1
|
Giri A, Kar S. Interlinked bi-stable switches govern the cell fate commitment of embryonic stem cells. FEBS Lett 2024; 598:915-934. [PMID: 38408774 DOI: 10.1002/1873-3468.14832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/23/2023] [Accepted: 02/03/2024] [Indexed: 02/28/2024]
Abstract
The development of embryonic stem (ES) cells to extraembryonic trophectoderm and primitive endoderm lineages manifests distinct steady-state expression patterns of two key transcription factors-Oct4 and Nanog. How dynamically such kind of steady-state expressions are maintained remains elusive. Herein, we demonstrate that steady-state dynamics involving two bistable switches which are interlinked via a stepwise (Oct4) and a mushroom-like (Nanog) manner orchestrate the fate specification of ES cells. Our hypothesis qualitatively reconciles various experimental observations and elucidates how different feedback and feedforward motifs orchestrate the extraembryonic development and stemness maintenance of ES cells. Importantly, the model predicts strategies to optimize the dynamics of self-renewal and differentiation of embryonic stem cells that may have therapeutic relevance in the future.
Collapse
Affiliation(s)
- Amitava Giri
- Department of Chemistry, IIT Bombay, Powai, India
| | - Sandip Kar
- Department of Chemistry, IIT Bombay, Powai, India
| |
Collapse
|
2
|
Govindaraj V, Sarma S, Karulkar A, Purwar R, Kar S. Transcriptional Fluctuations Govern the Serum-Dependent Cell Cycle Duration Heterogeneities in Mammalian Cells. ACS Synth Biol 2022; 11:3743-3758. [PMID: 36325971 DOI: 10.1021/acssynbio.2c00347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Mammalian cells exhibit a high degree of intercellular variability in cell cycle period and phase durations. However, the factors orchestrating the cell cycle duration heterogeneities remain unclear. Herein, by combining cell cycle network-based mathematical models with live single-cell imaging studies under varied serum conditions, we demonstrate that fluctuating transcription rates of cell cycle regulatory genes across cell lineages and during cell cycle progression in mammalian cells majorly govern the robust correlation patterns of cell cycle period and phase durations among sister, cousin, and mother-daughter lineage pairs. However, for the overall cellular population, alteration in the serum level modulates the fluctuation and correlation patterns of cell cycle period and phase durations in a correlated manner. These heterogeneities at the population level can be fine-tuned under limited serum conditions by perturbing the cell cycle network using a p38-signaling inhibitor without affecting the robust lineage-level correlations. Overall, our approach identifies transcriptional fluctuations as the key controlling factor for the cell cycle duration heterogeneities and predicts ways to reduce cell-to-cell variabilities by perturbing the cell cycle network regulations.
Collapse
Affiliation(s)
| | - Subrot Sarma
- Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| | - Atharva Karulkar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Rahul Purwar
- Department of Biosciences and Bioengineering, IIT Bombay, Powai, Mumbai 400076, India
| | - Sandip Kar
- Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
3
|
Chen C, Bao H, Lin W, Chen X, Huang Y, Wang H, Yang Y, Liu J, Lv X, Teng L. ASF1b is a novel prognostic predictor associated with cell cycle signaling pathway in gastric cancer. J Cancer 2022; 13:1985-2000. [PMID: 35399734 PMCID: PMC8990430 DOI: 10.7150/jca.69544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 03/17/2022] [Indexed: 12/16/2022] Open
Abstract
Gastric cancer (GC) is one of the most common malignant tumors with poor outcomes. Identification of new therapeutic targets is urgently needed. Accumulating evidence has shown that anti-silencing function 1b (ASF1b) contributes to the progression in multiple cancer types. However, detailed mechanisms of ASF1b tumorigenesis in gastric cancer remain elusive. This study showed that ASF1b was upregulated in GC tissues and remarkably correlated with TNM stage, histological grade and poor prognosis of GC. We induced down and up-regulation of ASF1b in GC cell lines and monitored the changes in their biological behavior. Furthermore, loss of ASF1b was efficient to suppress subcutaneous xenograft tumor growth in vivo. We demonstrate that ASF1b is involved in regulation of cell cycle and PI3K/AKT/mTOR signaling through experiments and database analysis. Mechanistically, ASF1b promoted the proliferation, migration and invasion of GC cells. Taken together, this study highlights the role of ASF1b, which provided new insights into the underlying mechanism of progression and metastasis in GC for the first time.
Collapse
Affiliation(s)
- Chuanzhi Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Haili Bao
- Department of Organ Transplantation, Shanghai Changzheng Hospital, Navy Military Medical University, Shanghai, 200003, China
| | - Wu Lin
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiangliu Chen
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yingying Huang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Haohao Wang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Yan Yang
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Jin Liu
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Xiadong Lv
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| | - Lisong Teng
- Department of Surgical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
4
|
Giri A, Kar S. Incoherent modulation of bi-stable dynamics orchestrates the Mushroom and Isola bifurcations. J Theor Biol 2021; 530:110882. [PMID: 34454943 DOI: 10.1016/j.jtbi.2021.110882] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 08/05/2021] [Accepted: 08/23/2021] [Indexed: 11/24/2022]
Abstract
In biological networks, steady state dynamics of cell-fate regulatory genes often exhibit Mushroom and Isola kind of bifurcations. How these complex bifurcations emerge for these complex networks, and what are the minimal network structures that can generate these bifurcations, remain elusive. Herein, by employing Waddington's landscape theory and bifurcation analysis, we demonstrate that Mushroom and Isola bifurcations can be realized with four minimal network motifs that are constituted by combining a positive feedback motif with various incoherent feed-forward loops. Our study reveals that the intrinsic bi-stable dynamics originating from the positive feedback motif can be fine-tuned by altering the extent of the incoherence of these minimal networks to produce these complex bifurcations. These modeling insights will be useful in identifying the possible network motifs that may give rise to either Mushroom or Isola bifurcation in other biological systems.
Collapse
Affiliation(s)
- Amitava Giri
- Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India
| | - Sandip Kar
- Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
5
|
Samanta T, Kar S. Unraveling the origin of glucose mediated disparate proliferation dynamics of cancer stem cells. J Theor Biol 2021; 526:110774. [PMID: 34044006 DOI: 10.1016/j.jtbi.2021.110774] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
Cancer stem cells (CSCs) often switch on their self-renewal programming aggressively to cause a relapse of cancer. Intriguingly, glucose triggers the proliferation propensities in CSCs by controlling the expression of the key transcription factor-like Nanog. However, the factors that critically govern this glucose-stimulated proliferation dynamics of CSCs remain elusive. Herein, by proposing a mathematical model of glucose-mediated Nanog regulation, we showed that the differential proliferation behavior of CSCs and cell-type similar to CSCs can be explained by considering the experimentally observed varied expression levels of key positive (STAT3) and negative (p53) regulators of Nanog. Our model reconciles various experimental observations and predicts ways to fine-tune the proliferation dynamics of these cell types in a context-dependent manner. In future, these modeling insights will be useful in developing improved therapeutic strategies to get rid of harmful CSCs.
Collapse
Affiliation(s)
- Tagari Samanta
- Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India.
| | - Sandip Kar
- Department of Chemistry, IIT Bombay, Powai, Mumbai 400076, India.
| |
Collapse
|
6
|
Kirunda JB, Yang L, Lu L, Jia Y. Effects of noise and time delay on E2F's expression level in a bistable Rb-E2F gene's regulatory network. IET Syst Biol 2021; 15:111-125. [PMID: 33881232 PMCID: PMC8675803 DOI: 10.1049/syb2.12017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
The bistable Rb-E2F gene regulatory network plays a central role in regulating cellular proliferation-quiescence transition. Based on Gillespie's chemical Langevin method, the stochastic bistable Rb-E2F gene's regulatory network with time delays is proposed. It is found that under the moderate intensity of internal noise, delay in the Cyclin E synthesis rate can greatly increase the average concentration value of E2F. When the delay is considered in both E2F-related positive feedback loops, within a specific range of delay (3-13) hr , the average expression of E2F is significantly increased. Also, this range is in the scope with that experimentally given by Dong et al. [65]. By analysing the quasi-potential curves at different delay times, simulation results show that delay regulates the dynamic behaviour of the system in the following way: small delay stabilises the bistable system; the medium delay is conducive to a high steady-state, making the system fluctuate near the high steady-state; large delay induces approximately periodic transitions between high and low steady-state. Therefore, by regulating noise and time delay, the cell itself can control the expression level of E2F to respond to different situations. These findings may provide an explanation of some experimental result intricacies related to the cell cycle.
Collapse
Affiliation(s)
- John Billy Kirunda
- Department of Physics and Institute of Biophysics, Central China Normal University, Wuhan, China
| | - Lijian Yang
- Department of Physics and Institute of Biophysics, Central China Normal University, Wuhan, China
| | - Lulu Lu
- Department of Physics and Institute of Biophysics, Central China Normal University, Wuhan, China
| | - Ya Jia
- Department of Physics and Institute of Biophysics, Central China Normal University, Wuhan, China
| |
Collapse
|