1
|
Ivanova Z, Minkov G, Gisel A, Yahubyan G, Minkov I, Toneva V, Baev V. The Multiverse of Plant Small RNAs: How Can We Explore It?
. Int J Mol Sci 2022; 23:ijms23073979. [PMID: 35409340 PMCID: PMC8999349 DOI: 10.3390/ijms23073979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/28/2022] [Accepted: 03/31/2022] [Indexed: 12/22/2022] Open
Abstract
Plant small RNAs (sRNAs) are a heterogeneous group of noncoding RNAs with a length of 20–24 nucleotides that are widely studied due to their importance as major regulators in various biological processes. sRNAs are divided into two main classes—microRNAs (miRNAs) and small interfering RNAs (siRNAs)—which differ in their biogenesis and functional pathways. Their identification and enrichment with new structural variants would not be possible without the use of various high-throughput sequencing (NGS) techniques, allowing for the detection of the total population of sRNAs in plants. Classifying sRNAs and predicting their functional role based on such high-performance datasets is a nontrivial bioinformatics task, as plants can generate millions of sRNAs from a variety of biosynthetic pathways. Over the years, many computing tools have been developed to meet this challenge. Here, we review more than 35 tools developed specifically for plant sRNAs over the past few years and explore some of their basic algorithms for performing tasks related to predicting, identifying, categorizing, and quantifying individual sRNAs in plant samples, as well as visualizing the results of these analyzes. We believe that this review will be practical for biologists who want to analyze their plant sRNA datasets but are overwhelmed by the number of tools available, thus answering the basic question of how to choose the right one for a particular study.
Collapse
Affiliation(s)
- Zdravka Ivanova
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria; (Z.I.); (G.M.); (I.M.); (V.T.)
| | - Georgi Minkov
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria; (Z.I.); (G.M.); (I.M.); (V.T.)
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Andreas Gisel
- Institute of Biomedical Technologies (ITB), CNR, 70126 Bari, Italy;
| | - Galina Yahubyan
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Ivan Minkov
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria; (Z.I.); (G.M.); (I.M.); (V.T.)
- Center of Plant System Biology and Biotechnology, 4000 Plovdiv, Bulgaria
| | - Valentina Toneva
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria; (Z.I.); (G.M.); (I.M.); (V.T.)
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria;
| | - Vesselin Baev
- Institute of Molecular Biology and Biotechnologies, 4108 Markovo, Bulgaria; (Z.I.); (G.M.); (I.M.); (V.T.)
- Department of Plant Physiology and Molecular Biology, University of Plovdiv, 4000 Plovdiv, Bulgaria;
- Correspondence:
| |
Collapse
|
2
|
MicroRNA-mediated post-transcriptional regulation of Pinus pinaster response and resistance to pinewood nematode. Sci Rep 2022; 12:5160. [PMID: 35338210 PMCID: PMC8956650 DOI: 10.1038/s41598-022-09163-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 03/15/2022] [Indexed: 11/16/2022] Open
Abstract
Pine wilt disease (PWD), caused by the parasitic nematode Bursaphelenchus xylophilus, or pinewood nematode (PWN), is a serious threat to pine forests in Europe. Pinus pinaster is highly susceptible to the disease and it is currently the most affected European pine species. In this work, we investigated the role of small RNAs (sRNAs) in regulating P. pinaster–PWN interaction in an early stage of infection. After performing an artificial PWN inoculation assay, we have identified 105 plant microRNAs (miRNAs) responsive to PWN. Based on their predicted targets, part of these miRNAs was associated with roles in jasmonate-response pathway, ROS detoxification, and terpenoid biosynthesis. Furthermore, by comparing resistant and susceptible plants, eight miRNAs with putative functions in plant defence and resistance to PWN have been identified. Finally, we explored the possibility of bidirectional trans-kingdom RNA silencing, identifying several P. pinaster genes putatively targeted by PWN miRNAs, which was supported by degradome analysis. Targets for P. pinaster miRNAs were also predicted in PWN, suggesting a role for trans-kingdom miRNA transfer and gene silencing both in PWN parasitism as in P. pinaster resistance to PWD. Our results provide new insights into previously unexplored roles of sRNA post-transcriptional regulation in P. pinaster response and resistance to PWN.
Collapse
|
3
|
Music of metagenomics-a review of its applications, analysis pipeline, and associated tools. Funct Integr Genomics 2021; 22:3-26. [PMID: 34657989 DOI: 10.1007/s10142-021-00810-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 09/25/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022]
Abstract
This humble effort highlights the intricate details of metagenomics in a simple, poetic, and rhythmic way. The paper enforces the significance of the research area, provides details about major analytical methods, examines the taxonomy and assembly of genomes, emphasizes some tools, and concludes by celebrating the richness of the ecosystem populated by the "metagenome."
Collapse
|
4
|
Perdiguero P, Rodrigues AS, Chaves I, Costa B, Alves A, de María N, Vélez MD, Díaz-Sala C, Cervera MT, Miguel CM. Comprehensive analysis of the isomiRome in the vegetative organs of the conifer Pinus pinaster under contrasting water availability. PLANT, CELL & ENVIRONMENT 2021; 44:706-728. [PMID: 33314160 DOI: 10.1111/pce.13976] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
An increasing number of microRNAs (miRNAs) and miRNA-related sequences produced during miRNA biogenesis, comprising the isomiRome, have been recently highlighted in different species as critical mediators of environmental stress responses. Conifers have some of the largest known genomes but an extensive characterization of the isomiRome from any conifer species has been lacking. We provide here a comprehensive overview of the Pinus pinaster isomiRome expressed in roots, stem and needles under well-watered and drought conditions. From the 13,441 unique small RNA sequences identified, 2,980 were annotated as canonical miRNAs or miRNA* and the remaining were classified as isomiRNA or miRNA-like sequences. A survey of their expression patterns highlighted roots as the most responsive organ under drought, where specific sequences of which a 24-nt novel miRNA stood out, were strongly down-regulated. Given the putative roles of the miRNA-targeted transcripts validated specifically in root tissues, some of the miRNAs, conserved and novel, are shortlisted as potential regulators of drought response. These results provide a valuable resource for comparative studies between gymnosperms and angiosperms. Furthermore, it evidences high transferability of the isomiRome between pine species being a useful basis for further molecular regulation and physiological studies, and especially those focused on adaptation to drought conditions.
Collapse
Affiliation(s)
- Pedro Perdiguero
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- Centro de Investigación en Sanidad Animal (CISA-INIA), Madrid, Spain
| | - Andreia Santos Rodrigues
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Inês Chaves
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Bruno Costa
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Ana Alves
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Nuria de María
- Departamento de Ecología y Genética Forestal, INIA-CIFOR, Madrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain
| | - María Dolores Vélez
- Departamento de Ecología y Genética Forestal, INIA-CIFOR, Madrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain
| | - Carmen Díaz-Sala
- Departamento de Ciencias de la Vida, Universidad de Alcalá, Madrid, Spain
| | - María Teresa Cervera
- Departamento de Ecología y Genética Forestal, INIA-CIFOR, Madrid, Spain
- Unidad Mixta de Genómica y Ecofisiología Forestal, INIA/UPM, Madrid, Spain
| | - Célia Maria Miguel
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- BioISI-Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
5
|
Wani SH, Kumar V, Khare T, Guddimalli R, Parveda M, Solymosi K, Suprasanna P, Kavi Kishor PB. Engineering salinity tolerance in plants: progress and prospects. PLANTA 2020; 251:76. [PMID: 32152761 DOI: 10.1007/s00425-020-03366-6] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 02/24/2020] [Indexed: 05/20/2023]
Abstract
There is a need to integrate conceptual framework based on the current understanding of salt stress responses with different approaches for manipulating and improving salt tolerance in crop plants. Soil salinity exerts significant constraints on global crop production, posing a serious challenge for plant breeders and biotechnologists. The classical transgenic approach for enhancing salinity tolerance in plants revolves by boosting endogenous defence mechanisms, often via a single-gene approach, and usually involves the enhanced synthesis of compatible osmolytes, antioxidants, polyamines, maintenance of hormone homeostasis, modification of transporters and/or regulatory proteins, including transcription factors and alternative splicing events. Occasionally, genetic manipulation of regulatory proteins or phytohormone levels confers salinity tolerance, but all these may cause undesired reduction in plant growth and/or yields. In this review, we present and evaluate novel and cutting-edge approaches for engineering salt tolerance in crop plants. First, we cover recent findings regarding the importance of regulatory proteins and transporters, and how they can be used to enhance salt tolerance in crop plants. We also evaluate the importance of halobiomes as a reservoir of genes that can be used for engineering salt tolerance in glycophytic crops. Additionally, the role of microRNAs as critical post-transcriptional regulators in plant adaptive responses to salt stress is reviewed and their use for engineering salt-tolerant crop plants is critically assessed. The potentials of alternative splicing mechanisms and targeted gene-editing technologies in understanding plant salt stress responses and developing salt-tolerant crop plants are also discussed.
Collapse
Affiliation(s)
- Shabir Hussain Wani
- Mountain Research Centre for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, Anantnag, Jammu and Kashmir, 192 101, India.
| | - Vinay Kumar
- Department of Biotechnology, Modern College, Savitribai Phule Pune University, Ganeshkhind, Pune, 411 016, India
- Department of Environmental Science, Savitribai Phule Pune University, Ganeshkhind, Pune, 411 016, India
| | - Tushar Khare
- Department of Biotechnology, Modern College, Savitribai Phule Pune University, Ganeshkhind, Pune, 411 016, India
| | | | | | - Katalin Solymosi
- Department of Plant Anatomy, Institute of Biology, ELTE-Eötvös Loránd University, Budapest, 1053, Hungary
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Trombay, Mumbai, 400 085, India
| | - P B Kavi Kishor
- Department of Biotechnology, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur, 522 213, India
| |
Collapse
|
6
|
Rodrigues AS, Chaves I, Costa BV, Lin YC, Lopes S, Milhinhos A, Van de Peer Y, Miguel CM. Small RNA profiling in Pinus pinaster reveals the transcriptome of developing seeds and highlights differences between zygotic and somatic embryos. Sci Rep 2019; 9:11327. [PMID: 31383905 PMCID: PMC6683148 DOI: 10.1038/s41598-019-47789-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 07/24/2019] [Indexed: 02/07/2023] Open
Abstract
Regulation of seed development by small non-coding RNAs (sRNAs) is an important mechanism controlling a crucial phase of the life cycle of seed plants. In this work, sRNAs from seed tissues (zygotic embryos and megagametophytes) and from somatic embryos of Pinus pinaster were analysed to identify putative regulators of seed/embryo development in conifers. In total, sixteen sRNA libraries covering several developmental stages were sequenced. We show that embryos and megagametophytes express a large population of 21-nt sRNAs and that substantial amounts of 24-nt sRNAs were also detected, especially in somatic embryos. A total of 215 conserved miRNAs, one third of which are conifer-specific, and 212 high-confidence novel miRNAs were annotated. MIR159, MIR171 and MIR394 families were found in embryos, but were greatly reduced in megagametophytes. Other families, like MIR397 and MIR408, predominated in somatic embryos and megagametophytes, suggesting their expression in somatic embryos is associated with in vitro conditions. Analysis of the predicted miRNA targets suggests that miRNA functions are relevant in several processes including transporter activity at the cotyledon-forming stage, and sulfur metabolism across several developmental stages. An important resource for studying conifer embryogenesis is made available here, which may also provide insightful clues for improving clonal propagation via somatic embryogenesis.
Collapse
Affiliation(s)
- Andreia S Rodrigues
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. República, 2780-157, Oeiras, Portugal
| | - Inês Chaves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. República, 2780-157, Oeiras, Portugal
| | - Bruno Vasques Costa
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. República, 2780-157, Oeiras, Portugal
- INESC-ID, Instituto Superior Técnico, Universidade de Lisboa, Rua Alves Redol 9, Lisboa, 1000-029, Portugal
| | - Yao-Cheng Lin
- Biotechnology Center in Southern Taiwan and Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
| | - Susana Lopes
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. República, 2780-157, Oeiras, Portugal
| | - Ana Milhinhos
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. República, 2780-157, Oeiras, Portugal
| | - Yves Van de Peer
- VIB-UGent Center for Plant Systems Biology, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Private bag X20, Pretoria, 0028, South Africa
| | - Célia M Miguel
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB NOVA), Av. República, 2780-157, Oeiras, Portugal.
- BioISI - Biosystems & Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|