1
|
Santiago-Collazo G, Brown PJB, Randich AM. The divergent early divisome: is there a functional core? Trends Microbiol 2024; 32:231-240. [PMID: 37741788 DOI: 10.1016/j.tim.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/21/2023] [Accepted: 08/23/2023] [Indexed: 09/25/2023]
Abstract
The bacterial divisome is a complex nanomachine that drives cell division and separation. The essentiality of these processes leads to the assumption that proteins with core roles will be strictly conserved across all bacterial genomes. However, recent studies in diverse proteobacteria have revealed considerable variation in the early divisome compared with Escherichia coli. While some proteins are highly conserved, their specific functions and interacting partners vary. Meanwhile, different subphyla use clade-specific proteins with analogous functions. Thus, instead of focusing on gene conservation, we must also explore how key functions are maintained during early division by diverging protein networks. An enhanced awareness of these complex genetic networks will clarify the physical and evolutionary constraints of bacterial division.
Collapse
Affiliation(s)
- Gustavo Santiago-Collazo
- Department of Molecular Microbiology and Immunology, School of Medicine, University of Missouri-Columbia, Columbia, MO, USA
| | - Pamela J B Brown
- Division of Biological Sciences, College of Arts and Sciences, University of Missouri-Columbia, Columbia, MO, USA
| | - Amelia M Randich
- Department of Biology, College of Arts and Sciences, University of Scranton, Scranton, PA, USA.
| |
Collapse
|
2
|
Wu H, Iwai N, Suzuki Y, Nakano T. Molecular association of FtsZ with the intrabacterial nanotransportation system for urease in Helicobacter pylori. Med Mol Morphol 2019; 52:226-234. [PMID: 31134430 DOI: 10.1007/s00795-019-00225-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 05/15/2019] [Indexed: 11/26/2022]
Abstract
Helicobacter pylori possesses intrabacterial nanotransportation system (ibNoTS) for transporting CagA, VacA, and urease within the bacterial cytoplasm, which is controlled by the extrabacterial environment. The route of ibNoTS for CagA is reported to be associated with the MreB filament, whereas the route of ibNoTS for urease is not yet known. In this study, we demonstrated by immunoelectron microscopy that urease along the route of ibNoTS localizes closely with the FtsZ filament in the bacterium. Supporting this, we found by enzyme immunoassay and co-immunoprecipitation analysis that urease interacted with FtsZ. These findings indicate that urease along the route of ibNoTS is closely associated with the FtsZ filament. Since these phenomena were not observed in ibNoTS for CagA, the route of ibNoTS for CagA is different from that of ibNoTS for urease. We propose that the route of ibNoTS for urease is associated with the FtsZ filament in H. pylori.
Collapse
Affiliation(s)
- Hong Wu
- Project Team for Study of Nanotransportation System, Research & development Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan.
| | - Noritaka Iwai
- Project Team for Study of Nanotransportation System, Research & development Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
- Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Youichi Suzuki
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| | - Takashi Nakano
- Project Team for Study of Nanotransportation System, Research & development Center, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
- Department of Microbiology and Infection Control, Osaka Medical College, 2-7 Daigaku-machi, Takatsuki, Osaka, 569-8686, Japan
| |
Collapse
|
3
|
Kamran M, Dubey P, Verma V, Dasgupta S, Dhar SK. Helicobacter pylori shows asymmetric and polar cell divisome assembly associated with DNA replisome. FEBS J 2018; 285:2531-2547. [PMID: 29745002 DOI: 10.1111/febs.14499] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 03/31/2018] [Accepted: 05/02/2018] [Indexed: 11/28/2022]
Abstract
DNA replication and cell division are two fundamental processes in the life cycle of a cell. The majority of prokaryotic cells undergo division by means of binary fission in coordination with replication of the genome. Both processes, but especially their coordination, are poorly understood in Helicobacter pylori. Here, we studied the cell divisome assembly and the subsequent processes of membrane and peptidoglycan synthesis in the bacterium. To our surprise, we found the cell divisome assembly to be polar, which was well-corroborated by the asymmetric membrane and peptidoglycan synthesis at the poles. The divisome components showed its assembly to be synchronous with that of the replisome and the two remained associated throughout the cell cycle, demonstrating a tight coordination among chromosome replication, segregation and cell division in H. pylori. To our knowledge, this is the first report where both DNA replication and cell division along with their possible association have been demonstrated for this pathogenic bacterium.
Collapse
Affiliation(s)
- Mohammad Kamran
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Priyanka Dubey
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Vijay Verma
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| | - Santanu Dasgupta
- Department of Cell and Molecular Biology, Uppsala University, Sweden
| | - Suman K Dhar
- Special Centre for Molecular Medicine, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
4
|
Woldemeskel SA, McQuillen R, Hessel AM, Xiao J, Goley ED. A conserved coiled-coil protein pair focuses the cytokinetic Z-ring in Caulobacter crescentus. Mol Microbiol 2017; 105:721-740. [PMID: 28613431 DOI: 10.1111/mmi.13731] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/12/2017] [Indexed: 11/27/2022]
Abstract
The cytoskeletal GTPase FtsZ assembles at midcell, recruits the division machinery and directs envelope invagination for bacterial cytokinesis. ZapA, a conserved FtsZ-binding protein, promotes Z-ring stability and efficient division through a mechanism that is not fully understood. Here, we investigated the function of ZapA in Caulobacter crescentus. We found that ZapA is encoded in an operon with a small coiled-coil protein we named ZauP. ZapA and ZauP co-localized at the division site and were each required for efficient division. ZapA interacted directly with both FtsZ and ZauP. Neither ZapA nor ZauP influenced FtsZ dynamics or bundling, in vitro, however. Z-rings were diffuse in cells lacking zapA or zauP and, conversely, FtsZ was enriched at midcell in cells overproducing ZapA and ZauP. Additionally, FtsZ persisted at the poles longer when ZapA and ZauP were overproduced, and frequently colocalized with MipZ, a negative regulator of FtsZ polymerization. We propose that ZapA and ZauP promote efficient cytokinesis by stabilizing the midcell Z-ring through a bundling-independent mechanism. The zauPzapA operon is present in diverse Gram-negative bacteria, indicating a common mechanism for Z-ring assembly.
Collapse
Affiliation(s)
- Selamawit Abi Woldemeskel
- Departments of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ryan McQuillen
- Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alex M Hessel
- Departments of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jie Xiao
- Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Erin D Goley
- Departments of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|