1
|
Zhang S, Qiu B, Lv B, Yang G, Tao Y, Hu Y, Li K, Yu X, Tang C, Du J, Jin H, Huang Y. Endogenous sulfur dioxide deficiency as a driver of cardiomyocyte senescence through abolishing sulphenylation of STAT3 at cysteine 259. Redox Biol 2024; 71:103124. [PMID: 38503216 PMCID: PMC10963856 DOI: 10.1016/j.redox.2024.103124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 03/11/2024] [Accepted: 03/12/2024] [Indexed: 03/21/2024] Open
Abstract
OBJECTIVE Cardiomyocyte senescence is an important contributor to cardiovascular diseases and can be induced by stressors including DNA damage, oxidative stress, mitochondrial dysfunction, epigenetic regulation, etc. However, the underlying mechanisms for the development of cardiomyocyte senescence remain largely unknown. Sulfur dioxide (SO2) is produced endogenously by aspartate aminotransferase 2 (AAT2) catalysis and plays an important regulatory role in the development of cardiovascular diseases. The present study aimed to explore the effect of endogenous SO2 on cardiomyocyte senescence and the underlying molecular mechanisms. APPROACH AND RESULTS We interestingly found a substantial reduction in the expression of AAT2 in the heart of aged mice in comparison to young mice. AAT2-knockdowned cardiomyocytes exhibited reduced SO2 content, elevated expression levels of Tp53, p21Cip/Waf, and p16INk4a, enhanced SA-β-Gal activity, and elevated level of γ-H2AX foci. Notably, supplementation with a SO2 donor ameliorated the spontaneous senescence phenotype and DNA damage caused by AAT2 deficiency in cardiomyocytes. Mechanistically, AAT2 deficiency suppressed the sulphenylation of signal transducer and activator of transcription 3 (STAT3) facilitated its nuclear translocation and DNA-binding capacity. Conversely, a mutation in the cysteine (Cys) 259 residue of STAT3 blocked SO2-induced STAT3 sulphenylation and subsequently prevented the inhibitory effect of SO2 on STAT3-DNA-binding capacity, DNA damage, and cardiomyocyte senescence. Additionally, cardiomyocyte (cm)-specific AAT2 knockout (AAT2cmKO) mice exhibited a deterioration in cardiac function, cardiomegaly, and cardiac aging, whereas supplementation with SO2 donors mitigated the cardiac aging and remodeling phenotypes in AAT2cmKO mice. CONCLUSION Downregulation of the endogenous SO2/AAT2 pathway is a crucial pathogenic mechanism underlying cardiomyocyte senescence. Endogenous SO2 modifies STAT3 by sulphenylating Cys259, leading to the inhibition of DNA damage and the protection against cardiomyocyte senescence.
Collapse
Affiliation(s)
- Shangyue Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Bingquan Qiu
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Boyang Lv
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China
| | - Guosheng Yang
- Laboratory Animal Facility, Peking University First Hospital, Beijing, 100034, China
| | - Yinghong Tao
- Laboratory Animal Facility, Peking University First Hospital, Beijing, 100034, China
| | - Yongyan Hu
- Laboratory Animal Facility, Peking University First Hospital, Beijing, 100034, China
| | - Kun Li
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Xiaoqi Yu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, China
| | - Chaoshu Tang
- Department of Physiology and Pathophysiology, Peking University Health Science Center, Beijing, 100191, China
| | - Junbao Du
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Hongfang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China; State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
| | - Yaqian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing, 100034, China.
| |
Collapse
|
2
|
Gęgotek A, Zarkovic N, Orehovec B, Jaganjac M, Sunjic SB, Skrzydlewska E. Short Survey on the Protein Modifications in Plasma during SARS-CoV-2 Infection. Int J Mol Sci 2023; 24:14109. [PMID: 37762413 PMCID: PMC10531908 DOI: 10.3390/ijms241814109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 09/07/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Although the COVID-19 pandemic has ended, it is important to understand the pathology of severe SARS-CoV-2 infection associated with respiratory failure and high mortality. The plasma proteome, including protein modification by lipid peroxidation products in COVID-19 survivors (COVID-19; n = 10) and deceased individuals (CovDeath; n = 10) was compared in samples collected upon admission to the hospital, when there was no difference in their status, with that of healthy individuals (Ctr; n = 10). The obtained results show that COVID-19 development strongly alters the expression of proteins involved in the regulation of exocytosis and platelet degranulation (top 20 altered proteins indicated by analysis of variance; p-value (False Discovery Rate) cutoff at 5%). These changes were most pronounced in the CovDeath group. In addition, the levels of 4-hydroxynonenal (4-HNE) adducts increased 2- and 3-fold, whereas malondialdehyde (MDA) adducts increased 7- and 2.5-fold, respectively, in COVID-19 and CovDeath groups. Kinases and proinflammatory proteins were particularly affected by these modifications. Protein adducts with 15-deoxy-12,14-prostaglandin J2 (15d-PGJ2) were increased 2.5-fold in COVID-19 patients, including modifications of proteins such as p53 and STAT3, whereas CovDeath showed a decrease of approximately 60% compared with Ctr. This study for the first time demonstrates the formation of lipid metabolism products-protein adducts in plasma from survived and deceased COVID-19 patients, significantly distinguishing them, which may be a predictor of the course of SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Agnieszka Gęgotek
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland;
| | - Neven Zarkovic
- Ruder Boskovic Institute, Div. Molecular Medicine Laboratory for Oxidative Stress Bijenicka 54, HR-10000 Zagreb, Croatia; (N.Z.); (M.J.); (S.B.S.)
| | | | - Morana Jaganjac
- Ruder Boskovic Institute, Div. Molecular Medicine Laboratory for Oxidative Stress Bijenicka 54, HR-10000 Zagreb, Croatia; (N.Z.); (M.J.); (S.B.S.)
| | - Suzana Borovic Sunjic
- Ruder Boskovic Institute, Div. Molecular Medicine Laboratory for Oxidative Stress Bijenicka 54, HR-10000 Zagreb, Croatia; (N.Z.); (M.J.); (S.B.S.)
| | - Elżbieta Skrzydlewska
- Department of Analytical Chemistry, Medical University of Bialystok, Kilinskiego 1, 15-069 Bialystok, Poland;
| |
Collapse
|
3
|
Kim SH, Lee SE, Kim SJ, Fang X, Hur J, Sozen E, Özer NK, Kim KP, Surh YJ. Protective effects of an electrophilic metabolite of docosahexaenoic acid on UVB-induced oxidative cell death, dermatitis, and carcinogenesis. Redox Biol 2023; 62:102666. [PMID: 36934646 PMCID: PMC10031545 DOI: 10.1016/j.redox.2023.102666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/04/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
Docosahexaenoic acid (DHA), a representative omega-3 (ω-3) polyunsaturated fatty acids, undergoes metabolism to produce biologically active electrophilic species. 17-Oxo-DHA is one such reactive metabolite generated from DHA by cyclooxygenase-2 and dehydrogenase in activated macrophages. The present study was aimed to investigate the effects of 17-oxo-DHA on ultraviolet B (UVB)-induced oxidative stress, inflammation, and carcinogenesis in mouse skin. UVB-induced epidermal cell death was ameliorated by topically applied 17-oxo-DHA. Topical application of 17-oxo-DHA onto hairless mouse skin inhibited UVB-induced phosphorylation of the proinflammatory transcription factor, STAT3 on tyrosine 705 (Tyr705). The 17-oxo-DHA treatment also reduced the levels of oxidative stress markers, 4-hydroxynonenal-modified protein, malondialdehyde, and 8-oxo-2'-deoxyguanosine. The protective effects of 17-oxo-DHA against oxidative damage in UVB-irradiated mouse skin were associated with activation of Nrf2. 17-Oxo-DHA enhanced the engulfment of apoptotic JB6 cells by macrophages, which was related to the increased expression of the scavenger receptor CD36. The 17-oxo-DHA-mediated potentiation of efferocytic activity of macrophages was attenuated by the pharmacologic inhibition or knockout of Nrf2. The pretreatment with 17-oxo-DHA reduced the UVB-induced skin carcinogenesis and tumor angiogenesis. It was also confirmed that 17-oxo-DHA treatment significantly inhibited the phosphorylation of the Tyr705 residue of STAT3 and decreased the expression of its target proteins in cutaneous papilloma. In conclusion, 17-oxo-DHA protects against UVB-induced oxidative cell death, dermatitis, and carcinogenesis. These effects were associated with inhibition of STAT3-mediated proinflammatory signaling and also activation of Nrf2 with subsequent upregulation of antioxidant and anti-inflammatory gene expression.
Collapse
Affiliation(s)
- Seong Hoon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - So Eui Lee
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Su-Jung Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Xizhu Fang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jihyeon Hur
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, South Korea
| | - Erdi Sozen
- Department of Biochemistry, Faculty of Medicine, Marmara University, Maltepe, Istanbul, Turkey
| | - Nesrin Kartal Özer
- Department of Biochemistry, Faculty of Medicine, Uskudar University, Altunizade, Istanbul, Turkey
| | - Kwang Pyo Kim
- Department of Applied Chemistry, Institute of Natural Science, Global Center for Pharmaceutical Ingredient Materials, Kyung Hee University, Yongin, South Korea; Department of Biomedical Science and Technology, Kyung Hee Medical Science Research Institute, Kyung Hee University, Seoul, South Korea.
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea; Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea; Cancer Research Institute, Seoul National University, Seoul, South Korea.
| |
Collapse
|
4
|
Naganuma T, Fujinami N, Arita M. Polyunsaturated Fatty Acid-Derived Lipid Mediators That Regulate Epithelial Homeostasis. Biol Pharm Bull 2022; 45:998-1007. [DOI: 10.1248/bpb.b22-00252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Tatsuro Naganuma
- Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy
| | - Nodoka Fujinami
- Division of Physiological Chemistry and Metabolism, Keio University Faculty of Pharmacy
| | - Makoto Arita
- Cellular and Molecular Epigenetics Laboratory, Graduate School of Medical Life Science, Yokohama-City University
| |
Collapse
|
5
|
Kim SJ, Cho NC, Hahn YI, Kim SH, Fang X, Surh YJ. STAT3 as a Potential Target for Tumor Suppressive Effects of 15-Deoxy-Δ 12,14-prostaglandin J 2 in Triple Negative Breast Cancer. J Cancer Prev 2021; 26:207-217. [PMID: 34703823 PMCID: PMC8511581 DOI: 10.15430/jcp.2021.26.3.207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/24/2022] Open
Abstract
STAT3 plays a prominent role in proliferation and survival of tumor cells. Thus, STAT3 has been considered to be a prime target for development of anti-cancer therapeutics. The electrophilic cyclopentenone prostaglandin,15-deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2) has been well recognized for its capability to modulate intracellular signaling pathways involved in cancer cell growth and progression. We previously reported that 15d-PGJ2 had potent cytotoxicity against harvey-ras transformed human mammary epithelial cells through direct interaction with STAT3. In this study, we have attempted to verify the inhibitory effects of 15d-PGJ2 on STAT3 signaling in human breast tumor cells. The triple negative breast cancer cell lines, MDA-MB-231 and MDA-MB-468 displaying constitutive phosphorylation of STAT3 on the tyrosine 705 (Tyr705) residue, underwent apoptosis upon inhibition of STAT3 by 15d-PGJ2. In contrast, estrogen receptor positive MCF-7 breast cancer cells that do not exhibit elevated STAT3 phosphorylation were much less susceptible to 15d-PGJ2-induced apoptosis as assessed by PARP cleavage. Furthermore, 15d-PGJ2 inhibited interleukin-6-induced tyrosine phosphorylation of STAT3 in LNCaP cells. According to molecular docking studies, 15d-PGJ2 may preferentially bind to the cysteine 259 residue (Cys259) present in the coiled-coil domain of STAT3. Site-directed mutagenesis of STAT3 identified Cys259 to be the critical amino acid for the 15d-PGJ2-induced apoptosis as well as epithelial-to-mesenchymal transition. Taken together, these findings suggest STAT3 inactivation through direct chemical modification of its Cys259 as a potential therapeutic approach for treatment of triple negative breast cancer treatment.
Collapse
Affiliation(s)
- Su-Jung Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Nam-Chul Cho
- Korea Chemical Bank, Korea Research Institute of Chemical Technology, Daejeon, Korea
| | - Young-Il Hahn
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul, Korea
| | - Seong Hoon Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Xizhu Fang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea
| | - Young-Joon Surh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science, Seoul National University, Seoul, Korea.,Cancer Research Institute, Seoul National University, Seoul, Korea
| |
Collapse
|
6
|
Kim W, Jang JH, Zhong X, Seo H, Surh YJ. 15-Deoxy-△ 12,14-Prostaglandin J 2 Promotes Resolution of Experimentally Induced Colitis. Front Immunol 2021; 12:615803. [PMID: 33633749 PMCID: PMC7901909 DOI: 10.3389/fimmu.2021.615803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/04/2021] [Indexed: 12/14/2022] Open
Abstract
Uncontrolled macrophage functions cause failure to resolve gut inflammation and has been implicated in the pathogenesis of inflammatory bowel disease (IBD). 15-Deoxy-Δ12,14-prostaglandin J2 (15d-PGJ2), one of endogenous lipid mediators formed from arachidonic acid during the inflammatory process, has been reported to terminate inflammation. However, the pro-resolving effect of 15d-PGJ2 on intestinal inflammation and underlying molecular mechanisms remain largely unknown. In the present study, we examined the effects of 15d-PGJ2 on the resolution of dextran sulfate sodium (DSS)-induced murine colitis that mimics human IBD. Pharmacologic inhibition of prostaglandin D synthase (PGDS) responsible for the synthesis of 15d-PGJ2 hampered resolution of inflammation in the colonic mucosa of mice treated with DSS. Notably, intraperitoneal injection of 15d-PGJ2 accelerated the resolution of experimentally induced colitis. 15d-PGJ2 treatment reduced the number of neutrophils and M1 macrophages, while it increased the proportion of M2 macrophages. Moreover, 15d-PGJ2 treated mice exhibited the significantly reduced proportion of macrophages expressing the pro-inflammatory cytokine, IL-6 with concomitant suppression of STAT3 phosphorylation in the colonic mucosa of mice administered 2.5% DSS in drinking water. Taken together, these findings clearly indicate that 15d-PGJ2, endogenously generated from arachidonic acid by cyclooxygenase-2 and PGDS activities in inflamed tissue, promotes resolution of intestinal colitis.
Collapse
Affiliation(s)
- Wonki Kim
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Jeong-Hoon Jang
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Xiancai Zhong
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea
| | - Hyungseok Seo
- Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea
| | - Young-Joon Surh
- Tumor Microenvironment Global Core Research Center and Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul, South Korea.,Department of Molecular Medicine and Biopharmaceutical Sciences, Graduate School of Convergence Science and Technology, Seoul National University, Seoul, South Korea.,Cancer Research Institute, Seoul National University, Seoul, South Korea
| |
Collapse
|