1
|
Guo Z, Lin JP, Simeone O, Mills KR, Cvetkovic Z, McClelland VM. Cross-frequency cortex-muscle interactions are abnormal in young people with dystonia. Brain Commun 2024; 6:fcae061. [PMID: 38487552 PMCID: PMC10939448 DOI: 10.1093/braincomms/fcae061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 01/10/2024] [Accepted: 02/23/2024] [Indexed: 03/17/2024] Open
Abstract
Sensory processing and sensorimotor integration are abnormal in dystonia, including impaired modulation of beta-corticomuscular coherence. However, cortex-muscle interactions in either direction are rarely described, with reports limited predominantly to investigation of linear coupling, using corticomuscular coherence or Granger causality. Information-theoretic tools such as transfer entropy detect both linear and non-linear interactions between processes. This observational case-control study applies transfer entropy to determine intra- and cross-frequency cortex-muscle coupling in young people with dystonia/dystonic cerebral palsy. Fifteen children with dystonia/dystonic cerebral palsy and 13 controls, aged 12-18 years, performed a grasp task with their dominant hand. Mechanical perturbations were provided by an electromechanical tapper. Bipolar scalp EEG over contralateral sensorimotor cortex and surface EMG over first dorsal interosseous were recorded. Multi-scale wavelet transfer entropy was applied to decompose signals into functional frequency bands of oscillatory activity and to quantify intra- and cross-frequency coupling between brain and muscle. Statistical significance against the null hypothesis of zero transfer entropy was established, setting individual 95% confidence thresholds. The proportion of individuals in each group showing significant transfer entropy for each frequency combination/direction was compared using Fisher's exact test, correcting for multiple comparisons. Intra-frequency transfer entropy was detected in all participants bidirectionally in the beta (16-32 Hz) range and in most participants from EEG to EMG in the alpha (8-16 Hz) range. Cross-frequency transfer entropy across multiple frequency bands was largely similar between groups, but a specific coupling from low-frequency EMG to beta EEG was significantly reduced in dystonia [P = 0.0061 (corrected)]. The demonstration of bidirectional cortex-muscle communication in dystonia emphasizes the value of transfer entropy for exploring neural communications in neurological disorders. The novel finding of diminished coupling from low-frequency EMG to beta EEG in dystonia suggests impaired cortical feedback of proprioceptive information with a specific frequency signature that could be relevant to the origin of the excessive low-frequency drive to muscle.
Collapse
Affiliation(s)
- Zhenghao Guo
- Department of Engineering, King's College London, London WC2R 2LS, UK
- School of Biomedical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Jean-Pierre Lin
- Children's Neuroscience, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust (GSTT), London SE1 7EH, UK
| | - Osvaldo Simeone
- Department of Engineering, King's College London, London WC2R 2LS, UK
| | - Kerry R Mills
- Department of Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London SE5 9RX, UK
| | - Zoran Cvetkovic
- Department of Engineering, King's College London, London WC2R 2LS, UK
| | - Verity M McClelland
- Children's Neuroscience, Evelina London Children's Hospital, Guy's & St Thomas' NHS Foundation Trust (GSTT), London SE1 7EH, UK
- Department of Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King's College London, London SE5 9RX, UK
| |
Collapse
|
2
|
Kaňovský P, Rosales R, Otruba P, Nevrlý M, Hvizdošová L, Opavský R, Kaiserová M, Hok P, Menšíková K, Hluštík P, Bareš M. Contemporary clinical neurophysiology applications in dystonia. J Neural Transm (Vienna) 2021; 128:509-519. [PMID: 33591454 DOI: 10.1007/s00702-021-02310-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/18/2021] [Indexed: 12/25/2022]
Abstract
The complex phenomenological understanding of dystonia has transcended from the clinics to genetics, imaging and neurophysiology. One way in which electrophysiology will impact into the clinics are cases wherein a dystonic clinical presentation may not be typical or a "forme fruste" of the disorder. Indeed, the physiological imprints of dystonia are present regardless of its clinical manifestation. Underpinnings in the understanding of dystonia span from the peripheral, segmental and suprasegmental levels to the cortex, and various electrophysiological tests have been applied in the course of time to elucidate the origin of dystonia pathophysiology. While loss of inhibition remains to be the key finding in this regard, intricacies and variabilities exist, thus leading to a notion that perhaps dystonia should best be gleaned as network disorder. Interestingly, the complex process has now spanned towards the understanding in terms of networks related to the cerebellar circuitry and the neuroplasticity. What is evolving towards a better and cohesive view will be neurophysiology attributes combined with structural dynamic imaging. Such a sound approach will significantly lead to better therapeutic modalities in the future.
Collapse
Affiliation(s)
- Petr Kaňovský
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic.
| | - Raymond Rosales
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic.,Department of Neurology and Psychiatry, The Neuroscience Institute, University of Santo Tomás Hospital, Manila, Philippines
| | - Pavel Otruba
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Martin Nevrlý
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Lenka Hvizdošová
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Robert Opavský
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Michaela Kaiserová
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Pavel Hok
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Kateřina Menšíková
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Petr Hluštík
- Department of Neurology, Faculty of Medicine and Dentistry, University Hospital, Palacky University, I. P. Pavlova 6, 775 20, Olomouc, Czech Republic
| | - Martin Bareš
- 1st Department of Neurology, Masaryk University Medical School and St. Anne University Hospital, Brno, Czech Republic
| |
Collapse
|
3
|
Avanzino L, Tinazzi M, Ionta S, Fiorio M. Sensory-motor integration in focal dystonia. Neuropsychologia 2015; 79:288-300. [PMID: 26164472 DOI: 10.1016/j.neuropsychologia.2015.07.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 06/04/2015] [Accepted: 07/07/2015] [Indexed: 01/24/2023]
Abstract
Traditional definitions of focal dystonia point to its motor component, mainly affecting planning and execution of voluntary movements. However, focal dystonia is tightly linked also to sensory dysfunction. Accurate motor control requires an optimal processing of afferent inputs from different sensory systems, in particular visual and somatosensory (e.g., touch and proprioception). Several experimental studies indicate that sensory-motor integration - the process through which sensory information is used to plan, execute, and monitor movements - is impaired in focal dystonia. The neural degenerations associated with these alterations affect not only the basal ganglia-thalamic-frontal cortex loop, but also the parietal cortex and cerebellum. The present review outlines the experimental studies describing impaired sensory-motor integration in focal dystonia, establishes their relationship with changes in specific neural mechanisms, and provides new insight towards the implementation of novel intervention protocols. Based on the reviewed state-of-the-art evidence, the theoretical framework summarized in the present article will not only result in a better understanding of the pathophysiology of dystonia, but it will also lead to the development of new rehabilitation strategies.
Collapse
Affiliation(s)
- Laura Avanzino
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, 16132 genoa, Italy
| | - Michele Tinazzi
- Department of Neurological and Movement Sciences, University of Verona, 37131 Verona, Italy
| | - Silvio Ionta
- Laboratory for Investigative Neurophysiology, Department of Radiology and Department of Clinical Neurosciences, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Mirta Fiorio
- Department of Neurological and Movement Sciences, University of Verona, 37131 Verona, Italy.
| |
Collapse
|
4
|
Perruchoud D, Murray MM, Lefebvre J, Ionta S. Focal dystonia and the Sensory-Motor Integrative Loop for Enacting (SMILE). Front Hum Neurosci 2014; 8:458. [PMID: 24999327 PMCID: PMC4064702 DOI: 10.3389/fnhum.2014.00458] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/04/2014] [Indexed: 12/12/2022] Open
Abstract
Performing accurate movements requires preparation, execution, and monitoring mechanisms. The first two are coded by the motor system, the latter by the sensory system. To provide an adaptive neural basis to overt behaviors, motor and sensory information has to be properly integrated in a reciprocal feedback loop. Abnormalities in this sensory-motor loop are involved in movement disorders such as focal dystonia, a hyperkinetic alteration affecting only a specific body part and characterized by sensory and motor deficits in the absence of basic motor impairments. Despite the fundamental impact of sensory-motor integration mechanisms on daily life, the general principles of healthy and pathological anatomic–functional organization of sensory-motor integration remain to be clarified. Based on the available data from experimental psychology, neurophysiology, and neuroimaging, we propose a bio-computational model of sensory-motor integration: the Sensory-Motor Integrative Loop for Enacting (SMILE). Aiming at direct therapeutic implementations and with the final target of implementing novel intervention protocols for motor rehabilitation, our main goal is to provide the information necessary for further validating the SMILE model. By translating neuroscientific hypotheses into empirical investigations and clinically relevant questions, the prediction based on the SMILE model can be further extended to other pathological conditions characterized by impaired sensory-motor integration.
Collapse
Affiliation(s)
- David Perruchoud
- Laboratory for Investigative Neurophysiology, Department of Radiology and Department of Clinical Neurosciences, University Hospital Center and University of Lausanne Lausanne, Switzerland
| | - Micah M Murray
- Laboratory for Investigative Neurophysiology, Department of Radiology and Department of Clinical Neurosciences, University Hospital Center and University of Lausanne Lausanne, Switzerland ; The Electroencephalography Brain Mapping Core, Center for Biomedical Imaging Lausanne, Switzerland
| | - Jeremie Lefebvre
- Laboratory for Investigative Neurophysiology, Department of Radiology and Department of Clinical Neurosciences, University Hospital Center and University of Lausanne Lausanne, Switzerland
| | - Silvio Ionta
- Laboratory for Investigative Neurophysiology, Department of Radiology and Department of Clinical Neurosciences, University Hospital Center and University of Lausanne Lausanne, Switzerland
| |
Collapse
|
5
|
Kaňovský P, Rosales RL. Debunking the pathophysiological puzzle of dystonia--with special reference to botulinum toxin therapy. Parkinsonism Relat Disord 2012; 17 Suppl 1:S11-4. [PMID: 21999889 DOI: 10.1016/j.parkreldis.2011.06.018] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New neurophysiological insights into the natural behaviour of dystonia, obtained during the successful botulinum toxin A (BoNT) treatment of the disorder, have urged the inclusion of sensory (and particularly somatosensory) mechanisms into the pathophysiological background of dystonia. Muscle spindles play a pivotal role in the generation of dystonic movements. Abnormal behaviour in the muscle spindles that generates an irregular proprioceptive input via the group-IA afferents may result in abnormal cortical excitability and intracortical inhibition in dystonia. The aim of this article is to support our hypothesis that dystonic movement is at the end of an impaired function of somatosensory pathways and analysers, which, in turn, may be hinged on the abnormality of sensorimotor integration, that is, brain plasticity. BoNT treatment can potentially modulate this plasticity mechanism and is probably the seminal cause of the sustained effect of the subsequent BoNT-treatment sessions and the long-term alleviation of symptoms of dystonia.
Collapse
Affiliation(s)
- Petr Kaňovský
- Department of Neurology, Palacky University Medical School, Olomouc, Czech Republic
| | | |
Collapse
|
6
|
Nociti V, Loria G, Soleti F, Bentivoglio AR, Tartaglione T, Tonali P, Batocchi AP. The left parietal lobe plays a role in the pathogenesis of blepharospasm? Eur J Neurol 2011; 18:e66-7. [PMID: 21244581 DOI: 10.1111/j.1468-1331.2010.03319.x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Pickett A, Rosales RL. New Trends in the Science of Botulinum Toxin-A as Applied in Dystonia. Int J Neurosci 2011; 121 Suppl 1:22-34. [DOI: 10.3109/00207454.2010.539306] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
8
|
Tinazzi M, Squintani G, Berardelli A. Does neurophysiological testing provide the information we need to improve the clinical management of primary dystonia? Clin Neurophysiol 2009; 120:1424-32. [DOI: 10.1016/j.clinph.2009.06.015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2008] [Revised: 05/20/2009] [Accepted: 06/20/2009] [Indexed: 11/17/2022]
|
9
|
Borich M, Arora S, Kimberley TJ. Lasting effects of repeated rTMS application in focal hand dystonia. Restor Neurol Neurosci 2009; 27:55-65. [PMID: 19164853 DOI: 10.3233/rnn-2009-0461] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE Focal hand dystonia (FHD) is a rare but potentially devastating disorder involving involuntary muscle spasms and abnormal posturing that impairs functional hand use. Increased cortical excitability and lack of inhibitory mechanisms have been associated with these symptoms. This study investigated the short- and long-term effects of repeated administrations of repetitive-transcranial magnetic stimulation (rTMS) on cortical excitability and handwriting performance. METHODS Six subjects with FHD and nine healthy controls were studied. All subjects with FHD received rTMS (1Hz) to the premotor cortex (PMC) for five consecutive days; of those, three subjects received five days of sham rTMS completed ten days prior to real treatment. Healthy subjects received one real rTMS session. Cortical silent period (CSP) and measures of handwriting performance were compared before and after treatment and at ten-day post-treatment follow-up. RESULTS At baseline, significant differences in CSP and pen pressure were observed between subjects with FHD and healthy controls. Differences in CSP and pen velocity between subjects in real and sham rTMS groups were observed across treatment sessions and maintained at follow-up. CONCLUSIONS After five days of rTMS to PMC, reduced cortical excitability and improved handwriting performance were observed and maintained at least ten days following treatment in subjects with FHD. These preliminary results support further investigation of the therapeutic potential of rTMS in FHD.
Collapse
Affiliation(s)
- Michael Borich
- Department of Physical Medicine and Rehabilitation Program in Physical Therapy/Rehabilitation Science, University of Minnesota, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
10
|
Affiliation(s)
- Maxwell W Steel
- Department of Orthopaedic Surgery, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA.
| |
Collapse
|
11
|
Mauguière F, Fischer C, André-Obadia N. Potenziali evocati in neurologia: risposte patologiche e indicazioni. Neurologia 2007. [DOI: 10.1016/s1634-7072(07)70547-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
12
|
Ali SO, Thomassen M, Schulz GM, Hosey LA, Varga M, Ludlow CL, Braun AR. Alterations in CNS activity induced by botulinum toxin treatment in spasmodic dysphonia: an H215O PET study. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2006; 49:1127-46. [PMID: 17077220 DOI: 10.1044/1092-4388(2006/081)] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Speech-related changes in regional cerebral blood flow (rCBF) were measured using H(2)(15)O positron-emission tomography in 9 adults with adductor spasmodic dysphonia (ADSD) before and after botulinum toxin (BTX) injection and 10 age- and gender-matched volunteers without neurological disorders. Scans were acquired at rest and during production of continuous narrative speech and whispered speech. Speech was recorded during scan acquisition for offline quantification of voice breaks, pitch breaks, and percentage aperiodicity to assess correlations between treatment-related changes in rCBF and clinical improvement. Results demonstrated that speech-related responses in heteromodal sensory areas were significantly reduced in persons with ADSD, compared with volunteers, before the administration of BTX. Three to 4 weeks after BTX injection, speech-related responses were significantly augmented in these regions and in left hemisphere motor areas commonly associated with oral-laryngeal motor control. This pattern of responses was most strongly correlated with the objective measures of clinical improvement (decreases in the frequency of voice breaks, pitch breaks, and percentage aperiodicity). These data suggest a pathophysiological model for ADSD in which BTX treatment results in more efficient cortical processing of sensory information, making this information available to motor areas that use it to more effectively regulate laryngeal movements.
Collapse
Affiliation(s)
- S Omar Ali
- Language Section, Voice, Speech and Language Branch, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Building 10, Room 8S235A, 10 Center Drive, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Etgen T, Mühlau M, Gaser C, Sander D. Bilateral grey-matter increase in the putamen in primary blepharospasm. J Neurol Neurosurg Psychiatry 2006; 77:1017-20. [PMID: 16690695 PMCID: PMC2077759 DOI: 10.1136/jnnp.2005.087148] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Primary blepharospasm is a focal dystonia characterised by excessive involuntary closure of the eyelids. The pathophysiology of primary blepharospasm is unresolved. AIM To pinpoint grey-matter changes that are associated with primary blepharospasm. METHODS 16 right-handed patients with primary blepharospasm (mean age 67.4 (SD 4.3) years; 12 women) were compared with 16 healthy volunteers matched for sex and age. High-resolution T1-weighted magnetic resonance imaging of each participant was obtained and analysed by voxel-based morphometry, a method to detect regionally specific differences in grey matter between patients and control group. To evaluate whether the identified grey-matter changes were correlated with the duration of primary blepharospasm or botulinum neurotoxin treatment (BoNT), separate regression analyses were carried out. RESULTS In patients with primary blepharospasm, grey-matter increase in the putamina was observed, whereas regression analyses did not indicate a correlation between grey-matter increases and the duration of primary blepharospasm or BoNT. Grey-matter decrease was detected in the left inferior parietal lobule; here regression analyses of grey-matter decrease showed a significant (p = 0.013) correlation of grey-matter decrease with the duration of BoNT. CONCLUSIONS The data suggest structural changes in primary blepharospasm and point to a crucial role of the putamen for the pathophysiology of this focal dystonia.
Collapse
Affiliation(s)
- T Etgen
- Department of Neurology, Technische Universität München, München, Germany.
| | | | | | | |
Collapse
|
14
|
Bhidayasiri R, Bronstein JM. Improvement of cervical dystonia: possible role of transcranial magnetic stimulation simulating sensory tricks effect. Med Hypotheses 2005; 64:941-5. [PMID: 15780489 DOI: 10.1016/j.mehy.2004.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2004] [Accepted: 11/09/2004] [Indexed: 11/22/2022]
Abstract
Idiopathic cervical dystonia (ICD) is the most common form of focal dystonia. A characteristic and unique diagnostic feature is the presence of "sensory tricks", for example, a finger placed on the chin to neutralize the spasm. Although approximately 70% of patients with ICD experience effective sensory tricks, the exact mechanism of these tricks is still unknown. However, recent evidence suggests that higher sensorimotor integration processes are involved. A study using H2(15)O positron emission tomography demonstrated that the application of sensory trick stimulus, resulting in a near-neutral head position, led to an increased activation mainly of the superior and inferior parietal lobules (ipsilateral to head turn) and bilateral occipital cortex and to a decreased activity of the supplementary motor area and the primary sensorimotor cortex (contralateral to head turn). Since transcranial magnetic stimulation (TMS) is an experimental device with the ability to excite or depress the neural circuits, we hypothesize that the use of TMS of specific parameters to specific brain areas (as above) may produce an effect similar to sensory tricks resulting in the relief of spasms and the improvement of cervical dystonia.
Collapse
Affiliation(s)
- Roongroj Bhidayasiri
- Department of Neurology, UCLA Medical Center, Geffen School of Medicine at UCLA and Parkinson's Disease Research, Education and Clinical Center (PADRECC) of West Los Angeles Veterans Affairs Medical Center, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
15
|
Abstract
A patient presented at the age of 50 years with a right-sided, writing-specific dystonia which settled without treatment. Ten years later she developed focal seizures affecting the right leg and occasionally spreading to the right arm. A left parietal meningioma was removed and 2 years later she developed dystonic movements of her right hand. Gliotic changes were seen on magnetic resonance imaging in the superficial left parietal lobe. Mechanisms involved in the generation of dystonia associated with cortical injury are discussed.
Collapse
Affiliation(s)
- Aijaz A Khan
- Department of Neurology, Greater Manchester Neuroscience Centre, Hope Hospital, Salford, United Kingdom
| | | |
Collapse
|
16
|
Abstract
Surgical treatments for dystonia have been available since the early 20th century, but have improved in their efficacy to adversity ratio through a combination of technologic advances and better understanding of the role of the basal ganglia in dystonia. The word "dystonia" describes a phenotype of involuntary movement that may manifest from a variety of conditions. Dystonia may affect only certain regions of the body or may be generalized. It appears to be critical to determine whether the etiology underlying the dystonia is "primary" (ie, occurring from a genetic or idiopathic origin) or "secondary" (ie, occurring as a result of structural, metabolic, or neurodegenerative disorders). Secondary dystonias are far more common than primary dystonias. Primary dystonias respond well to pallidotomy or deep brain stimulation of the internal segment of the globus pallidum, whereas secondary dystonias appear to respond partially at best. Limited historic and current data suggest that the thalamus may be a promising target for the treatment of secondary dystonias, but more careful, prospective, randomized studies are needed. Combinations of bilateral targets are possible with the current technology of DBS, but not widely used due to surgical morbidity and expense. This article reviews the surgical treatment of dystonia from past to present, with a focus on separating the outcomes for primary versus secondary and generalized versus cervical dystonia.
Collapse
Affiliation(s)
- Helen Bronte-Stewart
- Stanford University Medical Center, 300 Pasteur Drive, Room A-343, Stanford, CA 94305-5235, USA.
| |
Collapse
|
17
|
Abstract
The pathophysiology of dystonia is still not fully understood, but it is widely held that a dysfunction of the corticostriatal-thalamocortical motor circuits plays a major role in the pathophysiology of this syndrome. Although the most dramatic symptoms in dystonia seem to be motor in nature, marked somatosensory perceptual deficits are also present in this disease. In addition, several lines of evidence, including neurophysiological, neuroimaging and experimental findings, suggest that both motor and somatosensory functions may be defective in dystonia. Consequently, abnormal processing of the somatosensory input in the central nervous system may lead to inefficient sensorimotor integration, thus contributing substantially to the generation of dystonic movements. Whether somatosensory abnormalities are capable of triggering dystonia is an issue warranting further study. Although it seems unlikely that abnormal somatosensory input is the only drive to dystonia, it might be more correlated to the development of focal hand than generalized dystonia because local somesthetic factors are more selectively involved in the former than in the latter where, instead it seems to be a widespread deficit in processing sensory stimuli of different modality. Because basal ganglia and motor areas are heavily connected not only with somatosensory areas, but also with visual and acoustic areas, it is possible that abnormalities of other sensory modalities, such as visual and acoustic, may also be implicated in the pathophysiology of more severe forms of primary dystonia. Further studies have to be addressed to the assessment of the role of sensory modalities and their interaction on the pathophysiology of different forms of primary dystonia.
Collapse
Affiliation(s)
- Michele Tinazzi
- Dipartimento di Scienze Neurologiche e della Visione, Sezione di Neurologia Riabilitativa, Verona, Italy.
| | | | | |
Collapse
|
18
|
Abstract
For some time, dystonia has been seen as purely a motor disorder. Relatively novel concepts published approximately 10 years ago also presumed that in the development of dystonic dyskinesias, only motor behaviour was abnormal. Neurophysiological observations of various types of dystonic disorders, which were performed using sophisticated electromyography, polymyography, H-reflex examination, long-latency reflex, etc., as well as new insights into the behaviour of dystonia, have urged the inclusion of sensory (particularly somatosensory) mechanisms into the pathophysiological background of dystonia. The major role has been considered to be played by abnormal proprioceptive input by means of the Ia proprioceptive afferents, with the source of this abnormality found in the abnormal processing of muscle spindle afferent information. However, neurophysiological investigations have also provided evidence that the abnormality in the central nervous system is located not only at the spinal and subcortical level, but also at the cortical level; specifically, the cortical excitability and intracortical inhibition have been revealed as abnormal. This evidence was revealed by SEP recordings, paired transcranial magnetic stimulation recordings, and BP and CNV recordings. The current concept of dystonic movement connects the abnormal function of somatosensory pathways and somatosensory analysers with the dystonic performance of motor action, which is based on the abnormality of sensorimotor integration.
Collapse
Affiliation(s)
- Petr Kanovský
- First Department of Neurology, Masaryk University, St. Anne Hospital, Brno, Czech Republic.
| |
Collapse
|
19
|
Tinazzi M, Fiaschi A, Frasson E, Fiorio M, Cortese F, Aglioti SM. Deficits of temporal discrimination in dystonia are independent from the spatial distance between the loci of tactile stimulation. Mov Disord 2002; 17:333-8. [PMID: 11921120 DOI: 10.1002/mds.10019] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
To assess whether spatial variables influence deficits of temporal somesthetic discrimination in dystonic patients, 10 patients with idiopathic dystonia and 12 healthy controls were tested with pairs of non-noxious electrical stimuli separated by different time intervals. Stimuli were delivered: (1) to the pad of the index finger (same-point condition), (2) to the pad and to the base of the index finger (same-finger condition), and (3) to the pad of the index and ring fingers (different-finger condition). Subjects were asked to report whether they perceived single or double stimuli in the first condition and synchronous or asynchronous stimuli in the second and third conditions. Somesthetic temporal discrimination thresholds (STDTs) were obtained by computing the shortest time interval at which stimuli, applied to the left or the right hand, were perceived as separate in the first condition or asynchronous in the second and third conditions. STDTs were significantly higher in dystonic patients than controls in all three conditions. In both dystonia patients and controls, STDTs resulted highest in conditions whereby stimuli were maximally separated in space. Results extend current knowledge of deficits of somesthetic temporal discrimination in dystonia by showing that temporal deficits are not influenced by spatial variables.
Collapse
Affiliation(s)
- Michele Tinazzi
- Dipartimento di Scienze Neurologiche e della Visione, Sez. di Neurologia Riabilitativa, Verona, Italy
| | | | | | | | | | | |
Collapse
|
20
|
Berg D, Herrmann MJ, Müller TJ, Strik WK, Aranda D, Koenig T, Naumann M, Fallgatter AJ. Cognitive response control in writer's cramp. Eur J Neurol 2001; 8:587-94. [PMID: 11784343 DOI: 10.1046/j.1468-1331.2001.00298.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Disturbances of the motor and sensory system as well as an alteration of the preparation of movements have been reported to play a role in the pathogenesis of dystonias. However, it is unclear whether higher aspects of cortical - like cognitive - functions are also involved. Recently, the NoGo-anteriorization (NGA) elicited with a visual continuous performance test (CPT) during recording of a 21-channel electroencephalogram has been proposed as an electrophysiological standard-index for cognitive response control. The NGA consists of a more anterior location of the positive area of the brain electrical field associated with the inhibition (NoGo-condition) compared with that of the execution (Go-condition) of a prepared motor response in the CPT. This response control paradigm was applied in 16 patients with writer's cramp (WC) and 14 age matched healthy controls. Topographical analysis of the associated event-related potentials revealed a significant (P < 0.05) NGA effect for both patients and controls. Moreover, patients with WC showed a significantly higher global field power value (P < 0.05) in the Go-condition and a significantly higher difference-amplitude (P < 0.05) in the NoGo-condition. A source location analysis with the low resolution electromagnetic tomography (LORETA) method demonstrated a hypoactivity for the Go-condition in the parietal cortex of the right hemisphere and a hyperactivity in the NoGo-condition in the left parietal cortex in patients with WC compared with healthy controls. These results indicate an altered response control in patients with WC in widespread cortical brain areas and therefore support the hypothesis that the pathogenesis of WC is not restricted to a pure sensory-motor dysfunction.
Collapse
Affiliation(s)
- D Berg
- Department of Neurology, Bayerische Julius-Maximilians-Universität Würzburg, Würzburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Abbott JH. Mobilization with movement applied to the elbow affects shoulder range of movement in subjects with lateral epicondylalgia. MANUAL THERAPY 2001; 6:170-7. [PMID: 11527457 DOI: 10.1054/math.2001.0407] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Clinical observations have suggested a relationship between shoulder range of movement (ROM) and lateral epicondylalgia. This study reports the effect of a single intervention of a mobilization with movement (MWM) applied to the elbow, on shoulder rotation ROM in subjects with lateral epicondylalgia. Twenty-three subjects with lateral epicondylalgia were included. In a one-group pretest-post-test design, ROM of shoulder internal and external rotation were measured by goniometer before and after the application of the MWM, of both the unaffected and the affected limbs. Significant differences in pre-intervention external rotation ROM were found between unaffected and affected shoulders of subjects with lateral epicondylalgia, but no significant difference remained post-intervention. It may be concluded that restriction of shoulder rotation ROM is present in patients with lateral epicondylalgia, probably due to a facilitated level of shoulder rotator muscle tone. Shoulder internal and external rotation ROM increases significantly following MWM to the elbow, in subjects with unilateral lateral epicondylalgia. Surprisingly, these ROM increases are also apparent on the 'unaffected' limb. These findings suggest that the MWM causes a neurophysiologically mediated decrease in resting muscle tone.
Collapse
Affiliation(s)
- J H Abbott
- Institute of Physical Therapy, University of St. Augustine for Health Sciences, Florida, USA.
| |
Collapse
|
22
|
Frasson E, Priori A, Bertolasi L, Mauguière F, Fiaschi A, Tinazzi M. Somatosensory disinhibition in dystonia. Mov Disord 2001; 16:674-82. [PMID: 11481691 DOI: 10.1002/mds.1142] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Despite the fact that somatosensory processing is inherently dependent on inhibitory functions, only excitatory aspects of the somatosensory feedback have so far been assessed in dystonic patients. We studied the recovery functions of spinal N13, brainstem P14, parietal N20, P27, and frontal N30 somatosensory evoked potentials (SEPs) after paired median nerve stimulation in 10 patients with dystonia and in 10 normal subjects. The recovery functions were assessed (conditioning stimulus: S1; test stimulus: S2) at interstimuls intervals (ISIs) of 5, 20, and 40 ms. SEPs evoked by S2 were calculated by subtracting the SEPs of the S1 only response from the SEPs of the response to the paired stimuli (S1 + S2), and their amplitudes were compared with those of the control response (S1) at each ISI considered. This ratio, (S2/S1)*100, investigates changes in the excitability of the somatosensory system. No significant difference was found in SEP amplitudes for single stimulus (S1) between dystonic patients and normal subjects. The (S2/S1)*100 ratio at the ISI of 5 ms did not significantly differ between dystonic patients and normal subjects, but at ISIs of 20 and 40 ms, this ratio was significantly higher in patients than in normals for spinal N13 and cortical N20, P27, N30 SEPs. These findings suggest that in dystonia there is an impaired inhibition at spinal and cortical levels of the somatosensory system which would lead to an abnormal sensory assistance to the ongoing motor programs, ultimately resulting in the motor abnormalities present in this disease.
Collapse
Affiliation(s)
- E Frasson
- Dipartimento di Scienze Neurologiche e Della Visione, Sez. di Neurologia e Sez. di Neurologia Riabilitativa, Verona, Italy
| | | | | | | | | | | |
Collapse
|
23
|
Kim JS. Delayed onset mixed involuntary movements after thalamic stroke: clinical, radiological and pathophysiological findings. Brain 2001; 124:299-309. [PMID: 11157557 DOI: 10.1093/brain/124.2.299] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although occurrence of involuntary movements after thalamic stroke has occasionally been reported, studies using a sufficiently large number of patients and a control population are not available. Between 1995 and 1999, the author prospectively identified 35 patients with post-thalamic stroke delayed-onset involuntary movements, which included all or some degree of dystonia-athetosis-chorea-action tremor, occasionally associated with jerky, myoclonic components. A control group included 58 patients examined by the author during the same period who had lateral thalamic stroke but no involuntary movements. Demography, clinical features and imaging study results were compared. There were no differences in gender, age, risk factors, side of the lesion and follow-up periods. During the acute stage of stroke, the patients who had involuntary movements significantly more often had severe (< or = III/V) hemiparesis (50 versus 20%, P < 0.05) and severe sensory loss (in all modalities, P < 0.01) than the control group. At the time of assessment of involuntary movements, the patients with involuntary movements significantly more often had severe sensory deficit (in all modalities, P < 0.01) and severe limb ataxia (60 versus 5%, P < 0.01) than the control patients, but neither more severe motor dysfunction (7 versus 0%) nor more painful sensory symptoms (57 versus 57%). The patients with involuntary movements had a higher frequency of haemorrhagic (versus ischaemic) stroke (63 versus 31%, P < 0.05). Further analysis showed that dystonia-athetosis-chorea was closely associated with position sensory loss, whereas the tremor/myoclonic movements were related to cerebellar ataxia. Recovery of severe limb weakness seemed to augment the instability of the involuntary movements. Persistent failure of the proprioceptive sensory and cerebellar inputs in addition to successful, but unbalanced, recovery of the motor dysfunction seemed to result in a pathological motor integrative system and consequent involuntary movements in patients with relatively severe lateral-posterior thalamic strokes simultaneously damaging the lemniscal sensory pathway, the cerebellar-rubrothalamic tract and, relatively less severely, the pyramidal tract.
Collapse
Affiliation(s)
- J S Kim
- Department of Neurology, University of Ulsan, Asan Medical Center, Seoul, South Korea.
| |
Collapse
|
24
|
Affiliation(s)
- W J Weiner
- Department of Neurology, University of Maryland School of Medicine, Baltimore 21201, USA
| |
Collapse
|
25
|
|
26
|
Abstract
Clinical observations of patients with writer's cramp suggest that abnormalities of the sensory system may be a frequent finding in this disorder. Neurophysiological data from an animal model of focal dystonia have revealed cells in somatosensory cortex with enlarged and overlapping tactile receptive fields. However, psychophysical studies so far have been unable to document a clinical correlate supporting a similar enlargement of receptive fields in humans. We compared the fingertip discrimination of the orientation of fine spatial gratings between writer's cramp and control subjects and found a significant decrease in grating sensitivity in the patients, consistent with the possibility of enlarged tactile receptive fields. In addition, we duplicated previous experiments showing an abnormality of tactile temporal discrimination. The results provide psychophysical measures which may relate to the development of sensory cortical reorganization in patients with writer's cramp.
Collapse
Affiliation(s)
- T D Sanger
- Department of Child Neurology and Movement Disorders, Stanford University Medical Center, California, USA
| | | | | |
Collapse
|
27
|
Tinazzi M, Priori A, Bertolasi L, Frasson E, Mauguière F, Fiaschi A. Abnormal central integration of a dual somatosensory input in dystonia. Evidence for sensory overflow. Brain 2000; 123 ( Pt 1):42-50. [PMID: 10611119 DOI: 10.1093/brain/123.1.42] [Citation(s) in RCA: 160] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Several observations suggest impaired central sensory integration in dystonia. We studied median and ulnar nerve somatosensory evoked potentials (SEPs) in 10 patients who had dystonia involving at least one upper limb (six had generalized, two had segmental and two had focal dystonia) and in 10 normal subjects. We compared the amplitude of spinal N13, brainstem P14, parietal N20 and P27 and frontal N30 SEPs obtained by stimulating the median and ulnar nerves simultaneously (MU), the amplitude value being obtained from the arithmetic sum of the SEPs elicited by stimulating the same nerves separately (M + U). Throughout the somatosensory system, the MU : (M + U) ratio indicates the interaction between afferent inputs from the two peripheral nerves. No significant difference was found between SEP amplitudes and latencies for individually stimulated median and ulnar nerves in dystonic patients and normal subjects, but recordings in patients yielded a significantly higher percentage ratio [MU : (M + U)x100] for spinal N13 brainstem P14 and cortical N20, P27 and N30 components. The SEP ratio of central components obtained in response to stimulation of the digital nerves of the third and fifth fingers was also higher in patients than in controls but the difference did not reach a significant level. The possible contribution of subliminal activation was ruled out by recording the ratio of SEPs in six normal subjects during voluntary contraction. This voluntary contraction did not change the ratio of SEP suppression. These findings suggest that the inhibitory integration of afferent inputs, mainly proprioceptive inputs, coming from adjacent body parts is abnormal in dystonia. This inefficient integration, which is probably due to altered surrounding inhibition, could give rise to an abnormal motor output and might therefore contribute to the motor impairment present in dystonia.
Collapse
Affiliation(s)
- M Tinazzi
- Dipartimento di Scienze Neurologiche e della Visione, Sez. di Neurologia Riabilitativa, Verona, Italy
| | | | | | | | | | | |
Collapse
|