotide polymorphism Genotyping Assay. The transmission disequilibrium test analysis for the family trios and the case-control analysis were performed using the program UNPHASED. RESULTS The allelic and genotypic transmission disequilibrium test analysis did not show any evidence of transmission distortion of the 2 markers in both migraine overall (rs10994336: OR = 1.61, P = .11; rs1006737: OR = 1.12, P = .49) and in the migraine without aura and migraine with aura subgroups. Likewise, the case-control analysis of alleles and genotypes frequencies did not show any evidence of association. CONCLUSION In the present study, we did not find evidence for association between the bipolar disorder risk polymorphisms rs10994336 in the ANK3 gene and rs1006737 in the CACNA1C gene in migraine. However, as these are variants that have a small effect on the risk of bipolar disorder (OR < 1.5), we cannot exclude a similar small effect on migraine susceptibility with the present sample size.
Collapse
Affiliation(s)
- Ciçek Wöber-Bingöl
- Headache Outpatient Centre, Department of Child and Adolescent Psychiatry, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
|
34
|
Abstract
BACKGROUND Chronic daily headache (CDH) and chronic migraine (CM) are one of the most frequent problems encountered in neurology, are often difficult to treat, and frequently complicated by medication-overuse headache (MOH). Proper recognition of MOH may alter treatment outcome and prevent long term disability. OBJECTIVE This study identifies the unique genomic expression pattern MOH that respond to cessation of the overused medication. METHODS Baseline occurrence of MOH and typical pattern of response to medication cessation were measured from a large database. Whole blood samples from patients with CM with or without MOH were obtained and their genomic profile was assessed. Affymetrix human U133 plus2 arrays were used to examine the genomic expression patterns prior to treatment and 6-12 weeks later. Headache characterisation and response to treatment based on headache frequency and disability were compared. RESULTS Of 1311 patients reporting daily or continuous headaches, 513 (39.1%) reported overusing analgesic medication. At follow-up, 44.5% had a 50% or greater reduction in headache frequency, while 41.6% had no change. Blood genomic expression patterns were obtained on 33 patients with 19 (57.6%) overusing analgesic medication with a unique genomic expression pattern in MOH that responded to cessation of analgesics. Gene ontology of these samples indicated a significant number were involved with brain and immunological tissues, including multiple signalling pathways and apoptosis. CONCLUSIONS Blood genomic patterns can accurately identify MOH patients that respond to medication cessation. These results suggest that MOH involves a unique molecular biology pathway that can be identified with a specific biomarker.
Collapse
|
35
|
Affiliation(s)
- Anne Joutel
- INSERM and Université Paris 7-Denis Diderot, France
| | | |
Collapse
|
36
|
Nilsson S, Edvinsson L, Malmberg B, Johansson B, Linde M. A relationship between migraine and biliary tract disorders: findings in two Swedish samples of elderly twins. Acta Neurol Scand 2010; 122:286-94. [PMID: 20047569 DOI: 10.1111/j.1600-0404.2009.01310.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVES To investigate whether there is a relationship between the clinical occurrence of migraine and biliary tract disorders (BTD) and to study whether there is a genetic influence on such an association. MATERIALS AND METHODS The near lifetime morbidity for migraine and BTD was examined in two Swedish twin-samples: OCTO-Twin (149 MZ and 202 DZ pairs; 234 men, 468 women; 80 years of age or older at inclusion), and the GENDER study (249 unlike-sex DZ-pairs; 70-80 years of age at inclusion). The diagnosis of BTD was established by perusal of medical records from the last twenty years. The diagnosis of migraine was based on iterated questionnaires and personal interviews. RESULTS The odds ratio (OR) of BTD among OCTO-Twin subjects suffering from migraine was 3.5 (1.9-6.7) in monozygotic pairs and 1.7 (1.0-2.9) in dizygotic pairs The corresponding figures among the GENDER unlike-sex DZ-pairs was 2.7 (1.6-4.5). Migraine was associated with female sex and waist circumference. CONCLUSIONS There is a relationship between the occurrence of migraine and BTD, also when controlling for the fact that both disorders are more frequent in women. The association appears to be partly attributable to genetic influences.
Collapse
Affiliation(s)
- S Nilsson
- Institute of Gerontology, Jönköping University, Jönköping, Sweden
| | | | | | | | | |
Collapse
|
37
|
Oedegaard KJ, Greenwood TA, Johansson S, Jacobsen KK, Halmoy A, Fasmer OB, Akiskal HS, Haavik J, Kelsoe JR. A genome-wide association study of bipolar disorder and comorbid migraine. GENES BRAIN AND BEHAVIOR 2010; 9:673-80. [PMID: 20528957 DOI: 10.1111/j.1601-183x.2010.00601.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Both migraine and bipolar affective disorder (BPAD) are complex phenotypes with significant genetic and nongenetic components. Epidemiological and clinical studies have showed a high degree of comorbidity between migraine and BPAD, and overlapping regions of linkage have been shown in numerous genome-wide linkage studies. To identify susceptibility factors for the BPAD/migraine phenotype, we conducted a genome-wide association study (GWAS) in 1001 cases with bipolar disorder collected through the NIMH Genetics Initiative for Bipolar Disorder and genotyped at 1 m single-nucleotide polymorphisms (SNPs) as part of the Genetic Association Information Network (GAIN). We compared BPAD patients without any headache (n = 699) with BPAD patients with doctor diagnosed migraine (n = 56). The strongest evidence for association was found for several SNPs in a 317-kb region encompassing the uncharacterized geneKIAA0564 {e.g. rs9566845 [OR = 4.98 (95% CI: 2.6-9.48), P = 7.7 × 10(-8)] and rs9566867 (P = 8.2 × 10(-8))}. Although the level of significance was significantly reduced when using the Fisher's exact test (as a result of the low count of cases with migraine), rs9566845 P = 1.4 × 10(-5) and rs9566867 P = 1.5 × 10(-5), this region remained the most prominent finding. Furthermore, marker rs9566845 was genotyped and found associated with migraine in an independent Norwegian sample of adult attention deficit hyperactivity disorder (ADHD) patients with and without comorbid migraine (n = 131 and n = 324, respectively), OR = 2.42 (1.18-4.97), P = 0.013. This is the first GWAS examining patients with bipolar disorder and comorbid migraine. These data suggest that genetic variants in the KIAA0564 gene region may predispose to migraine headaches in subgroups of patients with both BPAD and ADHD.
Collapse
Affiliation(s)
- K J Oedegaard
- Department of Psychiatry, University of California San Diego, La Jolla, CA, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Andreou AP, Summ O, Charbit AR, Romero-Reyes M, Goadsby PJ. Animal models of headache: from bedside to bench and back to bedside. Expert Rev Neurother 2010; 10:389-411. [PMID: 20187862 DOI: 10.1586/ern.10.16] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
In recent years bench-based studies have greatly enhanced our understanding of headache pathophysiology, while facilitating the development of new headache medicines. At present, established animal models of headache utilize activation of pain-producing cranial structures, which for a complex syndrome, such as migraine, leaves many dimensions of the syndrome unstudied. The focus on modeling the central nociceptive mechanisms and the complexity of sensory phenomena that accompany migraine may offer new approaches for the development of new therapeutics. Given the complexity of the primary headaches, multiple approaches and techniques need to be employed. As an example, recently a model for trigeminal autonomic cephalalgias has been tested successfully, while by contrast, a satisfactory model of tension-type headache has been elusive. Moreover, although useful in many regards, migraine models are yet to provide a more complete picture of the disorder.
Collapse
Affiliation(s)
- Anna P Andreou
- Headache Group - Department of Neurology, University of California, San Francisco, San Francisco, CA 94115, USA
| | | | | | | | | |
Collapse
|
39
|
Hauge AW, Hougaard A, Olesen J. On the methodology of drug trials in migraine with aura. Cephalalgia 2010; 30:1041-8. [PMID: 20713554 DOI: 10.1177/0333102409359091] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
INTRODUCTION Specific problems occur in clinical treatment trials for migraine with aura that differ from those encountered in treatment trials for migraine without aura. DISCUSSION Based on our experience with four such trials, we point to a number of possible solutions and outline areas for future inquiry. We make recommendations about subject selection; the choice, definition and assessment of outcome measures; optimal treatments in relation to aura and headache; and we provide samples of study report forms used to record occurrence of aura and headache in this population.
Collapse
Affiliation(s)
- Anne Werner Hauge
- Danish Headache Center, Department of Neurology, University of Copenhagen, Faculty of Health Sciences, Glostrup Hospital, Glostrup, Denmark.
| | | | | |
Collapse
|
40
|
Wieser T, Pascual J, Oterino A, Soso M, Barmada M, Gardner KL. A Novel Locus for Familial Migraine on Xp22. Headache 2010; 50:955-62. [DOI: 10.1111/j.1526-4610.2010.01673.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
41
|
Hershey AD. Current approaches to the diagnosis and management of paediatric migraine. Lancet Neurol 2010; 9:190-204. [DOI: 10.1016/s1474-4422(09)70303-5] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
42
|
Abstract
There are several ways in which stress may interact with migraine in those predisposed to migraine attacks. These interactions may result from biochemical changes related to the physiological stress response, as, for example, the release of corticotrophin releasing hormone, or from changes induced by the psychological response to stressors. Stress is the factor listed most often by migraine sufferers as a trigger for their attacks, but in addition there is evidence that stress can help initiate migraine in those predisposed to the disorder, and may also contribute to migraine chronification. Migraine attacks themselves can act as a stressor, thereby potentially leading to a vicious circle of increasing migraine frequency. Since the important factor in the stress-migraine interaction is likely the individual's responses to stressors, rather than the stressors themselves, the acquisition of effective stress management skills has the potential to reduce the impact of stressors on those with migraine.
Collapse
Affiliation(s)
- Khara M Sauro
- University of Calgary and Alberta Health Services, Calgary, AB, Canada
| | | |
Collapse
|
43
|
Abstract
Migraine is a complex neurological disorder that in recent years has received more and more attention. Knowledge regarding this primary headache has increased substantially, both with respect to its pathogenesis and how to effectively treat its symptoms. Over the years, the proposed location of the onset of migraine has moved from the periphery of the nervous system toward deeper parts of the brain. Migraine can be viewed as an inherited failure of trigeminal sensory processing with abnormal neuronal excitability in the trigeminal nucleus caudalis, which, in turn, causes central sensitization and amplification of the pain. Increased activation of the trigeminal nerve during a migraine attack causes release of the calcitonin gene-related peptide (CGRP) inside and outside the BBB. Within the CNS, CGRP promotes trigeminal sensory input and facilitates central sensitization. The future introduction of CGRP antagonists in clinical practice could represent significant progress for acute migraine therapy.
Collapse
Affiliation(s)
- Carl Dahlöf
- Professor of Neurology, Institute of Neuroscience & Physiology, Sahlgrenska University Hospital, Medical Director & Founder of Gothenburg Migraine Clinic, Gothenburg Migraine Clinic, c/o Läkarhuset, Södra vägen 27, S-411 35 Gothenburg, Sweden
| | - Hans-Christoph Diener
- Professor of Neurology, Department of Neurology, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
44
|
de Vries B, Frants RR, Ferrari MD, van den Maagdenberg AMJM. Molecular genetics of migraine. Hum Genet 2009; 126:115-32. [PMID: 19455354 DOI: 10.1007/s00439-009-0684-z] [Citation(s) in RCA: 198] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2009] [Accepted: 05/07/2009] [Indexed: 12/11/2022]
Abstract
Migraine is an episodic neurovascular disorder that is clinically divided into two main subtypes that are based on the absence or presence of an aura: migraine without aura (MO) and migraine with aura (MA). Current molecular genetic insight into the pathophysiology of migraine predominantly comes from studies of a rare monogenic subtype of migraine with aura called familial hemiplegic migraine (FHM). Three FHM genes have been identified, which all encode ion transporters, suggesting that disturbances in ion and neurotransmitter balances in the brain are responsible for this migraine type, and possibly the common forms of migraine. Cellular and animal models expressing FHM mutations hint toward neuronal hyperexcitability as the likely underlying disease mechanism. Additional molecular insight into the pathophysiology of migraine may come from other monogenic syndromes (for instance cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy, which is caused by NOTCH3 mutations), in which migraine is prominent. Investigating patients with common forms of migraine has had limited successes. Except for 5',10'-methylenetetrahydrolate reductase, an enzyme in folate metabolism, the large majority of reported genetic associations with candidate migraine genes have not been convincingly replicated. Genetic linkage studies using migraine subtypes as an end diagnosis did not yield gene variants thus far. Clinical heterogeneity in migraine diagnosis may have hampered the identification of such variants. Therefore, the recent introduction of more refined methods of phenotyping, such as latent-class analysis and trait component analysis, may be certainly helpful. Combining the new phenotyping methods with genome-wide association studies may be a successful strategy toward identification of migraine susceptibility genes. Likely the identification of reliable biomarkers for migraine diagnosing will make these efforts even more successful.
Collapse
Affiliation(s)
- Boukje de Vries
- Department of Human Genetics, Leiden University Medical Centre, PO Box 9600, 2300 RC Leiden, The Netherlands
| | | | | | | |
Collapse
|
45
|
Nyholt DR, Gillespie NG, Merikangas KR, Treloar SA, Martin NG, Montgomery GW. Common genetic influences underlie comorbidity of migraine and endometriosis. Genet Epidemiol 2009; 33:105-13. [PMID: 18636479 DOI: 10.1002/gepi.20361] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We examined the co-occurrence of migraine and endometriosis within the largest known collection of families containing multiple women with surgically confirmed endometriosis and in an independent sample of 815 monozygotic and 457 dizygotic female twin pairs. Within the endometriosis families, a significantly increased risk of migrainous headache was observed in women with endometriosis compared to women without endometriosis (odds ratio [OR] 1.57, 95% confidence interval [CI]: 1.12-2.21, P=0.009). Bivariate heritability analyses indicated no evidence for common environmental factors influencing either migraine or endometriosis but significant genetic components for both traits, with heritability estimates of 69 and 49%, respectively. Importantly, a significant additive genetic correlation (r(G) = 0.27, 95% CI: 0.06-0.47) and bivariate heritability (h(2)=0.17, 95% CI: 0.08-0.27) was observed between migraine and endometriosis. Controlling for the personality trait neuroticism made little impact on this association. These results confirm the previously reported comorbidity between migraine and endometriosis and indicate common genetic influences completely explain their co-occurrence within individuals. Given pharmacological treatments for endometriosis typically target hormonal pathways and a number of findings provide support for a relationship between hormonal variations and migraine, hormone-related genes and pathways are highly plausible candidates for both migraine and endometriosis. Therefore, taking into account the status of both migraine and endometriosis may provide a novel opportunity to identify the genes underlying them. Finally, we propose that the analysis of such genetically correlated comorbid traits can increase power to detect genetic risk loci through the use of more specific, homogenous and heritable phenotypes.
Collapse
Affiliation(s)
- Dale R Nyholt
- Genetic Epidemiology Laboratory, Queensland Institute of Medical Research, QLD, Australia.
| | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Sherin C, Francesca F, Karl P, Brendan T, Ron H, Lyn G. Investigation between the S377G3 GATA-4 polymorphism and migraine. Open Neurol J 2008; 2:35-8. [PMID: 19018306 PMCID: PMC2577932 DOI: 10.2174/1874205x00802010035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2008] [Revised: 04/09/2008] [Accepted: 06/11/2008] [Indexed: 12/28/2022] Open
Abstract
Migraine is a common and painful neurological disorder, with genetic and environmental components. Several conditions have been shown to be comorbid with migraine, notably a cardiac malformation affecting the interatrial septum and leading to patent foramen ovale (PFO). Mutations in the development regulatory gene GATA-4, located on human chromosome 8p23.1-p22, have been found to be responsible for some cases of congenital heart defects including PFO. To determine whether the GATA-4 gene is involved in migraine, the present study performed an association analysis of a common GATA-4 variant that results in a change of amino acid (S377G), in a large case/control population (275 unrelated Caucasian migraineurs versus 275 control individuals). The results showed that there was no significant association for this polymorphism between migraine and controls (chi(2) = 0.84, P = 0.66). Thus it appears that the GATA-4 (S377G) mutation does not play a significant role in common migraine susceptibility.
Collapse
Affiliation(s)
- Chikhani Sherin
- Genomics Research Centre, Griffith University, Gold Coast, Queensland, Australia
| | - Fernandez Francesca
- Genomics Research Centre, Griffith University, Gold Coast, Queensland, Australia
| | - Poetter Karl
- Genera Biosystems Pty Ltd, Bundoora, Victoria, Australia
| | - Toohey Brendan
- Genera Biosystems Pty Ltd, Bundoora, Victoria, Australia
| | - Harvey Ron
- The Victor Cardiac Research Institute, St. Vincents Hospital, Darlinghurst, Australia
| | - Griffiths Lyn
- Genomics Research Centre, Griffith University, Gold Coast, Queensland, Australia
| |
Collapse
|
48
|
Is migraine a genetic illness? The various forms of migraine share a common genetic cause. Neurol Sci 2008; 29 Suppl 1:S52-4. [DOI: 10.1007/s10072-008-0887-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Russell MB. European principles of management of common headache disorders in primary care. J Headache Pain 2008; 8 Suppl 1:S3-47. [PMID: 17497260 PMCID: PMC2795154 DOI: 10.1007/s10194-007-0366-y] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2006] [Accepted: 01/29/2007] [Indexed: 10/27/2022] Open
Abstract
The objective of this study was to investigate the importance of genetics in tension-type headache. A MEDLINE search from 1966 to December 2006 was performed for "tension-type headache and prevalence" and "tension-type headache and genetics". The prevalence of tension-type headache varies from 11 to 93%, with a slight female preponderance. Co-occurrence of migraine increases the frequency of tension-type headache. A family study of chronic tension-type headache suggests that genetic factors are important. A twin study analysing tension-type headache in migraineurs found that genetic factors play a minor role in episodic tension-type headache. Another twin study analysing twin pairs without co-occurrence of migraine showed a significantly higher concordance rate among monozygotic than same-gender dizygotic twin pairs with no or frequent episodic tension-type headache, while the difference was minor in twin pairs with infrequent episodic tension-type headache. Frequent episodic and chronic tension-type headache is caused by a combination of genetic and environmental factors, while infrequent episodic tension-type headache is caused primarily by environmental factors.
Collapse
Affiliation(s)
- Michael Bjørn Russell
- Head and Neck Research Group, Akershus University Hospital, Dr. Kobros vei 39, 1474, Nordbyhagen, Oslo, Norway.
| |
Collapse
|
50
|
Abstract
OBJECTIVE To evaluate the association between migraine, episodic vertigo, and Ménière's disease in families. STUDY DESIGN Clinical report. SETTING University Neurotology Clinic. PATIENTS Index patients identified with Ménière's disease and migraine and their family members. INTERVENTION Structured interview to assess a diagnosis of migraine, episodic vertigo, and Ménière's disease in 6 families. Genotyping was performed on 3 sets of twins to analyze monozygosity or dizygosity. MAIN OUTCOME MEASURES Clinical history of migraine, episodic vertigo, and Ménière's disease. RESULTS Six index patients and 57 family members were interviewed either by a senior neurologist in person or over the phone by a trained study coordinator. An additional 6 family members completed questionnaires by mail. All 6 index patients had Ménière's disease and migraine. Twenty-six (41%) of the 63 relatives met International Classification of Headache Disorders II criteria for migraine headaches. Thirteen (50%) of these 26 experienced migraine with aura. Three others experienced typical aura without headache. Seventeen (27%) of 63 family members experienced recurrent spells of spontaneous episodic vertigo. There was one twin pair in each of 3 families; 2 pairs were monozygotic and one was dizygotic. In each twin pair, one twin had migraine and Ménière's disease, whereas the other experienced migraine and episodic vertigo without auditory symptoms. CONCLUSION The frequent association of episodic vertigo, migraine, and Ménière's disease in closely related individuals, including identical twins supports the heritability of a migraine-Ménière's syndrome, with variable expression of the individual features of hearing loss, episodic vertigo, and migraine headaches.
Collapse
Affiliation(s)
- Yoon-Hee Cha
- Department of Neurology, University of California-Los Angeles, Los Angeles, California 90095, USA.
| | | | | |
Collapse
|