1
|
Fei B, Zhan L, Gou J, Wu Y, Sun H. Exploring the efficacy of structured nursing via web-based interaction platforms in sustaining hemodialysis patients. Technol Health Care 2024:THC241021. [PMID: 39269864 DOI: 10.3233/thc-241021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
BACKGROUND Discussed based on the network interactive platform of structured care for patients with chronic renal failure (CRF) in the process of hemodialysis. OBJECTIVE This study seeks to elucidate the application value of structured nursing, deployed through network interaction platforms, in sustaining patients undergoing maintenance hemodialysis. METHODS A total of 62 patients diagnosed with Chronic Renal Failure (CRF) between April 2022 and August 2023 were randomly allocated into two distinct care groups: conventional and structured nursing care based on a web-interactive platform. Both cohorts were comparatively analyzed with respect to psychological states, quality of life within therapeutic interventions, and relationships with complications. Renal function indicators, including Creatinine Clearance (Ccr), Serum Creatinine (SCr), and Blood Urea Nitrogen (BUN), were subjected to Pearson analysis to appraise their predictive value in prognostication, while Receiver Operating Characteristic (ROC) curve analysis was constructed to further discern their diagnostic precision. RESULTS Post-intervention, notable improvements were observed in the emotional states of patients in both cohorts, with the structured care group exhibiting significantly lower Self-rating Anxiety Scale (SAS) and Self-rating Depression Scale (SDS) scores (p< 0.05). Furthermore, patients under the web-interactive structured nursing regimen demonstrated superior overall adherence, a reduced incidence rate of complications, and markedly higher scores in quality of life assessments compared to those under conventional care (p< 0.05). The derived cut-off values for Ccr, SCr, and BUN were 32.5 ml/min, 251.5 umol/L, and 14.5 mmol/L, respectively, with sensitivities and specificities pegged at 0.645% and 0.645% for Ccr, 0.774% and 0.548% for SCr, and 0.774% and 0.774% for BUN. The corresponding areas under the ROC curve (AUC) for each parameter were 0.816, 0.653, and 0.856, respectively. CONCLUSION Comprehensive hemodialysis care for patients with chronic renal failure can improve self-care ability to improve quality of life and reduce the incidence of complications, which has great potential for clinical progress and is worthy of further research.
Collapse
|
2
|
Salinas P, Bibak S, Cantos R, Tremiño L, Jerez C, Mata-Balaguer T, Contreras A. Studies on the PII-PipX-NtcA Regulatory Axis of Cyanobacteria Provide Novel Insights into the Advantages and Limitations of Two-Hybrid Systems for Protein Interactions. Int J Mol Sci 2024; 25:5429. [PMID: 38791467 PMCID: PMC11121479 DOI: 10.3390/ijms25105429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 05/11/2024] [Accepted: 05/12/2024] [Indexed: 05/26/2024] Open
Abstract
Yeast two-hybrid approaches, which are based on fusion proteins that must co-localise to the nucleus to reconstitute the transcriptional activity of GAL4, have greatly contributed to our understanding of the nitrogen interaction network of cyanobacteria, the main hubs of which are the trimeric PII and the monomeric PipX regulators. The bacterial two-hybrid system, based on the reconstitution in the E. coli cytoplasm of the adenylate cyclase of Bordetella pertussis, should provide a relatively faster and presumably more physiological assay for cyanobacterial proteins than the yeast system. Here, we used the bacterial two-hybrid system to gain additional insights into the cyanobacterial PipX interaction network while simultaneously assessing the advantages and limitations of the two most popular two-hybrid systems. A comprehensive mutational analysis of PipX and bacterial two-hybrid assays were performed to compare the outcomes between yeast and bacterial systems. We detected interactions that were previously recorded in the yeast two-hybrid system as negative, as well as a "false positive", the self-interaction of PipX, which is rather an indirect interaction that is dependent on PII homologues from the E. coli host, a result confirmed by Western blot analysis with relevant PipX variants. This is, to our knowledge, the first report of the molecular basis of a false positive in the bacterial two-hybrid system.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Asunción Contreras
- Departamento. de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain; (P.S.); (S.B.); (R.C.); (L.T.); (C.J.); (T.M.-B.)
| |
Collapse
|
3
|
Jerez C, Llop A, Salinas P, Bibak S, Forchhammer K, Contreras A. Analysing the Cyanobacterial PipX Interaction Network Using NanoBiT Complementation in Synechococcus elongatus PCC7942. Int J Mol Sci 2024; 25:4702. [PMID: 38731921 PMCID: PMC11083307 DOI: 10.3390/ijms25094702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/17/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
The conserved cyanobacterial protein PipX is part of a complex interaction network with regulators involved in essential processes that include metabolic homeostasis and ribosome assembly. Because PipX interactions depend on the relative levels of their different partners and of the effector molecules binding to them, in vivo studies are required to understand the physiological significance and contribution of environmental factors to the regulation of PipX complexes. Here, we have used the NanoBiT complementation system to analyse the regulation of complex formation in Synechococcus elongatus PCC 7942 between PipX and each of its two best-characterized partners, PII and NtcA. Our results confirm previous in vitro analyses on the regulation of PipX-PII and PipX-NtcA complexes by 2-oxoglutarate and on the regulation of PipX-PII by the ATP/ADP ratio, showing the disruption of PipX-NtcA complexes due to increased levels of ADP-bound PII in Synechococcus elongatus. The demonstration of a positive role of PII on PipX-NtcA complexes during their initial response to nitrogen starvation or the impact of a PipX point mutation on the activity of PipX-PII and PipX-NtcA reporters are further indications of the sensitivity of the system. This study reveals additional regulatory complexities in the PipX interaction network, opening a path for future research on cyanobacteria.
Collapse
Affiliation(s)
- Carmen Jerez
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain; (C.J.); (A.L.); (P.S.); (S.B.)
- Interfaculty Institute of Microbiology and Infection Biology, University Tübingen, 72076 Tübingen, Germany;
| | - Antonio Llop
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain; (C.J.); (A.L.); (P.S.); (S.B.)
| | - Paloma Salinas
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain; (C.J.); (A.L.); (P.S.); (S.B.)
| | - Sirine Bibak
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain; (C.J.); (A.L.); (P.S.); (S.B.)
| | - Karl Forchhammer
- Interfaculty Institute of Microbiology and Infection Biology, University Tübingen, 72076 Tübingen, Germany;
| | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain; (C.J.); (A.L.); (P.S.); (S.B.)
| |
Collapse
|
4
|
Llop A, Tremiño L, Cantos R, Contreras A. The Signal Transduction Protein PII Controls the Levels of the Cyanobacterial Protein PipX. Microorganisms 2023; 11:2379. [PMID: 37894037 PMCID: PMC10609283 DOI: 10.3390/microorganisms11102379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/29/2023] Open
Abstract
Cyanobacteria, microorganisms performing oxygenic photosynthesis, must adapt their metabolic processes to environmental challenges such as day and night changes. PipX, a unique regulatory protein from cyanobacteria, provides a mechanistic link between the signalling protein PII, a widely conserved (in bacteria and plants) transducer of carbon/nitrogen/energy richness, and the transcriptional regulator NtcA, which controls a large regulon involved in nitrogen assimilation. PipX is also involved in translational regulation through interaction with the ribosome-assembly GTPase EngA. However, increases in the PipX/PII ratio are toxic, presumably due to the abnormally increased binding of PipX to other partner(s). Here, we present mutational and structural analyses of reported PipX-PII and PipX-NtcA complexes, leading to the identification of single amino acid changes that decrease or abolish PipX toxicity. Notably, 4 out of 11 mutations decreasing toxicity did not decrease PipX levels, suggesting that the targeted residues (F12, D23, L36, and R54) provide toxicity determinants. In addition, one of those four mutations (D23A) argued against the over-activation of NtcA as the cause of PipX toxicity. Most mutations at residues contacting PII decreased PipX levels, indicating that PipX stability would depend on its ability to bind to PII, a conclusion supported by the light-induced decrease of PipX levels in Synechococcus elongatus PCC7942 (hereafter S. elongatus).
Collapse
Affiliation(s)
| | | | | | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, 03690 San Vicente del Raspeig, Spain; (A.L.); (L.T.); (R.C.)
| |
Collapse
|
5
|
Llop A, Bibak S, Cantos R, Salinas P, Contreras A. The ribosome assembly GTPase EngA is involved in redox signaling in cyanobacteria. Front Microbiol 2023; 14:1242616. [PMID: 37637111 PMCID: PMC10448771 DOI: 10.3389/fmicb.2023.1242616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Photosynthetic organisms must cope with environmental challenges, like those imposed by the succession of days and nights or by sudden changes in light intensities, that trigger global changes in gene expression and metabolism. The photosynthesis machinery is particularly susceptible to environmental changes and adaptation to them often involves redox-sensing proteins that are the targets of reactive oxygen species generated by photosynthesis activity. Here we show that EngA, an essential GTPase and ribosome-assembly protein involved in ribosome biogenesis in bacteria and chloroplasts, also plays a role in acclimatization to environmentally relevant stress in Synechococcus elongatus PCC7942 and that PipX, a promiscuous regulatory protein that binds to EngA, appears to fine-tune EngA activity. During growth in cold or high light conditions, the EngA levels rise, with a concomitant increase of the EngA/PipX ratio. However, a sudden increase in light intensity turns EngA into a growth inhibitor, a response involving residue Cys122 of EngA, which is part of the GD1-G4 motif NKCES of EngA proteins, with the cysteine conserved just in the cyanobacteria-chloroplast lineage. This work expands the repertoire of ribosome-related factors transmitting redox signals in photosynthetic organisms and provides additional insights into the complexity of the regulatory interactions mediated by EngA and PipX.
Collapse
Affiliation(s)
| | | | | | | | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| |
Collapse
|
6
|
Llop A, Labella JI, Borisova M, Forchhammer K, Selim KA, Contreras A. Pleiotropic effects of PipX, PipY, or RelQ overexpression on growth, cell size, photosynthesis, and polyphosphate accumulation in the cyanobacterium Synechococcus elongatus PCC7942. Front Microbiol 2023; 14:1141775. [PMID: 37007489 PMCID: PMC10060972 DOI: 10.3389/fmicb.2023.1141775] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/23/2023] [Indexed: 03/18/2023] Open
Abstract
The cyanobacterial protein PipY belongs to the Pyridoxal-phosphate (PLP)-binding proteins (PLPBP/COG0325) family of pyridoxal-phosphate-binding proteins, which are represented in all three domains of life. These proteins share a high degree of sequence conservation, appear to have purely regulatory functions, and are involved in the homeostasis of vitamin B6 vitamers and amino/keto acids. Intriguingly, the genomic context of the pipY gene in cyanobacteria connects PipY with PipX, a protein involved in signaling the intracellular energy status and carbon-to-nitrogen balance. PipX regulates its cellular targets via protein–protein interactions. These targets include the PII signaling protein, the ribosome assembly GTPase EngA, and the transcriptional regulators NtcA and PlmA. PipX is thus involved in the transmission of multiple signals that are relevant for metabolic homeostasis and stress responses in cyanobacteria, but the exact function of PipY is still elusive. Preliminary data indicated that PipY might also be involved in signaling pathways related to the stringent stress response, a pathway that can be induced in the unicellular cyanobacterium Synechococcus elongatus PCC7942 by overexpression of the (p)ppGpp synthase, RelQ. To get insights into the cellular functions of PipY, we performed a comparative study of PipX, PipY, or RelQ overexpression in S. elongatus PCC7942. Overexpression of PipY or RelQ caused similar phenotypic responses, such as growth arrest, loss of photosynthetic activity and viability, increased cell size, and accumulation of large polyphosphate granules. In contrast, PipX overexpression decreased cell length, indicating that PipX and PipY play antagonistic roles on cell elongation or cell division. Since ppGpp levels were not induced by overexpression of PipY or PipX, it is apparent that the production of polyphosphate in cyanobacteria does not require induction of the stringent response.
Collapse
Affiliation(s)
- Antonio Llop
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
- Interfaculty Institute for Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Jose I. Labella
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Marina Borisova
- Interfaculty Institute for Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute for Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Khaled A. Selim
- Interfaculty Institute for Microbiology and Infection Medicine, Organismic Interactions Department, Cluster of Excellence 'Controlling Microbes to Fight Infections', University of Tübingen, Tübingen, Germany
| | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
- *Correspondence: Asunción Contreras,
| |
Collapse
|
7
|
Santos-Merino M, Gargantilla-Becerra Á, de la Cruz F, Nogales J. Highlighting the potential of Synechococcus elongatus PCC 7942 as platform to produce α-linolenic acid through an updated genome-scale metabolic modeling. Front Microbiol 2023; 14:1126030. [PMID: 36998399 PMCID: PMC10043229 DOI: 10.3389/fmicb.2023.1126030] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 02/22/2023] [Indexed: 03/15/2023] Open
Abstract
Cyanobacteria are prokaryotic organisms that capture energy from sunlight using oxygenic photosynthesis and transform CO2 into products of interest such as fatty acids. Synechococcus elongatus PCC 7942 is a model cyanobacterium efficiently engineered to accumulate high levels of omega-3 fatty acids. However, its exploitation as a microbial cell factory requires a better knowledge of its metabolism, which can be approached by using systems biology tools. To fulfill this objective, we worked out an updated, more comprehensive, and functional genome-scale model of this freshwater cyanobacterium, which was termed iMS837. The model includes 837 genes, 887 reactions, and 801 metabolites. When compared with previous models of S. elongatus PCC 7942, iMS837 is more complete in key physiological and biotechnologically relevant metabolic hubs, such as fatty acid biosynthesis, oxidative phosphorylation, photosynthesis, and transport, among others. iMS837 shows high accuracy when predicting growth performance and gene essentiality. The validated model was further used as a test-bed for the assessment of suitable metabolic engineering strategies, yielding superior production of non-native omega-3 fatty acids such as α-linolenic acid (ALA). As previously reported, the computational analysis demonstrated that fabF overexpression is a feasible metabolic target to increase ALA production, whereas deletion and overexpression of fabH cannot be used for this purpose. Flux scanning based on enforced objective flux, a strain-design algorithm, allowed us to identify not only previously known gene overexpression targets that improve fatty acid synthesis, such as Acetyl-CoA carboxylase and β-ketoacyl-ACP synthase I, but also novel potential targets that might lead to higher ALA yields. Systematic sampling of the metabolic space contained in iMS837 identified a set of ten additional knockout metabolic targets that resulted in higher ALA productions. In silico simulations under photomixotrophic conditions with acetate or glucose as a carbon source boosted ALA production levels, indicating that photomixotrophic nutritional regimens could be potentially exploited in vivo to improve fatty acid production in cyanobacteria. Overall, we show that iMS837 is a powerful computational platform that proposes new metabolic engineering strategies to produce biotechnologically relevant compounds, using S. elongatus PCC 7942 as non-conventional microbial cell factory.
Collapse
Affiliation(s)
- María Santos-Merino
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria—CSIC, Santander, Cantabria, Spain
- *Correspondence: María Santos-Merino,
| | - Álvaro Gargantilla-Becerra
- Department of Systems Biology, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
| | - Fernando de la Cruz
- Instituto de Biomedicina y Biotecnología de Cantabria, Universidad de Cantabria—CSIC, Santander, Cantabria, Spain
| | - Juan Nogales
- Department of Systems Biology, Centro Nacional de Biotecnología (CSIC), Madrid, Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast-CSIC), Madrid, Spain
- Juan Nogales,
| |
Collapse
|
8
|
The Conserved Family of the Pyridoxal Phosphate-Binding Protein (PLPBP) and Its Cyanobacterial Paradigm PipY. Life (Basel) 2022; 12:life12101622. [PMID: 36295057 PMCID: PMC9605639 DOI: 10.3390/life12101622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/05/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022] Open
Abstract
The PLPBP family of pyridoxal phosphate-binding proteins has a high degree of sequence conservation and is represented in all three domains of life. PLPBP members, of which a few representatives have been studied in different contexts, are single-domain proteins with no known enzymatic activity that exhibit the fold type III of PLP-holoenzymes, consisting in an α/β barrel (TIM-barrel), where the PLP cofactor is solvent-exposed. Despite the constant presence of cofactor PLP (a key catalytic element in PLP enzymes), PLPBP family members appear to have purely regulatory functions affecting the homeostasis of vitamin B6 vitamers and amino/keto acids. Perturbation of these metabolites and pleiotropic phenotypes have been reported in bacteria and zebrafish after PLPBP gene inactivation as well as in patients with vitamin B6-dependent epilepsy that results from loss-of-function mutations at the PLPBP. Here, we review information gathered from diverse studies and biological systems, emphasizing the structural and functional conservation of the PLPBP members and discussing the informative nature of model systems and experimental approaches. In this context, the relatively high level of structural and functional characterization of PipY from Synechococcus elongatus PCC 7942 provides a unique opportunity to investigate the PLPBP roles in the context of a signaling pathway conserved in cyanobacteria.
Collapse
|
9
|
Jerez C, Salinas P, Llop A, Cantos R, Espinosa J, Labella JI, Contreras A. Regulatory Connections Between the Cyanobacterial Factor PipX and the Ribosome Assembly GTPase EngA. Front Microbiol 2021; 12:781760. [PMID: 34956147 PMCID: PMC8696166 DOI: 10.3389/fmicb.2021.781760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/05/2021] [Indexed: 11/13/2022] Open
Abstract
Cyanobacteria, phototrophic organisms performing oxygenic photosynthesis, must adapt their metabolic processes to important environmental challenges, like those imposed by the succession of days and nights. Not surprisingly, certain regulatory proteins are found exclusively in this phylum. One of these unique proteins, PipX, provides a mechanistic link between signals of carbon/nitrogen and of energy, transduced by the signaling protein PII, and the control of gene expression by the global nitrogen regulator NtcA. PII, required for cell survival unless PipX is inactivated or downregulated, functions by protein-protein interactions with transcriptional regulators, transporters, and enzymes. PipX also functions by protein-protein interactions, and previous studies suggested the existence of additional interacting partners or included it into a relatively robust six-node synteny network with proteins apparently unrelated to the nitrogen regulation system. To investigate additional functions of PipX while providing a proof of concept for the recently developed cyanobacterial linkage network, here we analyzed the physical and regulatory interactions between PipX and an intriguing component of the PipX synteny network, the essential ribosome assembly GTPase EngA. The results provide additional insights into the functions of cyanobacterial EngA and of PipX, showing that PipX interacts with the GD1 domain of EngA in a guanosine diphosphate-dependent manner and interferes with EngA functions in Synechococcus elongatus at a low temperature, an environmentally relevant context. Therefore, this work expands the PipX interaction network and establishes a possible connection between nitrogen regulation and the translation machinery. We discuss a regulatory model integrating previous information on PII-PipX with the results presented in this work.
Collapse
Affiliation(s)
- Carmen Jerez
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Paloma Salinas
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Antonio Llop
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Raquel Cantos
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Javier Espinosa
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Jose I Labella
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Facultad de Ciencias, Universidad de Alicante, Alicante, Spain
| |
Collapse
|
10
|
Riediger M, Spät P, Bilger R, Voigt K, Maček B, Hess WR. Analysis of a photosynthetic cyanobacterium rich in internal membrane systems via gradient profiling by sequencing (Grad-seq). THE PLANT CELL 2021; 33:248-269. [PMID: 33793824 PMCID: PMC8136920 DOI: 10.1093/plcell/koaa017] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/12/2020] [Indexed: 05/23/2023]
Abstract
Although regulatory small RNAs have been reported in photosynthetic cyanobacteria, the lack of clear RNA chaperones involved in their regulation poses a conundrum. Here, we analyzed the full complement of cellular RNAs and proteins using gradient profiling by sequencing (Grad-seq) in Synechocystis 6803. Complexes with overlapping subunits such as the CpcG1-type versus the CpcL-type phycobilisomes or the PsaK1 versus PsaK2 photosystem I pre(complexes) could be distinguished, supporting the high quality of this approach. Clustering of the in-gradient distribution profiles followed by several additional criteria yielded a short list of potential RNA chaperones that include an YlxR homolog and a cyanobacterial homolog of the KhpA/B complex. The data suggest previously undetected complexes between accessory proteins and CRISPR-Cas systems, such as a Csx1-Csm6 ribonucleolytic defense complex. Moreover, the exclusive association of either RpoZ or 6S RNA with the core RNA polymerase complex and the existence of a reservoir of inactive sigma-antisigma complexes is suggested. The Synechocystis Grad-seq resource is available online at https://sunshine.biologie.uni-freiburg.de/GradSeqExplorer/ providing a comprehensive resource for the functional assignment of RNA-protein complexes and multisubunit protein complexes in a photosynthetic organism.
Collapse
Affiliation(s)
- Matthias Riediger
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Philipp Spät
- Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Raphael Bilger
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Karsten Voigt
- IT Administration, Institute of Biology 3, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| | - Boris Maček
- Department of Quantitative Proteomics, Interfaculty Institute for Cell Biology, University of Tübingen, Auf der Morgenstelle 15, 72076 Tübingen, Germany
| | - Wolfgang R Hess
- Genetics and Experimental Bioinformatics, Faculty of Biology, University of Freiburg, Schänzlestr. 1, 79104 Freiburg, Germany
| |
Collapse
|
11
|
Genetic, Genomics, and Responses to Stresses in Cyanobacteria: Biotechnological Implications. Genes (Basel) 2021; 12:genes12040500. [PMID: 33805386 PMCID: PMC8066212 DOI: 10.3390/genes12040500] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/25/2021] [Accepted: 03/25/2021] [Indexed: 02/07/2023] Open
Abstract
Cyanobacteria are widely-diverse, environmentally crucial photosynthetic prokaryotes of great interests for basic and applied science. Work to date has focused mostly on the three non-nitrogen fixing unicellular species Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002, which have been selected for their genetic and physiological interests summarized in this review. Extensive "omics" data sets have been generated, and genome-scale models (GSM) have been developed for the rational engineering of these cyanobacteria for biotechnological purposes. We presently discuss what should be done to improve our understanding of the genotype-phenotype relationships of these models and generate robust and predictive models of their metabolism. Furthermore, we also emphasize that because Synechocystis PCC 6803, Synechococcus PCC 7942, and Synechococcus PCC 7002 represent only a limited part of the wide biodiversity of cyanobacteria, other species distantly related to these three models, should be studied. Finally, we highlight the need to strengthen the communication between academic researchers, who know well cyanobacteria and can engineer them for biotechnological purposes, but have a limited access to large photobioreactors, and industrial partners who attempt to use natural or engineered cyanobacteria to produce interesting chemicals at reasonable costs, but may lack knowledge on cyanobacterial physiology and metabolism.
Collapse
|
12
|
Selim KA, Tremiño L, Marco-Marín C, Alva V, Espinosa J, Contreras A, Hartmann MD, Forchhammer K, Rubio V. Functional and structural characterization of PII-like protein CutA does not support involvement in heavy metal tolerance and hints at a small-molecule carrying/signaling role. FEBS J 2020; 288:1142-1162. [PMID: 32599651 DOI: 10.1111/febs.15464] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/26/2020] [Accepted: 06/01/2020] [Indexed: 12/23/2022]
Abstract
The PII-like protein CutA is annotated as being involved in Cu2+ tolerance, based on analysis of Escherichia coli mutants. However, the precise cellular function of CutA remains unclear. Our bioinformatic analysis reveals that CutA proteins are universally distributed across all domains of life. Based on sequence-based clustering, we chose representative cyanobacterial CutA proteins for physiological, biochemical, and structural characterization and examined their involvement in heavy metal tolerance, by generating CutA mutants in filamentous Nostoc sp. and in unicellular Synechococcus elongatus. However, we were unable to find any involvement of cyanobacterial CutA in metal tolerance under various conditions. This prompted us to re-examine experimentally the role of CutA in protecting E. coli from Cu2+ . Since we found no effect on copper tolerance, we conclude that CutA plays a different role that is not involved in metal protection. We resolved high-resolution CutA structures from Nostoc and S. elongatus. Similarly to their counterpart from E. coli and to canonical PII proteins, cyanobacterial CutA proteins are trimeric in solution and in crystal structure; however, no binding affinity for small signaling molecules or for Cu2+ could be detected. The clefts between the CutA subunits, corresponding to the binding pockets of PII proteins, are formed by conserved aromatic and charged residues, suggesting a conserved binding/signaling function for CutA. In fact, we find binding of organic Bis-Tris/MES molecules in CutA crystal structures, revealing a strong tendency of these pockets to accommodate cargo. This highlights the need to search for the potential physiological ligands and for their signaling functions upon binding to CutA. DATABASES: Structural data are available in Protein Data Bank (PDB) under the accession numbers 6GDU, 6GDV, 6GDW, 6GDX, 6T76, and 6T7E.
Collapse
Affiliation(s)
- Khaled A Selim
- Interfaculty Institute for Microbiology and Infection Medicine, Organismic Interactions Department, Tübingen University, Germany.,Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Lorena Tremiño
- Instituto de Biomedicina de Valencia (IBV-CSIC), CIBER de Enfermedades Raras (CIBERER-ISCIII), Valencia, Spain
| | - Clara Marco-Marín
- Instituto de Biomedicina de Valencia (IBV-CSIC), CIBER de Enfermedades Raras (CIBERER-ISCIII), Valencia, Spain
| | - Vikram Alva
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Javier Espinosa
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Spain
| | - Asunción Contreras
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Spain
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, Tübingen, Germany
| | - Karl Forchhammer
- Interfaculty Institute for Microbiology and Infection Medicine, Organismic Interactions Department, Tübingen University, Germany
| | - Vicente Rubio
- Instituto de Biomedicina de Valencia (IBV-CSIC), CIBER de Enfermedades Raras (CIBERER-ISCIII), Valencia, Spain
| |
Collapse
|
13
|
Labella JI, Cantos R, Salinas P, Espinosa J, Contreras A. Distinctive Features of PipX, a Unique Signaling Protein of Cyanobacteria. Life (Basel) 2020; 10:life10060079. [PMID: 32481703 PMCID: PMC7344720 DOI: 10.3390/life10060079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/23/2020] [Accepted: 05/26/2020] [Indexed: 12/20/2022] Open
Abstract
PipX is a unique cyanobacterial protein identified by its ability to bind to PII and NtcA, two key regulators involved in the integration of signals of the nitrogen/carbon and energy status, with a tremendous impact on nitrogen assimilation and gene expression in cyanobacteria. PipX provides a mechanistic link between PII, the most widely distributed signaling protein, and NtcA, a global transcriptional regulator of cyanobacteria. PII, required for cell survival unless PipX is inactivated or down-regulated, functions by protein–protein interactions with transcriptional regulators, transporters, and enzymes. In addition, PipX appears to be involved in a wider signaling network, supported by the following observations: (i) PII–PipX complexes interact with PlmA, an as yet poorly characterized transcriptional regulator also restricted to cyanobacteria; (ii) the pipX gene is functionally connected with pipY, a gene encoding a universally conserved pyridoxal phosphate binding protein (PLPBP) involved in vitamin B6 and amino acid homeostasis, whose loss-of-function mutations cause B6-dependent epilepsy in humans, and (iii) pipX is part of a relatively robust, six-node synteny network that includes pipY and four additional genes that might also be functionally connected with pipX. In this overview, we propose that the study of the protein–protein interaction and synteny networks involving PipX would contribute to understanding the peculiarities and idiosyncrasy of signaling pathways that are conserved in cyanobacteria.
Collapse
|