1
|
Balsollier C, Tomašič T, Yasini D, Bijkerk S, Anderluh M, Pieters RJ. Design of OSMI-4 Analogs Using Scaffold Hopping: Investigating the Importance of the Uridine Mimic in the Binding of OGT Inhibitors. ChemMedChem 2023; 18:e202300001. [PMID: 36752318 DOI: 10.1002/cmdc.202300001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/09/2023]
Abstract
β-N-Acetylglucosamine transferase (OGT) inhibition is considered an important topic in medicinal chemistry. The involvement of O-GlcNAcylation in several important biological pathways is pointing to OGT as a potential therapeutic target. The field of OGT inhibitors drastically changed after the discovery of the 7-quinolone-4-carboxamide scaffold and its optimization to the first nanomolar OGT inhibitor: OSMI-4. While OSMI-4 is still the most potent inhibitor reported to date, its physicochemical properties are limiting its use as a potential drug candidate as well as a biological tool. In this study, we have introduced a simple modification (elongation) of the peptide part of OSMI-4 that limits the unwanted cyclisation during OSMI-4 synthesis while retaining OGT inhibitory potency. Secondly, we have kept this modified peptide unchanged while incorporating new sulfonamide UDP mimics to try to improve binding of newly designed OGT inhibitors in the UDP-binding site. With the use of computational methods, a small library of OSMI-4 derivatives was designed, prepared and evaluated that provided information about the OGT binding pocket and its specificity toward quinolone-4-carboxamides.
Collapse
Affiliation(s)
- Cyril Balsollier
- Department of Chemical Biology & Drug Discovery Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands.,Department of Pharmaceutical Chemistry Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Tihomir Tomašič
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Daniel Yasini
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Simon Bijkerk
- Department of Chemical Biology & Drug Discovery Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| | - Marko Anderluh
- Department of Pharmaceutical Chemistry Faculty of Pharmacy, University of Ljubljana, 1000, Ljubljana, Slovenia
| | - Roland J Pieters
- Department of Chemical Biology & Drug Discovery Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG, Utrecht, The Netherlands
| |
Collapse
|
2
|
Abstract
Protein post-translational modifications (PTMs) enable cells to rapidly change in response to biological stimuli. With hundreds of different PTMs, understanding these control mechanisms is complex. To date, efforts have focused on investigating the effect of a single PTM on protein function. Yet, many proteins contain multiple PTMs. Moreover, one PTM can alter the prevalence of another, a phenomenon termed PTM crosstalk. Understanding PTM crosstalk is critical; however, its detection is challenging since PTMs occur substoichiometrically. Here, we develop an enrichment-free, label-free proteomics method that utilizes high-field asymmetric ion mobility spectrometry (FAIMS) to enhance the detection of PTM crosstalk. We show that by searching for multiple combinations of dynamic PTMs on peptide sequences, a 6-fold increase in candidate PTM crosstalk sites is identified compared with that of standard liquid chromatography-tandem mass spectrometry (LC-MS/MS) workflows. Additionally, by cycling through FAIMS compensation voltages within a single LC-FAIMS-MS/MS run, we show that our LC-FAIMS-MS/MS workflow can increase multi-PTM-containing peptide identifications without additional increases in run times. With 159 novel candidate crosstalk sites identified, we envisage LC-FAIMS-MS/MS to play an important role in expanding the repertoire of multi-PTM identifications. Moreover, it is only by detecting PTM crosstalk that we can "see" the full picture of how proteins are regulated.
Collapse
Affiliation(s)
- Kish R. Adoni
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Debbie L. Cunningham
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - John K. Heath
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Aneika C. Leney
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| |
Collapse
|
3
|
Discovery of a New Drug-Like Series of OGT Inhibitors by Virtual Screening. Molecules 2022; 27:molecules27061996. [PMID: 35335358 PMCID: PMC8950328 DOI: 10.3390/molecules27061996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
O-GlcNAcylation is an essential post-translational modification installed by the enzyme O-β-N-acetyl-d-glucosaminyl transferase (OGT). Modulating this enzyme would be extremely valuable to better understand its role in the development of serious human pathologies, such as diabetes and cancer. However, the limited availability of potent and selective inhibitors hinders the validation of this potential therapeutic target. To explore new chemotypes that target the active site of OGT, we performed virtual screening of a large library of commercially available compounds with drug-like properties. We purchased samples of the most promising virtual hits and used enzyme assays to identify authentic leads. Structure-activity relationships of the best identified OGT inhibitor were explored by generating a small library of derivatives. Our best hit displays a novel uridine mimetic scaffold and inhibited the recombinant enzyme with an IC50 value of 7 µM. The current hit represents an excellent starting point for designing and developing a new set of OGT inhibitors that may prove useful for exploring the biology of OGT.
Collapse
|
4
|
Moon S, Javed A, Hard ER, Pratt MR. Methods for Studying Site-Specific O-GlcNAc Modifications: Successes, Limitations, and Important Future Goals. JACS AU 2022; 2:74-83. [PMID: 35098223 PMCID: PMC8791055 DOI: 10.1021/jacsau.1c00455] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 06/14/2023]
Abstract
O-GlcNAcylation is a dynamic post-translational modification which affects myriad proteins, cellular functions, and disease states. Its presence or absence modulates protein function via differential protein- and site-specific mechanisms, necessitating innovative techniques to probe the modification in highly selective manners. To this end, a variety of biological and chemical methods have been developed to study specific O-GlcNAc modification events both in vitro and in vivo, each with their own respective strengths and shortcomings. Together, they comprise a potent chemical biology toolbox for the analysis of O-GlcNAcylation (and, in theory, other post-translational modifications) while highlighting the need and space for more facile, generalizable, and biologically authentic techniques.
Collapse
Affiliation(s)
- Stuart
P. Moon
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Afraah Javed
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Eldon R. Hard
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| | - Matthew R. Pratt
- Departments
of Chemistry and Biological Sciences, University of Southern
California, Los Angeles, California 90089, United States
| |
Collapse
|
5
|
Weiss M, Anderluh M, Gobec M. Inhibition of O-GlcNAc Transferase Alters the Differentiation and Maturation Process of Human Monocyte Derived Dendritic Cells. Cells 2021; 10:cells10123312. [PMID: 34943826 PMCID: PMC8699345 DOI: 10.3390/cells10123312] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/16/2022] Open
Abstract
The O-GlcNAcylation is a posttranslational modification of proteins regulated by O-GlcNAc transferase (OGT) and O-GlcNAcase. These enzymes regulate the development, proliferation and function of cells, including the immune cells. Herein, we focused on the role of O-GlcNAcylation in human monocyte derived dendritic cells (moDCs). Our study suggests that inhibition of OGT modulates AKT and MEK/ERK pathways in moDCs. Changes were also observed in the expression levels of relevant surface markers, where reduced expression of CD80 and DC-SIGN, and increased expression of CD14, CD86 and HLA-DR occurred. We also noticed decreased IL-10 and increased IL-6 production, along with diminished endocytotic capacity of the cells, indicating that inhibition of O-GlcNAcylation hampers the transition of monocytes into immature DCs. Furthermore, the inhibition of OGT altered the maturation process of immature moDCs, since a CD14medDC-SIGNlowHLA-DRmedCD80lowCD86high profile was noticed when OGT inhibitor, OSMI-1, was present. To evaluate DCs ability to influence T cell differentiation and polarization, we co-cultured these cells. Surprisingly, the observed phenotypic changes of mature moDCs generated in the presence of OSMI-1 led to an increased proliferation of allogeneic T cells, while their polarization was not affected. Taken together, we confirm that shifting the O-GlcNAcylation status due to OGT inhibition alters the differentiation and function of moDCs in in vitro conditions.
Collapse
Affiliation(s)
- Matjaž Weiss
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.W.); (M.A.)
| | - Marko Anderluh
- The Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia; (M.W.); (M.A.)
| | - Martina Gobec
- The Department of Clinical Biochemistry, Faculty of Pharmacy, University of Ljubljana, 1000 Ljubljana, Slovenia
- Correspondence: ; Tel.: +386-1-4769-636
| |
Collapse
|
6
|
Balana AT, Moon SP, Pratt MR. O-GlcNAcylated peptides and proteins for structural and functional studies. Curr Opin Struct Biol 2021; 68:84-93. [PMID: 33434850 PMCID: PMC8222092 DOI: 10.1016/j.sbi.2020.12.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/08/2020] [Accepted: 12/12/2020] [Indexed: 12/19/2022]
Abstract
O-GlcNAcylation is an enzymatic post-translational modification occurring in hundreds of protein substrates. This modification occurs through the addition of the monosaccharide N-acetylglucosamine to serine and threonine residues on intracellular proteins in the cytosol, nucleus, and mitochondria. As a highly dynamic form of modification, changes in O-GlcNAc levels coincide with alterations in metabolic state, the presence of stressors, and cellular health. At the protein level, the consequences of the sugar modification can vary, thus necessitating biochemical investigations on protein-specific and site-specific effects. To this end, enzymatic and chemical methods to 'encode' the modification have been developed and the utilization of these synthetic glycopeptides and glycoproteins has since been instrumental in the discovery of the mechanisms by which O-GlcNAcylation can affect a diverse array of biological processes.
Collapse
Affiliation(s)
- Aaron T Balana
- Departments of Chemistry, University of Southern California, Los Angeles, CA, 90089, United States
| | - Stuart P Moon
- Departments of Chemistry, University of Southern California, Los Angeles, CA, 90089, United States
| | - Matthew R Pratt
- Departments of Chemistry, University of Southern California, Los Angeles, CA, 90089, United States; Biological Sciences, University of Southern California, Los Angeles, CA, 90089, United States.
| |
Collapse
|
7
|
Groenevelt JM, Corey DJ, Fehl C. Chemical Synthesis and Biological Applications of O-GlcNAcylated Peptides and Proteins. Chembiochem 2021; 22:1854-1870. [PMID: 33450137 DOI: 10.1002/cbic.202000843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/15/2021] [Indexed: 12/25/2022]
Abstract
All human cells use O-GlcNAc protein modifications (O-linked N-acetylglucosamine) to rapidly adapt to changing nutrient and stress conditions through signaling, epigenetic, and proteostasis mechanisms. A key challenge for biologists in defining precise roles for specific O-GlcNAc sites is synthetic access to homogenous isoforms of O-GlcNAc proteins, a result of the non-genetically templated, transient, and heterogeneous nature of O-GlcNAc modifications. Toward a solution, this review details the state of the art of two strategies for O-GlcNAc protein modification: advances in "bottom-up" O-GlcNAc peptide synthesis and direct "top-down" installation of O-GlcNAc on full proteins. We also describe key applications of synthetic O-GlcNAc peptide and protein tools as therapeutics, biophysical structure-function studies, biomarkers, and as disease mechanistic probes to advance translational O-GlcNAc biology.
Collapse
Affiliation(s)
- Jessica M Groenevelt
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Daniel J Corey
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| | - Charlie Fehl
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI, 48202, USA
| |
Collapse
|
8
|
Shi J, Sharif S, Balsollier C, Ruijtenbeek R, Pieters RJ, Jongkees SAK. C-Terminal Tag Location Hampers in Vitro Profiling of OGT Peptide Substrates by mRNA Display. Chembiochem 2021; 22:666-671. [PMID: 33022805 PMCID: PMC7894566 DOI: 10.1002/cbic.202000624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/06/2020] [Indexed: 12/17/2022]
Abstract
O-GlcNAc transferase (OGT) is the only enzyme that catalyzes the post-translational modification of proteins at Ser/Thr with a single β-N-acetylglucosamine (O-GlcNAcylation). Its activity has been associated with chronic diseases such as cancer, diabetes and neurodegenerative disease. Although numerous OGT substrates have been identified, its accepted substrate scope can still be refined. We report here an attempt to better define the peptide-recognition requirements of the OGT active site by using mRNA display, taking advantage of its extremely high throughput to assess the substrate potential of a library of all possible nonamer peptides. An antibody-based selection process is described here that is able to enrich an OGT substrate peptide from such a library, but with poor absolute recovery. Following four rounds of selection for O-GlcNAcylated peptides, sequencing revealed 14 peptides containing Ser/Thr, but these were shown by luminescence-coupled assays and peptide microarray not to be OGT substrates. By contrast, subsequent testing of an N-terminal tag approach showed exemplary recovery. Our approach demonstrates the power of genetically encoded libraries for selection of peptide substrates, even from a very low initial starting abundance and under suboptimal conditions, and emphasizes the need to consider the binding biases of antibodies and both C- and N-terminal tags in profiling peptide substrates by high-throughput display.
Collapse
Affiliation(s)
- Jie Shi
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
- Key Laboratory of Carbohydrate Chemistry & Biotechnology Ministry of Education, School of BiotechnologyJiangnan University214122WuxiP. R. China
| | - Suhela Sharif
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Cyril Balsollier
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Rob Ruijtenbeek
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
- PamGene International BV's-Hertogenbosch5211 HHThe Netherlands
| | - Roland J. Pieters
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| | - Seino A. K. Jongkees
- Department of Chemical Biology and Drug Discovery Utrecht Institute for Pharmaceutical SciencesUtrecht UniversityUniversiteitsweg 99Utrecht3584 CGThe Netherlands
| |
Collapse
|
9
|
Ma J, Wu C, Hart GW. Analytical and Biochemical Perspectives of Protein O-GlcNAcylation. Chem Rev 2021; 121:1513-1581. [DOI: 10.1021/acs.chemrev.0c00884] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Junfeng Ma
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Ci Wu
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Georgetown University, Washington D.C. 20057, United States
| | - Gerald W. Hart
- Department of Biochemistry and Molecular Biology, Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
10
|
Tian JL, Gomeshtapeh FI. Potential Roles of O-GlcNAcylation in Primary Cilia- Mediated Energy Metabolism. Biomolecules 2020; 10:biom10111504. [PMID: 33139642 PMCID: PMC7693894 DOI: 10.3390/biom10111504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/30/2020] [Accepted: 10/30/2020] [Indexed: 12/26/2022] Open
Abstract
The primary cilium, an antenna-like structure on most eukaryotic cells, functions in transducing extracellular signals into intracellular responses via the receptors and ion channels distributed along it membrane. Dysfunction of this organelle causes an array of human diseases, known as ciliopathies, that often feature obesity and diabetes; this indicates the primary cilia's active role in energy metabolism, which it controls mainly through hypothalamic neurons, preadipocytes, and pancreatic β-cells. The nutrient sensor, O-GlcNAc, is widely involved in the regulation of energy homeostasis. Not only does O-GlcNAc regulate ciliary length, but it also modifies many components of cilia-mediated metabolic signaling pathways. Therefore, it is likely that O-GlcNAcylation (OGN) plays an important role in regulating energy homeostasis in primary cilia. Abnormal OGN, as seen in cases of obesity and diabetes, may play an important role in primary cilia dysfunction mediated by these pathologies.
Collapse
Affiliation(s)
- Jie L. Tian
- Complex Carbohydrate Research Center, Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA 30602, USA
- Correspondence: ; Tel.: +1-706-583-5551
| | | |
Collapse
|
11
|
Chatham JC, Zhang J, Wende AR. Role of O-Linked N-Acetylglucosamine Protein Modification in Cellular (Patho)Physiology. Physiol Rev 2020; 101:427-493. [PMID: 32730113 DOI: 10.1152/physrev.00043.2019] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
In the mid-1980s, the identification of serine and threonine residues on nuclear and cytoplasmic proteins modified by a N-acetylglucosamine moiety (O-GlcNAc) via an O-linkage overturned the widely held assumption that glycosylation only occurred in the endoplasmic reticulum, Golgi apparatus, and secretory pathways. In contrast to traditional glycosylation, the O-GlcNAc modification does not lead to complex, branched glycan structures and is rapidly cycled on and off proteins by O-GlcNAc transferase (OGT) and O-GlcNAcase (OGA), respectively. Since its discovery, O-GlcNAcylation has been shown to contribute to numerous cellular functions, including signaling, protein localization and stability, transcription, chromatin remodeling, mitochondrial function, and cell survival. Dysregulation in O-GlcNAc cycling has been implicated in the progression of a wide range of diseases, such as diabetes, diabetic complications, cancer, cardiovascular, and neurodegenerative diseases. This review will outline our current understanding of the processes involved in regulating O-GlcNAc turnover, the role of O-GlcNAcylation in regulating cellular physiology, and how dysregulation in O-GlcNAc cycling contributes to pathophysiological processes.
Collapse
Affiliation(s)
- John C Chatham
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Jianhua Zhang
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| | - Adam R Wende
- Division of Molecular and Cellular Pathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama; and Birmingham Veterans Affairs Medical Center, Birmingham, Alabama
| |
Collapse
|
12
|
Intracellular Hydrolysis of Small-Molecule O-Linked N-Acetylglucosamine Transferase Inhibitors Differs among Cells and Is Not Required for Its Inhibition. Molecules 2020; 25:molecules25153381. [PMID: 32722493 PMCID: PMC7436030 DOI: 10.3390/molecules25153381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 01/17/2023] Open
Abstract
O-GlcNAcylation is an essential post-translational modification that occurs on nuclear and cytoplasmic proteins, regulating their function in response to cellular stress and altered nutrient availability. O-GlcNAc transferase (OGT) is the enzyme that catalyzes this reaction and represents a potential therapeutic target, whose biological role is still not fully understood. To support this research field, a series of cell-permeable, low-nanomolar OGT inhibitors were recently reported. In this study, we resynthesized the most potent OGT inhibitor of the library, OSMI-4, and we used it to investigate OGT inhibition in different human cell lines. The compound features an ethyl ester moiety that is supposed to be cleaved by carboxylesterases to generate its active metabolite. Our LC-HRMS analysis of the cell lysates shows that this is not always the case and that, even in the cell lines where hydrolysis does not occur, OGT activity is inhibited.
Collapse
|
13
|
Shi J, Ruijtenbeek R, Pieters RJ. Demystifying O-GlcNAcylation: hints from peptide substrates. Glycobiology 2019; 28:814-824. [PMID: 29635275 DOI: 10.1093/glycob/cwy031] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 03/21/2018] [Indexed: 12/20/2022] Open
Abstract
O-GlcNAcylation, analogous to phosphorylation, is an essential post-translational modification of proteins at Ser/Thr residues with a single β-N-acetylglucosamine moiety. This dynamic protein modification regulates many fundamental cellular processes and its deregulation has been linked to chronic diseases such as cancer, diabetes and neurodegenerative disorders. Reversible attachment and removal of O-GlcNAc is governed only by O-GlcNAc transferase and O-GlcNAcase, respectively. Peptide substrates, derived from natural O-GlcNAcylation targets, function in the catalytic cores of these two enzymes by maintaining interactions between enzyme and substrate, which makes them ideal models for the study of O-GlcNAcylation and deglycosylation. These peptides provide valuable tools for a deeper understanding of O-GlcNAc processing enzymes. By taking advantage of peptide chemistry, recent progress in the study of activity and regulatory mechanisms of these two enzymes has advanced our understanding of their fundamental specificities as well as their potential as therapeutic targets. Hence, this review summarizes the recent achievements on this modification studied at the peptide level, focusing on enzyme activity, enzyme specificity, direct function, site-specific antibodies and peptide substrate-inspired inhibitors.
Collapse
Affiliation(s)
- Jie Shi
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, TB Utrecht, The Netherlands
| | - Rob Ruijtenbeek
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, TB Utrecht, The Netherlands.,PamGene International BV, HH's-Hertogenbosch, The Netherlands
| | - Roland J Pieters
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, TB Utrecht, The Netherlands
| |
Collapse
|
14
|
Sharif S, Shi J, Ruijtenbeek R, Pieters RJ. Study of cross talk between phosphatases and OGA on a ZO-3-derived peptide. Amino Acids 2019; 51:739-743. [PMID: 30725225 DOI: 10.1007/s00726-019-02699-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Accepted: 01/11/2019] [Indexed: 02/04/2023]
Abstract
O-GlcNAcylation, like phosphorylation, is a dynamic and rapid posttranslational modification which regulates many cellular processes. Phosphorylation on tyrosine and O-GlcNAcylation on nearby serine or threonine residues may modulate each other. Indeed, by using a microarray with a peptide model system based on the ZO-3 protein, extensive cross talk between O-GlcNAcylation by OGT and phosphorylation by kinases was observed. However, studying the effects of kinases and OGT without the reverse processes catalyzed by phosphatases and O-GlcNAcase (OGA) does not provide a complete picture of the cross talk. The study of the missing part showed that nearby phosphorylation affects the de-O-GlcNAcylation by OGA, but not to the same extent as it affects the O-GlcNAcylation by OGT. Both the phosphorylation and de-phosphorylation processes were only slightly affected by the presence of an O-GlcNAc residue on a nearby serine.
Collapse
Affiliation(s)
- Suhela Sharif
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P. O. Box 80082, 3508 TB, Utrecht, The Netherlands
| | - Jie Shi
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P. O. Box 80082, 3508 TB, Utrecht, The Netherlands
| | - Rob Ruijtenbeek
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P. O. Box 80082, 3508 TB, Utrecht, The Netherlands.,PamGene International BV, 's-Hertogenbosch, The Netherlands
| | - Roland J Pieters
- Department of Chemical Biology and Drug Discovery, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P. O. Box 80082, 3508 TB, Utrecht, The Netherlands.
| |
Collapse
|
15
|
Lei L, Xie J, Yu J, Li Y, Liu Y. Parallel study on protein O-GlcNAcylation in prostate cancer cell with a sensitive microarray biochip. Anal Biochem 2018; 558:53-59. [DOI: 10.1016/j.ab.2018.08.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 08/03/2018] [Accepted: 08/03/2018] [Indexed: 02/07/2023]
|
16
|
Laarse SAM, Leney AC, Heck AJR. Crosstalk between phosphorylation and O‐Glc
NA
cylation: friend or foe. FEBS J 2018; 285:3152-3167. [DOI: 10.1111/febs.14491] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 03/27/2018] [Accepted: 04/26/2018] [Indexed: 12/13/2022]
Affiliation(s)
- Saar A. M. Laarse
- Biomolecular Mass Spectrometry and Proteomics Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences Utrecht University The Netherlands
- Netherlands Proteomics Centre Utrecht The Netherlands
| | - Aneika C. Leney
- Biomolecular Mass Spectrometry and Proteomics Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences Utrecht University The Netherlands
- Netherlands Proteomics Centre Utrecht The Netherlands
| | - Albert J. R. Heck
- Biomolecular Mass Spectrometry and Proteomics Bijvoet Center for Biomolecular Research and Utrecht Institute for Pharmaceutical Sciences Utrecht University The Netherlands
- Netherlands Proteomics Centre Utrecht The Netherlands
| |
Collapse
|
17
|
Zhang H, Tomašič T, Shi J, Weiss M, Ruijtenbeek R, Anderluh M, Pieters RJ. Inhibition of O-GlcNAc transferase (OGT) by peptidic hybrids. MEDCHEMCOMM 2018; 9:883-887. [PMID: 30108977 PMCID: PMC6072325 DOI: 10.1039/c8md00115d] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 04/14/2018] [Indexed: 01/10/2023]
Abstract
O-GlcNAc transferase (OGT) attaches a GlcNAc moiety on specific substrate proteins using UDP-GlcNAc as the sugar donor. This modification can alter protein function by regulating cellular signaling and transcription pathways in response to altered nutrient availability and stress. Specific inhibitors of OGT would be valuable tools for biological studies and lead structures for therapeutics. The existing OGT inhibitors are mainly derived from the sugar donor substrate, but poor cell permeability and off-target effects limit their use. Here, we describe our progress on OGT inhibition based on substrate peptides identified by array screening. Subsequently, bisubstrate inhibitors were prepared by conjugating these peptides to uridine in various ways. In parallel, an in silico fragment screening was conducted to obtain small molecules targeting the UDP binding pocket. After evaluation of the initial hits, one of these small molecules was elaborated into a novel OGT hybrid inhibitor, as the replacement of uridine. The novel compounds inhibit OGT activity with IC50 values in the micromolar range.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , P.O. Box 80082 , NL-3508 TB , Utrecht , The Netherlands .
| | - Tihomir Tomašič
- Faculty of Pharmacy , University of Ljubljana , Ljubljana , 1000 , Slovenia
| | - Jie Shi
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , P.O. Box 80082 , NL-3508 TB , Utrecht , The Netherlands .
| | - Matjaž Weiss
- Faculty of Pharmacy , University of Ljubljana , Ljubljana , 1000 , Slovenia
| | - Rob Ruijtenbeek
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , P.O. Box 80082 , NL-3508 TB , Utrecht , The Netherlands .
- PamGene International BV , 's-Hertogenbosch , 5211 HH , The Netherlands
| | - Marko Anderluh
- Faculty of Pharmacy , University of Ljubljana , Ljubljana , 1000 , Slovenia
| | - Roland J Pieters
- Department of Chemical Biology & Drug Discovery , Utrecht Institute for Pharmaceutical Sciences , Utrecht University , P.O. Box 80082 , NL-3508 TB , Utrecht , The Netherlands .
| |
Collapse
|