1
|
Lim SR, Lee SJ. Multiplex CRISPR-Cas Genome Editing: Next-Generation Microbial Strain Engineering. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:11871-11884. [PMID: 38744727 PMCID: PMC11141556 DOI: 10.1021/acs.jafc.4c01650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/16/2024]
Abstract
Genome editing is a crucial technology for obtaining desired phenotypes in a variety of species, ranging from microbes to plants, animals, and humans. With the advent of CRISPR-Cas technology, it has become possible to edit the intended sequence by modifying the target recognition sequence in guide RNA (gRNA). By expressing multiple gRNAs simultaneously, it is possible to edit multiple targets at the same time, allowing for the simultaneous introduction of various functions into the cell. This can significantly reduce the time and cost of obtaining engineered microbial strains for specific traits. In this review, we investigate the resolution of multiplex genome editing and its application in engineering microorganisms, including bacteria and yeast. Furthermore, we examine how recent advancements in artificial intelligence technology could assist in microbial genome editing and engineering. Based on these insights, we present our perspectives on the future evolution and potential impact of multiplex genome editing technologies in the agriculture and food industry.
Collapse
Affiliation(s)
- Se Ra Lim
- Department of Systems Biotechnology
and Institute of Microbiomics, Chung-Ang
University, Anseong 17546, Republic
of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology
and Institute of Microbiomics, Chung-Ang
University, Anseong 17546, Republic
of Korea
| |
Collapse
|
2
|
Utomo JC, Hodgins CL, Ro DK. Multiplex Genome Editing in Yeast by CRISPR/Cas9 - A Potent and Agile Tool to Reconstruct Complex Metabolic Pathways. FRONTIERS IN PLANT SCIENCE 2021; 12:719148. [PMID: 34421973 PMCID: PMC8374951 DOI: 10.3389/fpls.2021.719148] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 07/14/2021] [Indexed: 05/22/2023]
Abstract
Numerous important pharmaceuticals and nutraceuticals originate from plant specialized metabolites, most of which are synthesized via complex biosynthetic pathways. The elucidation of these pathways is critical for the applicable uses of these compounds. Although the rapid progress of the omics technology has revolutionized the identification of candidate genes involved in these pathways, the functional characterization of these genes remains a major bottleneck. Baker's yeast (Saccharomyces cerevisiae) has been used as a microbial platform for characterizing newly discovered metabolic genes in plant specialized metabolism. Using yeast for the investigation of numerous plant enzymes is a streamlined process because of yeast's efficient transformation, limited endogenous specialized metabolism, partially sharing its primary metabolism with plants, and its capability of post-translational modification. Despite these advantages, reconstructing complex plant biosynthetic pathways in yeast can be time intensive. Since its discovery, CRISPR/Cas9 has greatly stimulated metabolic engineering in yeast. Yeast is a popular system for genome editing due to its efficient homology-directed repair mechanism, which allows precise integration of heterologous genes into its genome. One practical use of CRISPR/Cas9 in yeast is multiplex genome editing aimed at reconstructing complex metabolic pathways. This system has the capability of integrating multiple genes of interest in a single transformation, simplifying the reconstruction of complex pathways. As plant specialized metabolites usually have complex multigene biosynthetic pathways, the multiplex CRISPR/Cas9 system in yeast is suited well for functional genomics research in plant specialized metabolism. Here, we review the most advanced methods to achieve efficient multiplex CRISPR/Cas9 editing in yeast. We will also discuss how this powerful tool has been applied to benefit the study of plant specialized metabolism.
Collapse
|
3
|
Wu N, Lu Q, Wang P, Zhang Q, Zhang J, Qu J, Wang N. Construction and Analysis of GmFAD2-1A and GmFAD2-2A Soybean Fatty Acid Desaturase Mutants Based on CRISPR/Cas9 Technology. Int J Mol Sci 2020; 21:E1104. [PMID: 32046096 PMCID: PMC7037799 DOI: 10.3390/ijms21031104] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 02/02/2020] [Accepted: 02/04/2020] [Indexed: 11/16/2022] Open
Abstract
The soybean fatty acid desaturase family is composed of seven genes, but the function of each gene has not been reported. Bioinformatics was used to analyse the structure of genes in this family, as well as the correlation between Δ12-fatty acid desaturase II (FAD2) expression and oleic acid content on different days after flowering of soybean. In the present study, CRISPR/Cas9 technology was used to construct single and double mutant knockout vectors of functional genes in the FAD2 family. Analysis of the molecular biology and expression patterns of genes in the FAD2 family, namely, GmFAD2-1A (Glyma.10G278000) and GmFAD2-2A (Glyma.19G147300), showed that they had little homology with other soybean FAD2 genes, and that their function was slightly changed. Sequencing of the target showed that the editing efficiency of the GmFAD2-1A and GmFAD2-2A genes was 95% and 55.56%, respectively, and that the double mutant editing efficiency was 66.67%. The mutations were divided into two main types, as follows: base deletion and insertion. A near-infrared grain analyser determined the following results: In the T2 generation, the oleic acid content increased from 17.10% to 73.50%; the linoleic acid content decreased from 62.91% to 12.23%; the protein content increased from 37.69% to 41.16%; in the T3 generation, the oleic acid content increased from 19.15% to 72.02%; the linoleic acid content decreased from 56.58% to 17.27%. In addition, the protein content increased from 37.52% to 40.58% compared to that of the JN38 control variety.
Collapse
Affiliation(s)
- Nan Wu
- Jilin Agricultural Science and Technology University, Jilin 132101, China
- Jilin Agricultural University, the center of plant biotechnology, Chang Chun 130118, China; (Q.Z.); (J.Z.); (J.Q.)
| | - Qiang Lu
- Institute of Agricultural College, Jilin Agricultural University, Chang Chun 130118, China;
| | - Piwu Wang
- Jilin Agricultural University, the center of plant biotechnology, Chang Chun 130118, China; (Q.Z.); (J.Z.); (J.Q.)
| | - Qi Zhang
- Jilin Agricultural University, the center of plant biotechnology, Chang Chun 130118, China; (Q.Z.); (J.Z.); (J.Q.)
| | - Jun Zhang
- Jilin Agricultural University, the center of plant biotechnology, Chang Chun 130118, China; (Q.Z.); (J.Z.); (J.Q.)
| | - Jing Qu
- Jilin Agricultural University, the center of plant biotechnology, Chang Chun 130118, China; (Q.Z.); (J.Z.); (J.Q.)
| | - Nan Wang
- Jilin Agricultural University, the center of plant biotechnology, Chang Chun 130118, China; (Q.Z.); (J.Z.); (J.Q.)
| |
Collapse
|
4
|
Raschmanová H, Weninger A, Glieder A, Kovar K, Vogl T. Implementing CRISPR-Cas technologies in conventional and non-conventional yeasts: Current state and future prospects. Biotechnol Adv 2018; 36:641-665. [PMID: 29331410 DOI: 10.1016/j.biotechadv.2018.01.006] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2017] [Revised: 01/02/2018] [Accepted: 01/09/2018] [Indexed: 12/26/2022]
Abstract
Within five years, the CRISPR-Cas system has emerged as the dominating tool for genome engineering, while also changing the speed and efficiency of metabolic engineering in conventional (Saccharomyces cerevisiae and Schizosaccharomyces pombe) and non-conventional (Yarrowia lipolytica, Pichia pastoris syn. Komagataella phaffii, Kluyveromyces lactis, Candida albicans and C. glabrata) yeasts. Especially in S. cerevisiae, an extensive toolbox of advanced CRISPR-related applications has been established, including crisprTFs and gene drives. The comparison of innovative CRISPR-Cas expression strategies in yeasts presented here may also serve as guideline to implement and refine CRISPR-Cas systems for highly efficient genome editing in other eukaryotic organisms.
Collapse
Affiliation(s)
- Hana Raschmanová
- Department of Biotechnology, University of Chemistry and Technology Prague, Technicka 5, 16628 Prague, Czech Republic
| | - Astrid Weninger
- Institute for Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Anton Glieder
- Institute for Molecular Biotechnology, Graz University of Technology, NAWI Graz, Petersgasse 14, 8010 Graz, Austria
| | - Karin Kovar
- Institute of Chemistry and Biotechnology, Zurich University of Applied Sciences, Grüentalstrasse 14, 8820 Wädenswil, Switzerland
| | - Thomas Vogl
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot 76100, Israel.
| |
Collapse
|
5
|
Ferreira R, Teixeira PG, Siewers V, Nielsen J. Redirection of lipid flux toward phospholipids in yeast increases fatty acid turnover and secretion. Proc Natl Acad Sci U S A 2018; 115:1262-1267. [PMID: 29358378 PMCID: PMC5819412 DOI: 10.1073/pnas.1715282115] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Bio-based production of fatty acids and fatty acid-derived products can enable sustainable substitution of petroleum-derived fuels and chemicals. However, developing new microbial cell factories for producing high levels of fatty acids requires extensive engineering of lipid metabolism, a complex and tightly regulated metabolic network. Here we generated a Saccharomyces cerevisiae platform strain with a simplified lipid metabolism network with high-level production of free fatty acids (FFAs) due to redirected fatty acid metabolism and reduced feedback regulation. Deletion of the main fatty acid activation genes (the first step in β-oxidation), main storage lipid formation genes, and phosphatidate phosphatase genes resulted in a constrained lipid metabolic network in which fatty acid flux was directed to a large extent toward phospholipids. This resulted in simultaneous increases of phospholipids by up to 2.8-fold and of FFAs by up to 40-fold compared with wild-type levels. Further deletion of phospholipase genes PLB1 and PLB2 resulted in a 46% decrease in FFA levels and 105% increase in phospholipid levels, suggesting that phospholipid hydrolysis plays an important role in FFA production when phospholipid levels are increased. The multiple deletion mutant generated allowed for a study of fatty acid dynamics in lipid metabolism and represents a platform strain with interesting properties that provide insight into the future development of lipid-related cell factories.
Collapse
Affiliation(s)
- Raphael Ferreira
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Paulo Gonçalves Teixeira
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden;
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, DK2800 Kongens Lyngby, Denmark
| |
Collapse
|
6
|
Ferreira R, David F, Nielsen J. Advancing biotechnology with CRISPR/Cas9: recent applications and patent landscape. J Ind Microbiol Biotechnol 2018; 45:467-480. [PMID: 29362972 DOI: 10.1007/s10295-017-2000-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 12/19/2017] [Indexed: 12/24/2022]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) is poised to become one of the key scientific discoveries of the twenty-first century. Originating from prokaryotic and archaeal immune systems to counter phage invasions, CRISPR-based applications have been tailored for manipulating a broad range of living organisms. From the different elucidated types of CRISPR mechanisms, the type II system adapted from Streptococcus pyogenes has been the most exploited as a tool for genome engineering and gene regulation. In this review, we describe the different applications of CRISPR/Cas9 technology in the industrial biotechnology field. Next, we detail the current status of the patent landscape, highlighting its exploitation through different companies, and conclude with future perspectives of this technology.
Collapse
Affiliation(s)
- Raphael Ferreira
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Göteborg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Florian David
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Göteborg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 412 96, Göteborg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, 412 96, Göteborg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, 412 96, Göteborg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| |
Collapse
|
7
|
Ferreira R, Skrekas C, Nielsen J, David F. Multiplexed CRISPR/Cas9 Genome Editing and Gene Regulation Using Csy4 in Saccharomyces cerevisiae. ACS Synth Biol 2018; 7:10-15. [PMID: 29161506 DOI: 10.1021/acssynbio.7b00259] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) technology has greatly accelerated the field of strain engineering. However, insufficient efforts have been made toward developing robust multiplexing tools in Saccharomyces cerevisiae. Here, we exploit the RNA processing capacity of the bacterial endoribonuclease Csy4 from Pseudomonas aeruginosa, to generate multiple gRNAs from a single transcript for genome editing and gene interference applications in S. cerevisiae. In regards to genome editing, we performed a quadruple deletion of FAA1, FAA4, POX1 and TES1 reaching 96% efficiency out of 24 colonies tested. Then, we used this system to efficiently transcriptionally regulate the three genes, OLE1, HMG1 and ACS1. Thus, we demonstrate that multiplexed genome editing and gene regulation can be performed in a fast and effective manner using Csy4.
Collapse
Affiliation(s)
- Raphael Ferreira
- Department of Biology and Biological Engineering, Chalmers University of Technology , SE412 96 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology , SE412 96 Gothenburg, Sweden
| | - Christos Skrekas
- Department of Biology and Biological Engineering, Chalmers University of Technology , SE412 96 Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology , SE412 96 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology , SE412 96 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark , DK2800 Kgs. Lyngby, Denmark
| | - Florian David
- Department of Biology and Biological Engineering, Chalmers University of Technology , SE412 96 Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology , SE412 96 Gothenburg, Sweden
| |
Collapse
|