1
|
Takasaki R, Ito E, Nagae M, Takahashi Y, Matsuoka T, Yasue W, Arichi N, Ohno H, Yamasaki S, Inuki S. Development of Ribityllumazine Analogue as Mucosal-Associated Invariant T Cell Ligands. J Am Chem Soc 2024; 146:29964-29976. [PMID: 39432319 DOI: 10.1021/jacs.4c12997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Mucosal-associated invariant T (MAIT) cells are a subset of innate-like T cells abundant in human tissues that play a significant role in defense against bacterial and viral infections and in tissue repair. MAIT cells are activated by recognizing microbial-derived small-molecule ligands presented by the MHC class I related-1 protein. Although several MAIT cell modulators have been identified in the past decade, potent and chemically stable ligands remain limited. Herein, we carried out a structure-activity relationship study of ribityllumazine derivatives and found a chemically stable MAIT cell ligand with a pteridine core and a 2-oxopropyl group as the Lys-reactive group. The ligand showed high potency in a cocultivation assay using model cell lines of antigen-presenting cells and MAIT cells. The X-ray crystallographic analysis revealed the binding mode of the ligand to MR1 and the T cell receptor, indicating that it forms a covalent bond with MR1 via Schiff base formation. Furthermore, we found that the ligand stimulated proliferation of human MAIT cells in human peripheral blood mononuclear cells and showed an adjuvant effect in mice. Our developed ligand is one of the most potent among chemically stable MAIT cell ligands, contributing to accelerating therapeutic applications of MAIT cells.
Collapse
Affiliation(s)
- Ryosuke Takasaki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Emi Ito
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Masamichi Nagae
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuki Takahashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Takuro Matsuoka
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Wakana Yasue
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Norihito Arichi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
| | - Sho Yamasaki
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
- Immunology Frontier Research Center (IFReC), Osaka University, Suita, Osaka 565-0871, Japan
| | - Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto, Kyoto 606-8501, Japan
- Graduate School of Biomedical Sciences, Tokushima University, Tokushima, Tokushima 770-8505, Japan
| |
Collapse
|
2
|
Gong X, Wani MY, Al-Bogami AS, Ahmad A, Robinson K, Khan A. The Road Ahead: Advancing Antifungal Vaccines and Addressing Fungal Infections in the Post-COVID World. ACS Infect Dis 2024; 10:3475-3495. [PMID: 39255073 DOI: 10.1021/acsinfecdis.4c00245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In impoverished nations, the COVID-19 pandemic has led to a widespread occurrence of deadly fungal diseases like mucormycosis. The limited availability of effective antifungal treatments and the emergence of drug-resistant fungal strains further exacerbate the situation. Factors such as systemic steroid use, intravenous drug misuse, and overutilization of broad-spectrum antimicrobials contribute to the prevalence of hospital-acquired infections caused by drug-resistant fungi. Fungal infections exploit compromised immune status and employ intricate mechanisms to evade immune surveillance. The immune response involves the innate and adaptive immune systems, leading to phagocytic and complement-mediated elimination of fungi. However, resistance to antifungals poses a challenge, highlighting the importance of antifungal prophylaxis and therapeutic vaccination. Understanding the host-fungal immunological interactions and developing vaccines are vital in combating fungal infections. Further research is needed to address the high mortality and morbidity associated with multidrug-resistant fungal pathogens and to develop innovative treatment drugs and vaccines. This review focuses on the global epidemiological burden of fungal infections, host-fungal immunological interactions, recent advancements in vaccine development and the road ahead.
Collapse
Affiliation(s)
- Xiaolong Gong
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
| | - Mohmmad Younus Wani
- Department of Chemistry, College of Science, University of Jeddah, 21589, Jeddah, Saudi Arabia
| | - Abdullah Saad Al-Bogami
- Department of Chemistry, College of Science, University of Jeddah, 21589, Jeddah, Saudi Arabia
| | - Aijaz Ahmad
- Clinical Microbiology and Infectious Diseases, School of Pathology, Health Sciences, University of the Witwatersrand, Johannesburg, 2193, South Africa
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, United States
| | - Keven Robinson
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15213, United States
| | - Amber Khan
- Division of Infectious Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
3
|
Mak JYW, Rivero RJD, Hoang HN, Lim XY, Deng J, McWilliam HEG, Villadangos JA, McCluskey J, Corbett AJ, Fairlie DP. Potent Immunomodulators Developed from an Unstable Bacterial Metabolite of Vitamin B2 Biosynthesis. Angew Chem Int Ed Engl 2024; 63:e202400632. [PMID: 38679861 DOI: 10.1002/anie.202400632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 05/01/2024]
Abstract
Bacterial synthesis of vitamin B2 generates a by-product, 5-(2-oxopropylideneamino)-d-ribityl-aminouracil (5-OP-RU), with potent immunological properties in mammals, but it is rapidly degraded in water. This natural product covalently bonds to the key immunological protein MR1 in the endoplasmic reticulum of antigen presenting cells (APCs), enabling MR1 refolding and trafficking to the cell surface, where it interacts with T cell receptors (TCRs) on mucosal associated invariant T lymphocytes (MAIT cells), activating their immunological and antimicrobial properties. Here, we strategically modify this natural product to understand the molecular basis of its recognition by MR1. This culminated in the discovery of new water-stable compounds with extremely powerful and distinctive immunological functions. We report their capacity to bind MR1 inside APCs, triggering its expression on the cell surface (EC50 17 nM), and their potent activation (EC50 56 pM) or inhibition (IC50 80 nM) of interacting MAIT cells. We further derivatize compounds with diazirine-alkyne, biotin, or fluorophore (Cy5 or AF647) labels for detecting, monitoring, and studying cellular MR1. Computer modeling casts new light on the molecular mechanism of activation, revealing that potent activators are first captured in a tyrosine- and serine-lined cleft in MR1 via specific pi-interactions and H-bonds, before more tightly attaching via a covalent bond to Lys43 in MR1. This chemical study advances our molecular understanding of how bacterial metabolites are captured by MR1, influence cell surface expression of MR1, interact with T cells to induce immunity, and offers novel clues for developing new vaccine adjuvants, immunotherapeutics, and anticancer drugs.
Collapse
Affiliation(s)
- Jeffrey Y W Mak
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Ryan J D Rivero
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Huy N Hoang
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| | - Xin Yi Lim
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Jieru Deng
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Hamish E G McWilliam
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Jose A Villadangos
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
- Department of Biochemistry and Pharmacology Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, 3010, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, The University of Melbourne, at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, 3000, Australia
| | - David P Fairlie
- Centre for Chemistry and Drug Discovery and ARC Centre of Excellence for Innovations in Peptide and Protein Science Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland, 4072, Australia
| |
Collapse
|
4
|
Paterson RL, La Manna MP, Arena De Souza V, Walker A, Gibbs-Howe D, Kulkarni R, Fergusson JR, Mulakkal NC, Monteiro M, Bunjobpol W, Dembek M, Martin-Urdiroz M, Grant T, Barber C, Garay-Baquero DJ, Tezera LB, Lowne D, Britton-Rivet C, Pengelly R, Chepisiuk N, Singh PK, Woon AP, Powlesland AS, McCully ML, Caccamo N, Salio M, Badami GD, Dorrell L, Knox A, Robinson R, Elkington P, Dieli F, Lepore M, Leonard S, Godinho LF. An HLA-E-targeted TCR bispecific molecule redirects T cell immunity against Mycobacterium tuberculosis. Proc Natl Acad Sci U S A 2024; 121:e2318003121. [PMID: 38691588 PMCID: PMC11087797 DOI: 10.1073/pnas.2318003121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 03/08/2024] [Indexed: 05/03/2024] Open
Abstract
Peptides presented by HLA-E, a molecule with very limited polymorphism, represent attractive targets for T cell receptor (TCR)-based immunotherapies to circumvent the limitations imposed by the high polymorphism of classical HLA genes in the human population. Here, we describe a TCR-based bispecific molecule that potently and selectively binds HLA-E in complex with a peptide encoded by the inhA gene of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis in humans. We reveal the biophysical and structural bases underpinning the potency and specificity of this molecule and demonstrate its ability to redirect polyclonal T cells to target HLA-E-expressing cells transduced with mycobacterial inhA as well as primary cells infected with virulent Mtb. Additionally, we demonstrate elimination of Mtb-infected cells and reduction of intracellular Mtb growth. Our study suggests an approach to enhance host T cell immunity against Mtb and provides proof of principle for an innovative TCR-based therapeutic strategy overcoming HLA polymorphism and therefore applicable to a broader patient population.
Collapse
Affiliation(s)
| | - Marco P. La Manna
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo90127, Italy
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone, University of Palermo, Palermo90127, Italy
| | | | - Andrew Walker
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Dawn Gibbs-Howe
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Rakesh Kulkarni
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | | | - Mauro Monteiro
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | - Marcin Dembek
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | - Tressan Grant
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Claire Barber
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Diana J. Garay-Baquero
- National Institute for Health and Care Research, Biomedical Research Centre and Institute for Life Sciences, Faculty of Medicine, University of Southampton, SouthamptonSO16 6YD, United Kingdom
| | - Liku Bekele Tezera
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo90127, Italy
| | - David Lowne
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | - Robert Pengelly
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | | | - Amanda P. Woon
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | | | | | - Nadia Caccamo
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo90127, Italy
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone, University of Palermo, Palermo90127, Italy
| | - Mariolina Salio
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Giusto Davide Badami
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo90127, Italy
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone, University of Palermo, Palermo90127, Italy
| | - Lucy Dorrell
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Andrew Knox
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Ross Robinson
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Paul Elkington
- National Institute for Health and Care Research, Biomedical Research Centre and Institute for Life Sciences, Faculty of Medicine, University of Southampton, SouthamptonSO16 6YD, United Kingdom
| | - Francesco Dieli
- Department of Biomedicine, Neurosciences and Advanced Diagnostic, University of Palermo, Palermo90127, Italy
- Central Laboratory of Advanced Diagnosis and Biomedical Research, Azienda Ospedaliera Universitaria Policlinico Paolo Giaccone, University of Palermo, Palermo90127, Italy
| | - Marco Lepore
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Sarah Leonard
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| | - Luis F. Godinho
- Immunocore Ltd., Abingdon, OxfordshireOX14 4RY, United Kingdom
| |
Collapse
|
5
|
N’guessan KF, Machmach K, Swafford I, Costanzo MC, Wieczorek L, Kim D, Akapirat S, Polonis VR, Pitisuttithum P, Nitayaphan S, Gurunathan S, Sinangil F, Chariyalertsak S, Ake JA, O’connell RJ, Vasan S, Paquin-Proulx D. Innate immune cell activation after HIV-1 vaccine administration is associated with increased antibody production. Front Immunol 2024; 15:1339727. [PMID: 38420129 PMCID: PMC10900843 DOI: 10.3389/fimmu.2024.1339727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 01/25/2024] [Indexed: 03/02/2024] Open
Abstract
The RV144 Thai phase III clinical trial's canarypox-protein HIV vaccine regimen showed modest efficacy in reducing infection. We therefore sought to determine the effects of vaccine administration on innate cell activation and subsequent associations with vaccine-induced immune responses. RV306 was a randomized, double-blind clinical trial in HIV-uninfected Thai adults that tested delayed boosting following the RV144 regimen. PBMC collected from RV306 participants prior to and 3 days after the last boost were used to investigate innate immune cell activation. Our analysis showed an increase in CD38+ mucosal associated invariant T (MAIT) cells, CD38+ invariant natural killer T (iNKT) cells, CD38+ γδ T cells, CD38+, CD69+ and HLA-DR+ NK cells 3 days after vaccine administration. An increase in CD14-CD16+ non-classical monocytes and CD14+CD16+ intermediate monocytes accompanied by a decrease in CD14+CD16- classical monocytes was also associated with vaccine administration. Inclusion of ALVAC-HIV in the boost did not further increase MAIT, iNKT, γδ T, and NK cell activation or increase the proportion of non-classical monocytes. Additionally, NK cell activation 3 days after vaccination was positively associated with antibody titers of HIV Env-specific total IgG and IgG1. Vδ1 T cell activation 3 days after vaccine administration was associated with HIV Env-specific IgG3 titers. Finally, we observed trending associations between MAIT cell activation and Env-specific IgG3 titers and between NK cell activation and TH023 pseudovirus neutralization titers. Our study identifies a potential role for innate cells, specifically NK, MAIT, and γδ T cells, in promoting antibody responses following HIV-1 vaccine administration.
Collapse
Affiliation(s)
- Kombo F. N’guessan
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Kawthar Machmach
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Isabella Swafford
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Margaret C. Costanzo
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Lindsay Wieczorek
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Dohoon Kim
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Siriwat Akapirat
- Military HIV Research Program (MHRP), Armed Forces Research Institute for Medical Sciences, Bangkok, Thailand
| | - Victoria R. Polonis
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | | | - Sorachai Nitayaphan
- Military HIV Research Program (MHRP), Armed Forces Research Institute for Medical Sciences, Bangkok, Thailand
| | | | - Faruk Sinangil
- Global Solutions for Infectious Diseases, Lafayette, CA, United States
| | - Suwat Chariyalertsak
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
- Faculty of Public Health, Chiang Mai University, Chiang Mai, Thailand
| | - Julie A. Ake
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Robert J. O’connell
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Military HIV Research Program (MHRP), Armed Forces Research Institute for Medical Sciences, Bangkok, Thailand
| | - Sandhya Vasan
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Dominic Paquin-Proulx
- United States Military HIV Research Program, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Military HIV Research Program (MHRP), Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| |
Collapse
|
6
|
Wu S, Yang X, Lou Y, Xiao X. MAIT cells in bacterial infectious diseases: heroes, villains, or both? Clin Exp Immunol 2023; 214:144-153. [PMID: 37624404 PMCID: PMC10714195 DOI: 10.1093/cei/uxad102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 08/20/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023] Open
Abstract
Due to the aggravation of bacterial drug resistance and the lag in the development of new antibiotics, it is crucial to develop novel therapeutic regimens for bacterial infectious diseases. Currently, immunotherapy is a promising regimen for the treatment of infectious diseases. Mucosal-associated invariant T (MAIT) cells, a subpopulation of innate-like T cells, are abundant in humans and can mount a rapid immune response to pathogens, thus becoming a potential target of immunotherapy for infectious diseases. At the site of infection, activated MAIT cells perform complex biological functions by secreting a variety of cytokines and cytotoxic substances. Many studies have shown that MAIT cells have immunoprotective effects because they can bridge innate and adaptive immune responses, leading to bacterial clearance, tissue repair, and homeostasis maintenance. MAIT cells also participate in cytokine storm generation, tissue fibrosis, and cancer progression, indicating that they play a role in immunopathology. In this article, we review recent studies of MAIT cells, discuss their dual roles in bacterial infectious diseases and provide some promising MAIT cell-targeting strategies for the treatment of bacterial infectious diseases.
Collapse
Affiliation(s)
- Sihong Wu
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xi Yang
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yongliang Lou
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xingxing Xiao
- Wenzhou Key Laboratory of Sanitary Microbiology, Key Laboratory of Laboratory Medicine, Ministry of Education, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
Kulicke CA, De Zan E, Hein Z, Gonzalez-Lopez C, Ghanwat S, Veerapen N, Besra GS, Klenerman P, Christianson JC, Springer S, Nijman SM, Cerundolo V, Salio M. The P5-type ATPase ATP13A1 modulates major histocompatibility complex I-related protein 1 (MR1)-mediated antigen presentation. J Biol Chem 2022; 298:101542. [PMID: 34968463 PMCID: PMC8808182 DOI: 10.1016/j.jbc.2021.101542] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/08/2022] Open
Abstract
The monomorphic antigen-presenting molecule major histocompatibility complex-I-related protein 1 (MR1) presents small-molecule metabolites to mucosal-associated invariant T (MAIT) cells. The MR1-MAIT cell axis has been implicated in a variety of infectious and noncommunicable diseases, and recent studies have begun to develop an understanding of the molecular mechanisms underlying this specialized antigen presentation pathway. However, proteins regulating MR1 folding, loading, stability, and surface expression remain to be identified. Here, we performed a gene trap screen to discover novel modulators of MR1 surface expression through insertional mutagenesis of an MR1-overexpressing clone derived from the near-haploid human cell line HAP1 (HAP1.MR1). The most significant positive regulators identified included β2-microglobulin, a known regulator of MR1 surface expression, and ATP13A1, a P5-type ATPase in the endoplasmic reticulum (ER) not previously known to be associated with MR1-mediated antigen presentation. CRISPR/Cas9-mediated knockout of ATP13A1 in both HAP1.MR1 and THP-1 cell lines revealed a profound reduction in MR1 protein levels and a concomitant functional defect specific to MR1-mediated antigen presentation. Collectively, these data are consistent with the ER-resident ATP13A1 being a key posttranscriptional determinant of MR1 surface expression.
Collapse
Affiliation(s)
- Corinna A Kulicke
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| | - Erica De Zan
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research Ltd and Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Zeynep Hein
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Claudia Gonzalez-Lopez
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Swapnil Ghanwat
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Natacha Veerapen
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Birmingham, United Kingdom
| | - Paul Klenerman
- Peter Medawar Building, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom; Translational Gastroenterology Unit, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John C Christianson
- Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, Botnar Research Centre, University of Oxford, Oxford, United Kingdom
| | - Sebastian Springer
- Department of Life Sciences and Chemistry, Jacobs University, Bremen, Germany
| | - Sebastian M Nijman
- Nuffield Department of Medicine, Ludwig Institute for Cancer Research Ltd and Target Discovery Institute, University of Oxford, Oxford, United Kingdom
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Mariolina Salio
- MRC Human Immunology Unit, Radcliffe Department of Medicine, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom.
| |
Collapse
|
8
|
Cooper AJR, Clegg J, Cassidy FC, Hogan AE, McLoughlin RM. Human MAIT Cells Respond to Staphylococcus aureus with Enhanced Anti-Bacterial Activity. Microorganisms 2022; 10:microorganisms10010148. [PMID: 35056597 PMCID: PMC8778732 DOI: 10.3390/microorganisms10010148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/24/2021] [Accepted: 01/05/2022] [Indexed: 01/27/2023] Open
Abstract
Mucosal-Associated Invariant T (MAIT) cells have been shown to play protective roles during infection with diverse pathogens through their propensity for rapid innate-like cytokine production and cytotoxicity. Among the potential applications for MAIT cells is to defend against Staphylococcus aureus, a pathogen of serious clinical significance. However, it is unknown how MAIT cell responses to S. aureus are elicited, nor has it been investigated whether MAIT cell cytotoxicity is mobilized against intracellular S. aureus. In this study, we investigate the capacity of human MAIT cells to respond directly to S. aureus. MAIT cells co-cultured with dendritic cells (DCs) infected with S. aureus rapidly upregulate CD69, express IFNγ and Granzyme B and degranulate. DC secretion of IL-12, but not IL-18, was implicated in this immune response, while TCR binding of MR1 is required to commence cytokine production. MAIT cell cytotoxicity resulted in apoptosis of S. aureus-infected cells, and reduced intracellular persistence of S. aureus. These findings implicate these unconventional T cells in important, rapid anti-S. aureus responses that may be of great relevance to the ongoing development of novel anti-S. aureus treatments.
Collapse
Affiliation(s)
- Andrew J. R. Cooper
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland; (A.J.R.C.); (J.C.)
| | - Jonah Clegg
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland; (A.J.R.C.); (J.C.)
| | - Féaron C. Cassidy
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2K8 Maynooth, Ireland; (F.C.C.); (A.E.H.)
| | - Andrew E. Hogan
- Kathleen Lonsdale Institute for Human Health Research, Maynooth University, W23 F2K8 Maynooth, Ireland; (F.C.C.); (A.E.H.)
| | - Rachel M. McLoughlin
- Host Pathogen Interactions Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland; (A.J.R.C.); (J.C.)
- Correspondence: ; Tel.: +353-1-896-2526
| |
Collapse
|
9
|
Soma S, Lewinsohn DA, Lewinsohn DM. Donor Unrestricted T Cells: Linking innate and adaptive immunity. Vaccine 2021; 39:7295-7299. [PMID: 34740474 DOI: 10.1016/j.vaccine.2021.10.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 10/06/2021] [Accepted: 10/19/2021] [Indexed: 12/11/2022]
Abstract
Donor Unrestricted T Cells (DURTs) are characterized by their use of antigen presentation molecules that are often invariant. As these cells recognize diverse mycobacterial antigens, often found in BCG, these cells have the potential to either serve as targets for vaccination, or as a means to enable the induction of traditional T and B cell immunity. Here, we will review specific DURT family members, and their relationship to BCG.
Collapse
Affiliation(s)
- Shogo Soma
- Pulmonary and Critical Care Medicine, Department of Medicine, Oregon Health & Science University, Portland, OR 97239, United States
| | - Deborah A Lewinsohn
- Division of Pediatric Infectious Disease, Department of Pediatrics, Oregon Health & Science University, Portland, OR. 97239, United States
| | - David M Lewinsohn
- Division of Pulmonary & Critical Care Medicine, Department of Medicine, Portland VA Medical Center, Oregon Health & Science University, United States.
| |
Collapse
|
10
|
Mak JYW, Liu L, Fairlie DP. Chemical Modulators of Mucosal Associated Invariant T Cells. Acc Chem Res 2021; 54:3462-3475. [PMID: 34415738 DOI: 10.1021/acs.accounts.1c00359] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Over the past decade, we have contributed to the chemistry of microbial natural products and synthetic ligands, related to riboflavin and uracils, that modulate immune cells called mucosal associated invariant T cells (MAIT cells). These highly abundant T lymphocytes were only discovered in 2003 and have become recognized for their importance in mammalian immunology. Unlike other T cells, MAIT cells are not activated by peptide or lipid antigens. In collaboration with immunology and structural biology research groups, we discovered that they are instead activated by unstable nitrogen-containing heterocycles synthesized by bacteria. The most potent naturally occurring activating compound (antigen) is 5-(2-oxopropylideneamino)-d-ribitylaminouracil (5-OP-RU). This compound is an imine (Schiff base) formed through condensation between an intermediate in the biosynthesis of riboflavin (vitamin B2) and a metabolic byproduct of mammalian and microbial glycolysis. Although it is very unstable in water due to intramolecular ring closure or hydrolysis, we were able to develop a non-enzymatic synthesis that yields a pure kinetically stable compound in a nonaqueous solvent. This compound has revolutionized the study of MAIT cell immunology due to its potent activation (EC50 = 2 pM) of MAIT cells and its development into immunological reagents for detecting and characterizing MAIT cells in tissues. MAIT cells are now linked to key physiological processes and disease, including antibacterial defense, tissue repair, regulation of graft-vs-host disease, gastritis, inflammatory bowel diseases, and cancer. 5-OP-RU activates MAIT cells and, like a vaccine, has been shown to protect mice from bacterial infections and cancers. Mechanistic studies on the binding of 5-OP-RU to its dual protein targets, the major histocompatibility complex class I related protein (MR1) and the MAIT cell receptor (MAIT TCR), have involved synthetic chemistry, 2D 1H NMR spectroscopy, mass spectrometry, computer modeling and molecular dynamics simulations, biochemical, cellular, and immunological assays, and protein structural biology. These combined studies have revealed structural influences for 5-OP-RU in solution on protein binding and antigen presentation and potency; informed the development of potent (EC50 = 2 nM) and water stable analogues; led to fluorescent analogues for detecting and tracking binding proteins in and on cells; and enabled discovery of drugs and drug-like molecules that bind MR1 and modulate MAIT cell function. MAIT cells offer new opportunities for chemical synthesis to enhance the stability, potency, selectivity, and bioavailability of small molecule ligands for MR1 or MAIT TCR proteins, and to contribute to the understanding of T cell immunity and the development of prospective new immunomodulating medicines.
Collapse
Affiliation(s)
- Jeffrey Y. W. Mak
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of QueenslandBrisbane, Queensland 4072, Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of QueenslandBrisbane, Queensland 4072, Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology, Institute for Molecular Bioscience, The University of Queensland, Brisbane, Queensland 4072, Australia
- Australian Research Council Centre of Excellence in Advanced Molecular Imaging, Institute for Molecular Bioscience, The University of QueenslandBrisbane, Queensland 4072, Australia
- Centre for Inflammation and Disease Research, Institute for Molecular Bioscience, The University of QueenslandBrisbane, Queensland 4072, Australia
| |
Collapse
|
11
|
Masina N, Bekiswa A, Shey M. Mucosal-associated invariant T cells in natural immunity and vaccination against infectious diseases in humans. Curr Opin Immunol 2021; 71:1-5. [PMID: 33773437 DOI: 10.1016/j.coi.2021.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/10/2021] [Indexed: 10/21/2022]
Abstract
Mucosal-associated invariant T (MAIT) cells are subsets of T cells abundant in human mucosal tissues and in blood. These cells are activated directly by cytokines or by vitamin B metabolites antigen presentation. MAIT cells possess antimicrobial potential against viruses and bacteria through production of cytokines and cytotoxic molecules. MAIT cells generally reduce in numbers and function during viral and bacterial infections/diseases. Mice and humans lacking MAIT cells cannot effectively control bacterial infections. MAIT cells respond rapidly to infections and are rapidly recruited to the site of vaccination or infection including the lungs where they can be involved in controlling local inflammation. These characteristics of MAIT cells offer them a unique potential to be explored as potential targets for vaccines.
Collapse
Affiliation(s)
- Nomawethu Masina
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Abulele Bekiswa
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Muki Shey
- Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Disease and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa; Department of Medicine, Faculty of Health Sciences, University of Cape Town, South Africa.
| |
Collapse
|
12
|
Ferrell KC, Stewart EL, Counoupas C, Ashhurst TM, Britton WJ, Petrovsky N, Triccas JA. Intrapulmonary vaccination with delta-inulin adjuvant stimulates non-polarised chemotactic signalling and diverse cellular interaction. Mucosal Immunol 2021; 14:762-773. [PMID: 33542494 PMCID: PMC7859722 DOI: 10.1038/s41385-021-00379-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/17/2020] [Accepted: 01/05/2021] [Indexed: 02/04/2023]
Abstract
There is an urgent need for novel vaccination strategies to combat respiratory pathogens. Mucosal vaccine delivery is an attractive option as it directly targets the site of infection; however, preclinical development has been hindered by a lack of suitable mucosal adjuvants and a limited understanding of their immune effects in the lung environment. Herein, we define the early immune events following the intrapulmonary delivery of a vaccine incorporating the adjuvant delta-inulin. Analysis of the early inflammatory response showed vaccine-induced innate cell recruitment to lungs and local lymph nodes (LN) was transient and non-polarised, correlating with an increase in pulmonary chemotactic factors. Use of fluorescently labelled adjuvant revealed widespread tissue dissemination of adjuvant particles, coupled with broad cellular uptake and transit to the lung-draining LN by a range of innate immune cells. Mass cytometric analysis revealed extensive phenotypic changes in innate and adaptive cell subsets induced by vaccination; this included identification of unconventional lymphocytes such as γδ-T cells and MAIT cells that increased following vaccination and displayed an activated phenotype. This study details a comprehensive view of the immune response to intrapulmonary adjuvant administration and provides pre-clinical evidence to support delta-inulin as a suitable adjuvant for pulmonary vaccines.
Collapse
Affiliation(s)
- Kia C Ferrell
- Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Erica L Stewart
- Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale and Flinders University, Adelaide, Australia
| | - Claudio Counoupas
- Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
| | - Thomas M Ashhurst
- Sydney Cytometry Core Research Facility, Centenary Institute and The University of Sydney, Camperdown, NSW, Australia
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia
| | - Warwick J Britton
- Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Camperdown, NSW, Australia
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia
| | - Nikolai Petrovsky
- Vaxine Pty Ltd, 11 Walkley Avenue, Warradale and Flinders University, Adelaide, Australia
| | - James A Triccas
- Discipline of Infectious Diseases and Immunology, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Camperdown, NSW, Australia.
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, Camperdown, NSW, Australia.
- Marie Bashir Institute for Infectious Diseases and Biosecurity, The University of Sydney, Camperdown, NSW, Australia.
| |
Collapse
|
13
|
Wellens J, Colombel JF, Satsangi JJ, Wong SY. SARS-CoV-2 Vaccination in IBD: Past Lessons, Current Evidence, and Future Challenges. J Crohns Colitis 2021; 15:1376-1386. [PMID: 33721882 PMCID: PMC7989537 DOI: 10.1093/ecco-jcc/jjab046] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Since the beginning of the pandemic, patients with inflammatory bowel diseases [IBD] have been considered at high risk for infection and complications of COVID-19. IBD patients and patients taking immunosuppressive therapy were excluded from clinical phase III vaccine trials, complicating the assessment of effectiveness of these new vaccines. From past experience we know that adapted vaccination strategies may be appropriate in some IBD patients to optimise immunogenicity. We review current evidence on SARS-CoV-2 vaccination relevant to IBD patients, including immune responses from humoral to cellular, emerging data on new variants, and off-label vaccination schemes. We also identify clinical and scientific knowledge gaps that can be translated into both large-scale population-based studies and targeted vaccine studies to describe the precise immune responses induced by SARS-CoV-2 vaccines in IBD patients. We strongly endorse the recommendation of vaccinating IBD patients to ensure maximal protection from COVID-19 both for the individual and the community.
Collapse
Affiliation(s)
- Judith Wellens
- Translational Gastro-intestinal Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford,Translational Research for Gastrointestinal Diseases, University hospitals Leuven, Herestraat, Leuven, Belgium,Address for correspondence: Judith Wellens, . +32474815145 Experimental Medicine Division, Level 5, Room 5800, John Radcliffe Hospital, Headley Way, Headington, OX3 9DU, United Kingdom
| | - Jean-Frédéric Colombel
- Department of Gastroenterology, Icahn School of Medicine at Mount Sinai, New York city, New York, USA. One Gustavo L. Levy Place, New York, NY, USA
| | - Jack J Satsangi
- Lee Placito of Gastroenterology, Translational Gastro-intestinal Unit, Nuffield Department of Medicine, John Radcliffe Hospital, Oxford
| | - Serre-Yu Wong
- The Henry D. Janowitz Division of Gastroenterology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
14
|
Augmentation of the Riboflavin-Biosynthetic Pathway Enhances Mucosa-Associated Invariant T (MAIT) Cell Activation and Diminishes Mycobacterium tuberculosis Virulence. mBio 2021; 13:e0386521. [PMID: 35164552 PMCID: PMC8844931 DOI: 10.1128/mbio.03865-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells play a critical role in antimicrobial defense. Despite increased understanding of their mycobacterial ligands and the clinical association of MAIT cells with tuberculosis (TB), their function in protection against Mycobacterium tuberculosis infection remains unclear. Here, we show that overexpressing key genes of the riboflavin-biosynthetic pathway potentiates MAIT cell activation and results in attenuation of M. tuberculosis virulence in vivo. Further, we observed greater control of M. tuberculosis infection in MAIThi CAST/EiJ mice than in MAITlo C57BL/6J mice, highlighting the protective role of MAIT cells against TB. We also endogenously adjuvanted Mycobacterium bovis BCG with MR1 ligands via overexpression of the lumazine synthase gene ribH and evaluated its protective efficacy in the mouse model of M. tuberculosis infection. Altogether, our findings demonstrate that MAIT cells confer host protection against TB and that overexpression of genes in the riboflavin-biosynthetic pathway attenuates M. tuberculosis virulence. Enhancing MAIT cell-mediated immunity may also offer a novel approach toward improved vaccines against TB. IMPORTANCE Mucosa-associated invariant T (MAIT) cells are an important subset of innate lymphocytes that recognize microbial ligands derived from the riboflavin biosynthesis pathway and mediate antimicrobial immune responses. Modulated MAIT cell responses have been noted in different forms of tuberculosis. However, it has been unclear if increased MAIT cell abundance is protective against TB disease. In this study, we show that augmentation of the mycobacterial MAIT cell ligands leads to higher MAIT cell activation with reduced M. tuberculosis virulence and that elevated MAIT cell abundance confers greater control of M. tuberculosis infection. Our study also highlights the potential of endogenously adjuvanting the traditional BCG vaccine with MR1 ligands to augment MAIT cell activation. This study increases current knowledge on the roles of the riboflavin-biosynthetic pathway and MAIT cell activation in M. tuberculosis virulence and host immunity against TB.
Collapse
|
15
|
Wang H, Chen Z, McCluskey J, Corbett AJ. Mouse models illuminate MAIT cell biology. Mol Immunol 2021; 130:55-63. [PMID: 33360377 PMCID: PMC7855494 DOI: 10.1016/j.molimm.2020.12.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 12/02/2020] [Indexed: 12/14/2022]
Abstract
The field of mucosal-associated invariant T cell (MAIT) biology has grown rapidly since the identification of the vitamin-B-based antigens recognised by these specialised T cells. Over the past few years, our understanding of the complexities of MAIT cell function has developed, as they find their place among the other better known cells of the immune system. Key questions relate to understanding when MAIT cells help, when they hinder or cause harm, and when they do not matter. Exploiting mouse strains that differ in MAIT cell numbers, leveraged by specific detection of MAIT cells using MR1-tetramers, it has now been shown that MAIT cells play important immune roles in settings that include bacterial and viral infections, autoimmune diseases and cancer. We have also learnt much about their development, modes of activation and response to commensal microbiota, and begun to try ways to manipulate MAIT cells to improve disease outcomes. Here we review recent studies that have assessed MAIT cells in models of disease.
Collapse
Affiliation(s)
- Huimeng Wang
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia; State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, 510182, China
| | - Zhenjun Chen
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - James McCluskey
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia
| | - Alexandra J Corbett
- Department of Microbiology and Immunology, The University of Melbourne, Peter Doherty Institute for Infection and Immunity, Melbourne, Australia.
| |
Collapse
|
16
|
Efficient 5-OP-RU-Induced Enrichment of Mucosa-Associated Invariant T Cells in the Murine Lung Does Not Enhance Control of Aerosol Mycobacterium tuberculosis Infection. Infect Immun 2020; 89:IAI.00524-20. [PMID: 33077620 DOI: 10.1128/iai.00524-20] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/06/2020] [Indexed: 02/08/2023] Open
Abstract
Mucosa-associated invariant T (MAIT) cells are an innate-like T cell subset in mammals that recognize microbial vitamin B metabolites presented by the evolutionarily conserved major histocompatibility complex class I (MHC I)-related molecule, MR1. Emerging data suggest that MAIT cells may be an attractive target for vaccine-induced protection against bacterial infections because of their rapid cytotoxic responses at mucosal services to a widely conserved bacterial ligand. In this study, we tested whether a MAIT cell priming strategy could protect against aerosol Mycobacterium tuberculosis infection in mice. Intranasal costimulation with the lipopeptide Toll-like receptor (TLR)2/6 agonist, Pam2Cys (P2C), and the synthetic MR1 ligand, 5-OP-RU, resulted in robust expansion of MAIT cells in the lung. Although MAIT cell priming significantly enhanced MAIT cell activation and expansion early after M. tuberculosis challenge, these MAIT cells did not restrict M. tuberculosis bacterial load. MAIT cells were depleted by the onset of the adaptive immune response, with decreased detection of granzyme B+ and gamma interferon (IFN-γ)+ MAIT cells relative to that in uninfected P2C/5-OP-RU-treated mice. Decreasing the infectious inoculum, varying the time between priming and aerosol infection, and testing MAIT cell priming in nitric oxide synthase 2 (NOS2)-deficient mice all failed to reveal an effect of P2C/5-OP-RU-induced MAIT cells on M. tuberculosis control. We conclude that intranasal MAIT cell priming in mice induces early MAIT cell activation and expansion after M. tuberculosis exposure, without attenuating M. tuberculosis growth, suggesting that MAIT cell enrichment in the lung is not sufficient to control M. tuberculosis infection.
Collapse
|
17
|
Miller LS, Fowler VG, Shukla SK, Rose WE, Proctor RA. Development of a vaccine against Staphylococcus aureus invasive infections: Evidence based on human immunity, genetics and bacterial evasion mechanisms. FEMS Microbiol Rev 2020; 44:123-153. [PMID: 31841134 PMCID: PMC7053580 DOI: 10.1093/femsre/fuz030] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 12/13/2019] [Indexed: 12/12/2022] Open
Abstract
Invasive Staphylococcus aureus infections are a leading cause of morbidity and mortality in both hospital and community settings, especially with the widespread emergence of virulent and multi-drug resistant methicillin-resistant S. aureus strains. There is an urgent and unmet clinical need for non-antibiotic immune-based approaches to treat these infections as the increasing antibiotic resistance is creating a serious threat to public health. However, all vaccination attempts aimed at preventing S. aureus invasive infections have failed in human trials, especially all vaccines aimed at generating high titers of opsonic antibodies against S. aureus surface antigens to facilitate antibody-mediated bacterial clearance. In this review, we summarize the data from humans regarding the immune responses that protect against invasive S. aureus infections as well as host genetic factors and bacterial evasion mechanisms, which are important to consider for the future development of effective and successful vaccines and immunotherapies against invasive S. aureus infections in humans. The evidence presented form the basis for a hypothesis that staphylococcal toxins (including superantigens and pore-forming toxins) are important virulence factors, and targeting the neutralization of these toxins are more likely to provide a therapeutic benefit in contrast to prior vaccine attempts to generate antibodies to facilitate opsonophagocytosis.
Collapse
Affiliation(s)
- Lloyd S Miller
- Immunology, Janssen Research and Development, 1400 McKean Road, Spring House, PA, 19477, USA.,Department of Dermatology, Johns Hopkins University School of Medicine, 1550 Orleans Street, Cancer Research Building 2, Suite 209, Baltimore, MD, 21231, USA.,Department of Medicine, Division of Infectious Diseases, Johns Hopkins University School of Medicine, 1830 East Monument Street, Baltimore, MD, 21287, USA.,Department of Orthopaedic Surgery, Johns Hopkins University School of Medicine, 601 North Caroline Street, Baltimore, MD, 21287, USA.,Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, MD, 21218, USA
| | - Vance G Fowler
- Department of Medicine, Division of Infectious Diseases, Duke University Medical Center, 315 Trent Drive, Hanes House, Durham, NC, 27710, USA.,Duke Clinical Research Institute, Duke University Medical Center, 40 Duke Medicine Circle, Durham, NC, 27710, USA
| | - Sanjay K Shukla
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, 1000 North Oak Avenue, Marshfield, WI, 54449, USA.,Computation and Informatics in Biology and Medicine, University of Wisconsin, 425 Henry Mall, Room 3445, Madison, WI, 53706, USA
| | - Warren E Rose
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA.,Pharmacy Practice Division, University of Wisconsin-Madison, 777 Highland Avenue, 4123 Rennebohm Hall, Madison, WI, 53705 USA
| | - Richard A Proctor
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, 1685 Highland Avenue, 5158 Medical Foundation Centennial Building, Madison, WI, 53705, USA.,Department of Medical Microbiology and Immunology, University of Wisconsin-Madison School of Medicine and Public Health, 1550 Linden Drive, Microbial Sciences Building, Room 1334, Madison, WI, 53705, USA
| |
Collapse
|
18
|
Corbett AJ, Awad W, Wang H, Chen Z. Antigen Recognition by MR1-Reactive T Cells; MAIT Cells, Metabolites, and Remaining Mysteries. Front Immunol 2020; 11:1961. [PMID: 32973800 PMCID: PMC7482426 DOI: 10.3389/fimmu.2020.01961] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/21/2020] [Indexed: 12/16/2022] Open
Abstract
Mucosal-associated Invariant T (MAIT) cells recognize vitamin B-based antigens presented by the non-polymorphic MHC class I related-1 molecule (MR1). Both MAIT T cell receptors (TCR) and MR1 are highly conserved among mammals, suggesting an important, and conserved, immune function. For many years, the antigens they recognize were unknown. The discovery that MR1 presents vitamin B-based small molecule ligands resulted in a rapid expansion of research in this area, which has yielded information on the role of MAIT cells in immune protection, autoimmune disease and recently in homeostasis and cancer. More recently, we have begun to appreciate the diverse nature of the small molecule ligands that can bind MR1, with several less potent antigens and small molecule drugs that can bind MR1 being identified. Complementary structural information has revealed the complex nature of interactions defining antigen recognition. Additionally, we now view MAIT cells (defined here as MR1-riboflavin-Ag reactive, TRAV1-2+ cells) as one subset of a broader family of MR1-reactive T cells (MR1T cells). Despite these advances, we still lack a complete understanding of how MR1 ligands are generated, presented and recognized in vivo. The biological relevance of these MR1 ligands and the function of MR1T cells in infection and disease warrants further investigation with new tools and approaches.
Collapse
Affiliation(s)
- Alexandra J. Corbett
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| | - Wael Awad
- Infection and Immunity Program and Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC, Australia
- ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, VIC, Australia
| | - Huimeng Wang
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhenjun Chen
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
19
|
Abstract
Mucosal associated invariant T (MAIT) cells are striking in their abundance and their strict conservation across 150 million years of mammalian evolution, implying they must fulfill critical immunological function(s). MAIT cells are defined by their expression of a semi-invariant αβ TCR which recognizes biosynthetic derivatives of riboflavin synthesis presented on MR1. Initial studies focused on their role in detecting predominantly intracellular bacterial and mycobacterial infections. However, it is now recognized that there are several modes of MAIT cell activation and these are related to activation of distinct transcriptional programmes, each associated with distinct functional roles. In this minireview, we summarize current knowledge from human and animal studies of MAIT cell activation induced (1) in an MR1-TCR dependent manner in the context of inflammatory danger signals and associated with antibacterial host defense; (2) in an MR1-TCR independent manner by the cytokines interleukin(IL)-12/-15/-18 and type I interferon, which is associated with antiviral responses; and (3) a recently-described TCR-dependent “tissue repair” programme which is associated with accelerated wound healing in the context of commensal microbiota. Because of this capability for diverse functional responses in diverse immunological contexts, these intriguing cells now appear to be multifunctional effectors central to the interface of innate and adaptive immunity.
Collapse
Affiliation(s)
- Timothy S C Hinks
- Respiratory Medicine Unit and National Institute for Health Research (NIHR), Nuffield Department of Medicine Experimental Medicine, Oxford Biomedical Research Centre (BRC), University of Oxford, Oxfordshire, United Kingdom
| | - Xia-Wei Zhang
- Respiratory Medicine Unit and National Institute for Health Research (NIHR), Nuffield Department of Medicine Experimental Medicine, Oxford Biomedical Research Centre (BRC), University of Oxford, Oxfordshire, United Kingdom.,Division of Respiratory Medicine, Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Chai Q, Lu Z, Liu CH. Host defense mechanisms against Mycobacterium tuberculosis. Cell Mol Life Sci 2020; 77:1859-1878. [PMID: 31720742 PMCID: PMC11104961 DOI: 10.1007/s00018-019-03353-5] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/30/2019] [Accepted: 10/21/2019] [Indexed: 12/19/2022]
Abstract
Tuberculosis (TB), which is caused by Mycobacterium tuberculosis (Mtb), remains the leading cause of death worldwide from a single infectious pathogen. Mtb is a paradigmatic intracellular pathogen that primarily invades the lungs after host inhalation of bacteria-containing droplets via the airway. However, the majority of Mtb-exposed individuals can spontaneously control the infection by virtue of a robust immune defense system. The mucosal barriers of the respiratory tract shape the first-line defense against Mtb through various mucosal immune responses. After arriving at the alveoli, the surviving mycobacteria further encounter a set of host innate immune cells that exert multiple cellular bactericidal functions. Adaptive immunity, predominantly mediated by a range of different T cell and B cell subsets, is subsequently activated and participates in host anti-mycobacterial defense. During Mtb infection, host bactericidal immune responses are exquisitely adjusted and balanced by multifaceted mechanisms, including genetic and epigenetic regulation, metabolic regulation and neuroendocrine regulation, which are indispensable for maintaining host immune efficiency and avoiding excessive tissue injury. A better understanding of the integrated and equilibrated host immune defense system against Mtb will contribute to the development of rational TB treatment regimens especially novel host-directed therapeutics.
Collapse
Affiliation(s)
- Qiyao Chai
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Zhe Lu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cui Hua Liu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China.
- Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, 430071, China.
- Savaid Medical School, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
21
|
Kaufmann SHE. Vaccination Against Tuberculosis: Revamping BCG by Molecular Genetics Guided by Immunology. Front Immunol 2020; 11:316. [PMID: 32174919 PMCID: PMC7056705 DOI: 10.3389/fimmu.2020.00316] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 02/07/2020] [Indexed: 12/21/2022] Open
Abstract
Tuberculosis (TB) remains a major health threat. Although a vaccine has been available for almost 100 years termed Bacille Calmette-Guérin (BCG), it is insufficient and better vaccines are urgently needed. This treatise describes first the basic immunology and pathology of TB with an emphasis on the role of T lymphocytes. Better understanding of the immune response to Mycobacterium tuberculosis (Mtb) serves as blueprint for rational design of TB vaccines. Then, disease epidemiology and the benefits and failures of BCG vaccination will be presented. Next, types of novel vaccine candidates are being discussed. These include: (i) antigen/adjuvant subunit vaccines; (ii) viral vectored vaccines; and (III) whole cell mycobacterial vaccines which come as live recombinant vaccines or as dead whole cell or multi-component vaccines. Subsequently, the major endpoints of clinical trials as well as administration schemes are being described. Major endpoints for clinical trials are prevention of infection (PoI), prevention of disease (PoD), and prevention of recurrence (PoR). Vaccines can be administered either pre-exposure or post-exposure with Mtb. A central part of this treatise is the description of the viable BCG-based vaccine, VPM1002, currently undergoing phase III clinical trial assessment. Finally, new approaches which could facilitate design of refined next generation TB vaccines will be discussed.
Collapse
Affiliation(s)
- Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, Berlin, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX, United States
| |
Collapse
|
22
|
Braganza CD, Motozono C, Sonoda KH, Yamasaki S, Shibata K, Timmer MSM, Stocker BL. Agonistic or antagonistic mucosal-associated invariant T (MAIT) cell activity is determined by the 6-alkylamino substituent on uracil MR1 ligands. Chem Commun (Camb) 2020; 56:5291-5294. [DOI: 10.1039/d0cc00247j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The 6-alkylamino side chain of aminouracil MR1 ligands controls MAIT cell agonistic or antagonistic activity.
Collapse
Affiliation(s)
- Chriselle D. Braganza
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington
- New Zealand
| | - Chihiro Motozono
- Department of Molecular Immunology
- Research Institute for Microbial Diseases
- Osaka University
- Osaka
- Japan
| | - Koh-Hei Sonoda
- Department of Ocular Pathology and Imaging Science
- Graduate School of Medical Sciences
- Kyushu University
- Fukuoka
- Japan
| | - Sho Yamasaki
- Department of Molecular Immunology
- Research Institute for Microbial Diseases
- Osaka University
- Osaka
- Japan
| | - Kensuke Shibata
- Department of Ocular Pathology and Imaging Science
- Graduate School of Medical Sciences
- Kyushu University
- Fukuoka
- Japan
| | - Mattie S. M. Timmer
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington
- New Zealand
| | - Bridget L. Stocker
- School of Chemical and Physical Sciences
- Victoria University of Wellington
- Wellington
- New Zealand
| |
Collapse
|
23
|
Ler GJM, Xu W, Mak JYW, Liu L, Bernhardt PV, Fairlie DP. Computer Modelling and Synthesis of Deoxy and Monohydroxy Analogues of a Ribitylaminouracil Bacterial Metabolite that Potently Activates Human T Cells. Chemistry 2019; 25:15594-15608. [DOI: 10.1002/chem.201903732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/13/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Geraldine J. M. Ler
- Division of Chemistry and Structural Biology ARC Centre of Excellence in Advanced Molecular Imaging and Centre for Inflammation and Disease Research Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Weijun Xu
- Division of Chemistry and Structural Biology ARC Centre of Excellence in Advanced Molecular Imaging and Centre for Inflammation and Disease Research Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Jeffrey Y. W. Mak
- Division of Chemistry and Structural Biology ARC Centre of Excellence in Advanced Molecular Imaging and Centre for Inflammation and Disease Research Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Ligong Liu
- Division of Chemistry and Structural Biology ARC Centre of Excellence in Advanced Molecular Imaging and Centre for Inflammation and Disease Research Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| | - Paul V. Bernhardt
- School of Chemistry and Molecular Biosciences The University of Queensland Brisbane QLD 4072 Australia
| | - David P. Fairlie
- Division of Chemistry and Structural Biology ARC Centre of Excellence in Advanced Molecular Imaging and Centre for Inflammation and Disease Research Institute for Molecular Bioscience The University of Queensland Brisbane QLD 4072 Australia
| |
Collapse
|
24
|
Wieland F. The 44th FEBS Congress in Krakow: celebrating the multidisciplinarity of biological research. FEBS Lett 2019; 593:1413-1414. [PMID: 31222735 DOI: 10.1002/1873-3468.13503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|