1
|
Pajares MÁ. Posttranslational Regulation of Mammalian Sulfur Amino Acid Metabolism. Int J Mol Sci 2025; 26:2488. [PMID: 40141131 PMCID: PMC11942099 DOI: 10.3390/ijms26062488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/05/2025] [Accepted: 03/09/2025] [Indexed: 03/28/2025] Open
Abstract
Metabolism of the mammalian proteinogenic sulfur amino acids methionine and cysteine includes the methionine cycle and reverse transsulfuration pathway, establishing many connections with other important metabolic routes. The main source of these amino acids is the diet, which also provides B vitamins required as cofactors for several enzymes of the metabolism of these amino acids. While methionine is considered an essential amino acid, cysteine can be produced from methionine in a series of reactions that also generate homocysteine, a non-proteinogenic amino acid linking reverse transsulfuration with the methionine and folate cycles. These pathways produce key metabolites that participate in synthesizing a large variety of compounds and important regulatory processes (e.g., epigenetic methylations). The impairment of sulfur amino acid metabolism manifests in many pathological processes, mostly correlated with oxidative stress and alterations in glutathione levels that also depend on this part of the cellular metabolism. This review analyzes the current knowledge on the posttranslational regulation of mammalian sulfur amino acid metabolism, highlighting the large number of modification sites reported through high-throughput studies and the surprisingly limited knowledge of their functional impact.
Collapse
Affiliation(s)
- María Ángeles Pajares
- Department of Molecular and Cellular Biosciences, Centro de Investigaciones Biológicas Margarita Salas (CSIC), Ramiro de Maeztu 9, 28040 Madrid, Spain
| |
Collapse
|
2
|
Rodriguez Carrero RJ, Lloyd CT, Borkar J, Nath S, Mirica LM, Nair S, Booker SJ, Metcalf W. Genetic and biochemical characterization of a radical SAM enzyme required for post-translational glutamine methylation of methyl-coenzyme M reductase. mBio 2025; 16:e0354624. [PMID: 39772843 PMCID: PMC11796369 DOI: 10.1128/mbio.03546-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025] Open
Abstract
Methyl-coenzyme M reductase (MCR), the key catalyst in the anoxic production and consumption of methane, contains an unusual 2-methylglutamine residue within its active site. In vitro data show that a B12-dependent radical SAM (rSAM) enzyme, designated MgmA, is responsible for this post-translational modification (PTM). Here, we show that two different MgmA homologs are able to methylate MCR in vivo when expressed in Methanosarcina acetivorans, an organism that does not normally possess this PTM. M. acetivorans strains expressing MgmA showed small, but significant, reductions in growth rates and yields on methylotrophic substrates. Structural characterization of the Ni(II) form of Gln-methylated M. acetivorans MCR revealed no significant differences in the protein fold between the modified and unmodified enzyme; however, the purified enzyme contained the heterodisulfide reaction product, as opposed to the free cofactors found in eight prior M. acetivorans MCR structures, suggesting that substrate/product binding is altered in the modified enzyme. Structural characterization of MgmA revealed a fold similar to other B12-dependent rSAMs, with a wide active site cleft capable of binding an McrA peptide in an extended, linear conformation.IMPORTANCEMethane plays a key role in the global carbon cycle and is an important driver of climate change. Because MCR is responsible for nearly all biological methane production and most anoxic methane consumption, it plays a major role in setting the atmospheric levels of this important greenhouse gas. Thus, a detailed understanding of this enzyme is critical for the development of methane mitigation strategies.
Collapse
Affiliation(s)
| | - Cody T. Lloyd
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Janhavi Borkar
- Department of Biochemistry, University of Illinois Urbana-Champaign, Champaign, Illinois, USA
| | - Shounak Nath
- Department of Chemistry, University of Illinois Urbana-Champaign, Champaign, Illinois, USA
| | - Liviu M. Mirica
- Department of Chemistry, University of Illinois Urbana-Champaign, Champaign, Illinois, USA
| | - Satish Nair
- Department of Biochemistry, University of Illinois Urbana-Champaign, Champaign, Illinois, USA
- Center for Biophysics and Quantitative Biology, University of Illinois Urbana-Champaign, Champaign, Illinois, USA
| | - Squire J. Booker
- Department of Chemistry, Pennsylvania State University, University Park, Pennsylvania, USA
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, Pennsylvania, USA
- The Howard Hughes Medical Institute, Pennsylvania State University, University Park, Pennsylvania, USA
| | - William Metcalf
- Department of Microbiology, University of Illinois Urbana-Champaign, Champaign, Illinois, USA
| |
Collapse
|
3
|
Kandy SK, Pasquale MA, Chekan JR. Aromatic side-chain crosslinking in RiPP biosynthesis. Nat Chem Biol 2025; 21:168-181. [PMID: 39814993 PMCID: PMC11897777 DOI: 10.1038/s41589-024-01795-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 11/13/2024] [Indexed: 01/18/2025]
Abstract
Peptide cyclization is a defining feature of many bioactive molecules, particularly in the ribosomally synthesized and post-translationally modified peptide (RiPP) family of natural products. Although enzymes responsible for N- to C-terminal macrocyclization, lanthipeptide formation or heterocycle installation have been well documented, a diverse array of cyclases have been discovered that perform crosslinking of aromatic side chains. These enzymes form either biaryl linkages between two aromatic amino acids or a crosslink between one aliphatic amino acid and one aromatic amino acid. Incredibly, nature has evolved multiple routes to install these crosslinks. While enzymes such as cytochromes P450 and radical S-adenosylmethionine (rSAM) enzymes are well known from other pathways, this role in RiPP biosynthesis has only recently been appreciated. Others, such as burpitide cyclases and DUF3328 (UstY) family proteins, come from eukaryotes and are relatively uncharacterized enzyme classes. This Review covers the emerging theme of aromatic amino acid side-chain crosslinking in RiPPs by focusing on the newly discovered enzymes responsible for catalyzing these challenging reactions.
Collapse
Affiliation(s)
- Sanath K Kandy
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Michael A Pasquale
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA
| | - Jonathan R Chekan
- Department of Chemistry and Biochemistry, University of North Carolina at Greensboro, Greensboro, NC, USA.
| |
Collapse
|
4
|
Zahn LE, Gannon PM, Rajakovich LJ. Iron-sulfur cluster-dependent enzymes and molybdenum-dependent reductases in the anaerobic metabolism of human gut microbes. Metallomics 2024; 16:mfae049. [PMID: 39504489 PMCID: PMC11574389 DOI: 10.1093/mtomcs/mfae049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Metalloenzymes play central roles in the anaerobic metabolism of human gut microbes. They facilitate redox and radical-based chemistry that enables microbial degradation and modification of various endogenous, dietary, and xenobiotic nutrients in the anoxic gut environment. In this review, we highlight major families of iron-sulfur (Fe-S) cluster-dependent enzymes and molybdenum cofactor-containing enzymes used by human gut microbes. We describe the metabolic functions of 2-hydroxyacyl-CoA dehydratases, glycyl radical enzyme activating enzymes, Fe-S cluster-dependent flavoenzymes, U32 oxidases, and molybdenum-dependent reductases and catechol dehydroxylases in the human gut microbiota. We demonstrate the widespread distribution and prevalence of these metalloenzyme families across 5000 human gut microbial genomes. Lastly, we discuss opportunities for metalloenzyme discovery in the human gut microbiota to reveal new chemistry and biology in this important community.
Collapse
Affiliation(s)
- Leah E Zahn
- Department of Chemistry, University of Washington, Seattle, United States
| | - Paige M Gannon
- Department of Chemistry, University of Washington, Seattle, United States
| | | |
Collapse
|
5
|
Morishita Y, Ma S, De La Mora E, Li H, Chen H, Ji X, Usclat A, Amara P, Sugiyama R, Tooh YW, Gunawan G, Pérard J, Nicolet Y, Zhang Q, Morinaka BI. Fused radical SAM and αKG-HExxH domain proteins contain a distinct structural fold and catalyse cyclophane formation and β-hydroxylation. Nat Chem 2024; 16:1882-1893. [PMID: 39294420 DOI: 10.1038/s41557-024-01596-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 07/05/2024] [Indexed: 09/20/2024]
Abstract
Two of nature's recurring binding motifs in metalloproteins are the CxxxCxxC motif in radical SAM enzymes and the 2-His-1-carboxylate motif found both in zincins and α-ketoglutarate and non-haem iron enzymes. Here we show the confluence of these two domains in a single post-translational modifying enzyme containing an N-terminal radical S-adenosylmethionine domain fused to a C-terminal 2-His-1-carboxylate (HExxH) domain. The radical SAM domain catalyses three-residue cyclophane formation and is the signature modification of triceptides, a class of ribosomally synthesized and post-translationally modified peptides. The HExxH domain is a defining feature of zinc metalloproteases. Yet the HExxH motif-containing domain studied here catalyses β-hydroxylation and is an α-ketoglutarate non-haem iron enzyme. We determined the crystal structure for this HExxH protein at 2.8 Å, unveiling a distinct structural fold, thus expanding the family of α-ketoglutarate non-haem iron enzymes with a class that we propose to name αKG-HExxH. αKG-HExxH proteins represent a unique family of ribosomally synthesized and post-translationally modified peptide modifying enzymes that can furnish opportunities for genome mining, synthetic biology and enzymology.
Collapse
Affiliation(s)
- Yohei Morishita
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
- Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Suze Ma
- Department of Chemistry, Fudan University, Shanghai, China
| | - Eugenio De La Mora
- University Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, Grenoble, France
| | - He Li
- Department of Chemistry, Fudan University, Shanghai, China
| | - Heng Chen
- Department of Chemistry, Fudan University, Shanghai, China
| | - Xinjian Ji
- Department of Chemistry, Fudan University, Shanghai, China
| | - Anthony Usclat
- University Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, Grenoble, France
| | - Patricia Amara
- University Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, Grenoble, France
| | - Ryosuke Sugiyama
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
- Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Yi Wei Tooh
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Gregory Gunawan
- Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - Julien Pérard
- University Grenoble Alpes, CNRS, CEA, IRIG, Laboratoire de Chimie et Biologie des Métaux, Grenoble, France
| | - Yvain Nicolet
- University Grenoble Alpes, CEA, CNRS, IBS, Metalloproteins Unit, Grenoble, France.
| | - Qi Zhang
- Department of Chemistry, Fudan University, Shanghai, China.
| | - Brandon I Morinaka
- Department of Pharmacy, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
6
|
Fu B, Yang H, Kountz DJ, Lundahl MN, Beller HR, Broderick WE, Broderick JB, Hoffman BH, Balskus EP. Discovery of a New Class of Aminoacyl Radical Enzymes Expands Nature's Known Radical Chemistry. J Am Chem Soc 2024; 146:29645-29655. [PMID: 39392720 PMCID: PMC11528403 DOI: 10.1021/jacs.4c10348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/24/2024] [Accepted: 10/02/2024] [Indexed: 10/13/2024]
Abstract
Radical enzymes, including the evolutionarily ancient glycyl radical enzyme (GRE) family, catalyze chemically challenging reactions that are involved in a myriad of important biological processes. All GREs possess an essential, conserved backbone glycine that forms a stable, catalytically essential α-carbon radical. Through close examination of the GRE family, we unexpectedly identified hundreds of noncanonical GRE homologs that encode either an alanine, serine, or threonine in place of the catalytic glycine residue. Contrary to a long-standing belief, we experimentally demonstrate that these aminoacyl radical enzymes (AAREs) form stable α-carbon radicals on the three cognate residues when activated by partner activating enzymes. The previously unrecognized AAREs are widespread in microbial genomes, highlighting their biological importance and potential for exhibiting new reactivity. Collectively, these studies expand the known radical chemistry of living systems while raising questions about the evolutionary emergence of the AAREs.
Collapse
Affiliation(s)
- Beverly Fu
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Hao Yang
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Duncan J. Kountz
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Maike N. Lundahl
- Department
of Chemistry and Biochemistry, Montana State
University, Bozeman, Montana 59717, United States
| | - Harry R. Beller
- Lawrence
Berkeley National Laboratory, Berkeley, California 94720, United States
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - William E. Broderick
- Department
of Chemistry and Biochemistry, Montana State
University, Bozeman, Montana 59717, United States
| | - Joan B. Broderick
- Department
of Chemistry and Biochemistry, Montana State
University, Bozeman, Montana 59717, United States
| | - Brian H. Hoffman
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Emily P. Balskus
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
- Howard Hughes
Medical Institute, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
7
|
Johnson JE, Present TM, Valentine JS. Iron: Life's primeval transition metal. Proc Natl Acad Sci U S A 2024; 121:e2318692121. [PMID: 39250667 PMCID: PMC11420189 DOI: 10.1073/pnas.2318692121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024] Open
Abstract
Modern life requires many different metal ions, which enable diverse biochemical functions. It is commonly assumed that metal ions' environmental availabilities controlled the evolution of early life. We argue that evolution can only explore the chemistry that life encounters, and fortuitous chemical interactions between metal ions and biological compounds can only be selected for if they first occur sufficiently frequently. We calculated maximal transition metal ion concentrations in the ancient ocean, determining that the amounts of biologically important transition metal ions were orders of magnitude lower than ferrous iron. Under such conditions, primitive bioligands would predominantly interact with Fe(II). While interactions with other metals in certain environments may have provided evolutionary opportunities, the biochemical capacities of Fe(II), Fe-S clusters, or the plentiful magnesium and calcium could have satisfied all functions needed by early life. Primitive organisms could have used Fe(II) exclusively for their transition metal ion requirements.
Collapse
Affiliation(s)
- Jena E. Johnson
- Department of Earth and Environmental Sciences, University of Michigan, Ann Arbor, MI48109
| | - Theodore M. Present
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
| | - Joan Selverstone Valentine
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA91125
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA90095
| |
Collapse
|
8
|
Zhou A, Sun Z, Sun L. Stable organic radical qubits and their applications in quantum information science. Innovation (N Y) 2024; 5:100662. [PMID: 39091459 PMCID: PMC11292369 DOI: 10.1016/j.xinn.2024.100662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/20/2024] [Indexed: 08/04/2024] Open
Abstract
The past century has witnessed the flourishing of organic radical chemistry. Stable organic radicals are highly valuable for quantum technologies thanks to their inherent room temperature quantum coherence, atomic-level designability, and fine tunability. In this comprehensive review, we highlight the potential of stable organic radicals as high-temperature qubits and explore their applications in quantum information science, which remain largely underexplored. Firstly, we summarize known spin dynamic properties of stable organic radicals and examine factors that influence their electron spin relaxation and decoherence times. This examination reveals their design principles and optimal operating conditions. We further discuss their integration in solid-state materials and surface structures, and present their state-of-the-art applications in quantum computing, quantum memory, and quantum sensing. Finally, we analyze the primary challenges associated with stable organic radical qubits and provide tentative insights to future research directions.
Collapse
Affiliation(s)
- Aimei Zhou
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Zhecheng Sun
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Lei Sun
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
- Key Laboratory for Quantum Materials of Zhejiang Province, Department of Physics, School of Science, Westlake University, Hangzhou 310030, China
| |
Collapse
|
9
|
Mrnjavac N, Schwander L, Brabender M, Martin WF. Chemical Antiquity in Metabolism. Acc Chem Res 2024; 57:2267-2278. [PMID: 39083571 PMCID: PMC11339923 DOI: 10.1021/acs.accounts.4c00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 08/02/2024]
Abstract
Life is an exergonic chemical reaction. The same was true when the very first cells emerged at life's origin. In order to live, all cells need a source of carbon, energy, and electrons to drive their overall reaction network (metabolism). In most cells, these are separate pathways. There is only one biochemical pathway that serves all three needs simultaneously: the acetyl-CoA pathway of CO2 fixation. In the acetyl-CoA pathway, electrons from H2 reduce CO2 to pyruvate for carbon supply, while methane or acetate synthesis are coupled to energy conservation as ATP. This simplicity and thermodynamic favorability prompted Georg Fuchs and Erhard Stupperich to propose in 1985 that the acetyl-CoA pathway might mark the origin of metabolism, at the same time that Steve Ragsdale and Harland Wood were uncovering catalytic roles for Fe, Co, and Ni in the enzymes of the pathway. Subsequent work has provided strong support for those proposals.In the presence of Fe, Co, and Ni in their native metallic state as catalysts, aqueous H2 and CO2 react specifically to formate, acetate, methane, and pyruvate overnight at 100 °C. These metals (and their alloys) thus replace the function of over 120 enzymes required for the conversion of H2 and CO2 to pyruvate via the pathway and its cofactors, an unprecedented set of findings in the study of biochemical evolution. The reactions require alkaline conditions, which promote hydrogen oxidation by proton removal and are naturally generated in serpentinizing (H2-producing) hydrothermal vents. Serpentinizing hydrothermal vents furthermore produce natural deposits of native Fe, Co, Ni, and their alloys. These are precisely the metals that reduce CO2 with H2 in the laboratory; they are also the metals found at the active sites of enzymes in the acetyl-CoA pathway. Iron, cobalt and nickel are relicts of the environments in which metabolism arose, environments that still harbor ancient methane- and acetate-producing autotrophs today. This convergence indicates bedrock-level antiquity for the acetyl-CoA pathway. In acetogens and methanogens growing on H2 as reductant, the acetyl-CoA pathway requires flavin-based electron bifurcation as a source of reduced ferredoxin (a 4Fe4S cluster-containing protein) in order to function. Recent findings show that H2 can reduce the 4Fe4S clusters of ferredoxin in the presence of native iron, uncovering an evolutionary precursor of flavin-based electron bifurcation and suggesting an origin of FeS-dependent electron transfer in proteins. Traditionally discussed as catalysts in early evolution, the most common function of FeS clusters in metabolism is one-electron transfer, also in radical SAM enzymes, a large and ancient enzyme family. The cofactors and active sites in enzymes of the acetyl-CoA pathway uncover chemical antiquity in metabolism involving metals, methyl groups, methyl transfer reactions, cobamides, pterins, GTP, S-adenosylmethionine, radical SAM enzymes, and carbon-metal bonds. The reaction sequence from H2 and CO2 to pyruvate on naturally deposited native metals is maximally simple. It requires neither nitrogen, sulfur, phosphorus, RNA, ion gradients, nor light. Solid-state metal catalysts tether the origin of metabolism to a H2-producing, serpentinizing hydrothermal vent.
Collapse
Affiliation(s)
- Natalia Mrnjavac
- Institute
of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Loraine Schwander
- Institute
of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - Max Brabender
- Institute
of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| | - William F. Martin
- Institute
of Molecular Evolution, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225 Düsseldorf, Germany
| |
Collapse
|
10
|
Vallières C, Benoit O, Guittet O, Huang ME, Lepoivre M, Golinelli-Cohen MP, Vernis L. Iron-sulfur protein odyssey: exploring their cluster functional versatility and challenging identification. Metallomics 2024; 16:mfae025. [PMID: 38744662 PMCID: PMC11138216 DOI: 10.1093/mtomcs/mfae025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Iron-sulfur (Fe-S) clusters are an essential and ubiquitous class of protein-bound prosthetic centers that are involved in a broad range of biological processes (e.g. respiration, photosynthesis, DNA replication and repair and gene regulation) performing a wide range of functions including electron transfer, enzyme catalysis, and sensing. In a general manner, Fe-S clusters can gain or lose electrons through redox reactions, and are highly sensitive to oxidation, notably by small molecules such as oxygen and nitric oxide. The [2Fe-2S] and [4Fe-4S] clusters, the most common Fe-S cofactors, are typically coordinated by four amino acid side chains from the protein, usually cysteine thiolates, but other residues (e.g. histidine, aspartic acid) can also be found. While diversity in cluster coordination ensures the functional variety of the Fe-S clusters, the lack of conserved motifs makes new Fe-S protein identification challenging especially when the Fe-S cluster is also shared between two proteins as observed in several dimeric transcriptional regulators and in the mitoribosome. Thanks to the recent development of in cellulo, in vitro, and in silico approaches, new Fe-S proteins are still regularly identified, highlighting the functional diversity of this class of proteins. In this review, we will present three main functions of the Fe-S clusters and explain the difficulties encountered to identify Fe-S proteins and methods that have been employed to overcome these issues.
Collapse
Affiliation(s)
- Cindy Vallières
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Orane Benoit
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Olivier Guittet
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Meng-Er Huang
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Michel Lepoivre
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Marie-Pierre Golinelli-Cohen
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| | - Laurence Vernis
- Université Paris-Saclay, Institut de Chimie des Substances Naturelles, CNRS UPR 2301, Gif-sur-Yvette cedex 91198, France
| |
Collapse
|
11
|
Walls WG, Vagstad A, Delridge T, Piel J, Broderick WE, Broderick JB. Direct Detection of the α-Carbon Radical Intermediate Formed by OspD: Mechanistic Insights into Radical S-Adenosyl-l-methionine Peptide Epimerization. J Am Chem Soc 2024; 146:5550-5559. [PMID: 38364824 PMCID: PMC11302384 DOI: 10.1021/jacs.3c13829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
OspD is a radical S-adenosyl-l-methionine (SAM) peptide epimerase that converts an isoleucine (Ile) and valine (Val) of the OspA substrate to d-amino acids during biosynthesis of the ribosomally synthesized and post-translationally modified peptide (RiPP) natural product landornamide A. OspD is proposed to carry out this reaction via α-carbon (Cα) H-atom abstraction to form a peptidyl Cα radical that is stereospecifically quenched by hydrogen atom transfer (HAT) from a conserved cysteine (Cys). Here we use site-directed mutagenesis, freeze-quench trapping, isotopic labeling, and electron paramagnetic resonance (EPR) spectroscopy to provide new insights into the OspD catalytic mechanism including the direct observation of the substrate peptide Cα radical intermediate. The putative quenching Cys334 was changed to serine to generate an OspD C334S variant impaired in HAT quenching. The reaction of reduced OspD C334S with SAM and OspA freeze-quenched at 15 s exhibits a doublet EPR signal characteristic of a Cα radical coupled to a single β-H. Using isotopologues of OspA deuterated at either Ile or Val, or both Ile and Val, reveals that the initial Cα radical intermediate forms exclusively on the Ile of OspA. Time-dependent freeze quench coupled with EPR spectroscopy provided evidence for loss of the Ile Cα radical concomitant with gain of a Val Cα radical, directly demonstrating the N-to-C directionality of epimerization by OspD. These results provide direct evidence for the aforementioned OspD-catalyzed peptide epimerization mechanism via a central Cα radical intermediate during RiPP maturation of OspA, a mechanism that may extend to other proteusin peptide epimerases.
Collapse
Affiliation(s)
- William G. Walls
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | - Anna Vagstad
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, Zürich 8093, Switzerland
| | - Tyler Delridge
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | - Jörn Piel
- Institute of Microbiology, Eidgenössische Technische Hochschule (ETH) Zürich, Vladimir-Prelog-Weg 4, Zürich 8093, Switzerland
| | - William E. Broderick
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, United States
| | - Joan B. Broderick
- Department of Chemistry & Biochemistry, Montana State University, Bozeman, MT 59717, United States
| |
Collapse
|
12
|
Yang H, Ho MB, Lundahl MN, Mosquera MA, Broderick WE, Broderick JB, Hoffman BM. ENDOR Spectroscopy Reveals the "Free" 5'-Deoxyadenosyl Radical in a Radical SAM Enzyme Active Site Actually is Chaperoned by Close Interaction with the Methionine-Bound [4Fe-4S] 2+ Cluster. J Am Chem Soc 2024; 146:3710-3720. [PMID: 38308759 PMCID: PMC11627429 DOI: 10.1021/jacs.3c09428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2024]
Abstract
1/2H and 13C hyperfine coupling constants to 5'-deoxyadenosyl (5'-dAdo•) radical trapped within the active site of the radical S-adenosyl-l-methionine (SAM) enzyme, pyruvate formate lyase-activating enzyme (PFL-AE), both in the absence of substrate and the presence of a reactive peptide-model of the PFL substrate, are completely characteristic of a classical organic free radical whose unpaired electron is localized in the 2pπ orbital of the sp2 C5'-carbon (J. Am. Chem. Soc. 2019, 141, 12139-12146). However, prior electron-nuclear double resonance (ENDOR) measurements had indicated that this 5'-dAdo• free radical is never truly "free": tight van der Waals contact with its target partners and active-site residues guide it in carrying out the exquisitely precise, regioselective reactions that are hallmarks of RS enzymes. Here, our understanding of how the active site chaperones 5'-dAdo• is extended through the finding that this apparently unexceptional organic free radical has an anomalous g-tensor and exhibits significant 57Fe, 13C, 15N, and 2H hyperfine couplings to the adjacent, isotopically labeled, methionine-bound [4Fe-4S]2+ cluster cogenerated with 5'-dAdo• during homolytic cleavage of cluster-bound SAM. The origin of the 57Fe couplings through nonbonded radical-cluster contact is illuminated by a formal exchange-coupling model and broken symmetry-density functional theory computations. Incorporation of ENDOR-derived distances from C5'(dAdo•) to labeled-methionine as structural constraints yields a model for active-site positioning of 5'-dAdo• with a short, nonbonded C5'-Fe distance (∼3 Å). This distance involves substantial motion of 5'-dAdo• toward the unique Fe of the [4Fe-4S]2+ cluster upon S-C(5') bond-cleavage, plausibly an initial step toward formation of the Fe-C5' bond of the organometallic complex, Ω, the central intermediate in catalysis by radical-SAM enzymes.
Collapse
Affiliation(s)
- Hao Yang
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Madeline B. Ho
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| | - Maike N. Lundahl
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| | - Martin A. Mosquera
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| | - William E. Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| | - Joan B. Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, USA
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
13
|
Lundahl MN, Yang H, Broderick WE, Hoffman BM, Broderick JB. Pyruvate formate-lyase activating enzyme: The catalytically active 5'-deoxyadenosyl radical caught in the act of H-atom abstraction. Proc Natl Acad Sci U S A 2023; 120:e2314696120. [PMID: 37956301 PMCID: PMC10665898 DOI: 10.1073/pnas.2314696120] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/03/2023] [Indexed: 11/15/2023] Open
Abstract
Enzymes of the radical S-adenosyl-l-methionine (radical SAM, RS) superfamily, the largest in nature, catalyze remarkably diverse reactions initiated by H-atom abstraction. Glycyl radical enzyme activating enzymes (GRE-AEs) are a growing class of RS enzymes that generate the catalytically essential glycyl radical of GREs, which in turn catalyze essential reactions in anaerobic metabolism. Here, we probe the reaction of the GRE-AE pyruvate formate-lyase activating enzyme (PFL-AE) with the peptide substrate RVSG734YAV, which mimics the site of glycyl radical formation on the native substrate, pyruvate formate-lyase. Time-resolved freeze-quench electron paramagnetic resonance spectroscopy shows that at short mixing times reduced PFL-AE + SAM reacts with RVSG734YAV to form the central organometallic intermediate, Ω, in which the adenosyl 5'C is covalently bound to the unique iron of the [4Fe-4S] cluster. Freeze-trapping the reaction at longer times reveals the formation of the peptide G734• glycyl radical product. Of central importance, freeze-quenching at intermediate times reveals that the conversion of Ω to peptide glycyl radical is not concerted. Instead, homolysis of the Ω Fe-C5' bond generates the nominally "free" 5'-dAdo• radical, which is captured here by freeze-trapping. During cryoannealing at 77 K, the 5'-dAdo• directly abstracts an H-atom from the peptide to generate the G734• peptide radical trapped in the PFL-AE active site. These observations reveal the 5'-dAdo• radical to be a well-defined intermediate, caught in the act of substrate H-atom abstraction, providing new insights into the mechanistic steps of radical initiation by RS enzymes.
Collapse
Affiliation(s)
- Maike N. Lundahl
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT59717
| | - Hao Yang
- Department of Chemistry, Northwestern University, Evanston, IL60208
| | - William E. Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT59717
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, IL60208
| | - Joan B. Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT59717
| |
Collapse
|
14
|
Dreishpoon MB, Bick NR, Petrova B, Warui DM, Cameron A, Booker SJ, Kanarek N, Golub TR, Tsvetkov P. FDX1 regulates cellular protein lipoylation through direct binding to LIAS. J Biol Chem 2023; 299:105046. [PMID: 37453661 PMCID: PMC10462841 DOI: 10.1016/j.jbc.2023.105046] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 07/03/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023] Open
Abstract
Ferredoxins are a family of iron-sulfur (Fe-S) cluster proteins that serve as essential electron donors in numerous cellular processes that are conserved through evolution. The promiscuous nature of ferredoxins as electron donors enables them to participate in many metabolic processes including steroid, heme, vitamin D, and Fe-S cluster biosynthesis in different organisms. However, the unique natural function(s) of each of the two human ferredoxins (FDX1 and FDX2) are still poorly characterized. We recently reported that FDX1 is both a crucial regulator of copper ionophore-induced cell death and serves as an upstream regulator of cellular protein lipoylation, a mitochondrial lipid-based post-translational modification naturally occurring on four mitochondrial enzymes that are crucial for TCA cycle function. Here we show that FDX1 directly regulates protein lipoylation by binding the lipoyl synthase (LIAS) enzyme promoting its functional binding to the lipoyl carrier protein GCSH and not through indirect regulation of cellular Fe-S cluster biosynthesis. Metabolite profiling revealed that the predominant cellular metabolic outcome of FDX1 loss of function is manifested through the regulation of the four lipoylation-dependent enzymes ultimately resulting in loss of cellular respiration and sensitivity to mild glucose starvation. Transcriptional profiling established that FDX1 loss-of-function results in the induction of both compensatory metabolism-related genes and the integrated stress response, consistent with our findings that FDX1 loss-of-function is conditionally lethal. Together, our findings establish that FDX1 directly engages with LIAS, promoting its role in cellular protein lipoylation, a process essential in maintaining cell viability under low glucose conditions.
Collapse
Affiliation(s)
| | - Nolan R Bick
- Broad Institute of Harvard and MIT, Cambridge, USA
| | - Boryana Petrova
- Harvard Medical School, Boston, Massachusetts, USA; Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Douglas M Warui
- Department of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes Medical Institute, The Pennsylvania State University, State College, Pennsylvania, USA
| | | | - Squire J Booker
- Department of Chemistry and Biochemistry and Molecular Biology and the Howard Hughes Medical Institute, The Pennsylvania State University, State College, Pennsylvania, USA
| | - Naama Kanarek
- Broad Institute of Harvard and MIT, Cambridge, USA; Harvard Medical School, Boston, Massachusetts, USA; Department of Pathology, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Todd R Golub
- Broad Institute of Harvard and MIT, Cambridge, USA; Harvard Medical School, Boston, Massachusetts, USA; Department of Pediatric Oncology, Dana Farber Cancer Institute, Boston, Massachusetts, USA; Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA
| | | |
Collapse
|
15
|
Jodts RJ, Wittkop M, Ho MB, Broderick WE, Broderick JB, Hoffman BM, Mosquera MA. Computational Description of Alkylated Iron-Sulfur Organometallic Clusters. J Am Chem Soc 2023; 145:13879-13887. [PMID: 37307050 PMCID: PMC10573082 DOI: 10.1021/jacs.3c03062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The radical S-adenosyl methionine (SAM) enzyme superfamily has widespread roles in hydrogen atom abstraction reactions of crucial biological importance. In these enzymes, reductive cleavage of SAM bound to a [4Fe-4S]1+ cluster generates the 5'-deoxyadenosyl radical (5'-dAdo•) which ultimately abstracts an H atom from the substrate. However, overwhelming experimental evidence has surprisingly revealed an obligatory organometallic intermediate Ω exhibiting an Fe-C5'-adenosyl bond, whose properties are the target of this theoretical investigation. We report a readily applied, two-configuration version of broken symmetry DFT, denoted 2C-DFT, designed to allow the accurate description of the hyperfine coupling constants and g-tensors of an alkyl group bound to a multimetallic iron-sulfur cluster. This approach has been validated by the excellent agreement of its results both with those of multiconfigurational complete active space self-consistent field computations for a series of model complexes and with the results from electron nuclear double-resonance/electron paramagnetic resonance spectroscopic studies for the crystallographically characterized complex, M-CH3, a [4Fe-4S] cluster with a Fe-CH3 bond. The likewise excellent agreement between spectroscopic results and 2C-DFT computations for Ω confirm its identity as an organometallic complex with a bond between an Fe of the [4Fe-4S] cluster and C5' of the deoxyadenosyl moiety, as first proposed.
Collapse
Affiliation(s)
- Richard J. Jodts
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208
| | - M Wittkop
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Madeline B. Ho
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208
| | - William E. Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Joan B. Broderick
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| | - Brian M. Hoffman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208
| | - Martín A. Mosquera
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717
| |
Collapse
|
16
|
Zhou J, Deng Y, Iyamu ID, Horton JR, Yu D, Hajian T, Vedadi M, Rotili D, Mai A, Blumenthal RM, Zhang X, Huang R, Cheng X. Comparative Study of Adenosine Analogs as Inhibitors of Protein Arginine Methyltransferases and a Clostridioides difficile-Specific DNA Adenine Methyltransferase. ACS Chem Biol 2023; 18:734-745. [PMID: 37082867 PMCID: PMC10127221 DOI: 10.1021/acschembio.3c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/07/2023] [Indexed: 02/25/2023]
Abstract
S-Adenosyl-l-methionine (SAM) analogs are adaptable tools for studying and therapeutically inhibiting SAM-dependent methyltransferases (MTases). Some MTases play significant roles in host-pathogen interactions, one of which is Clostridioides difficile-specific DNA adenine MTase (CamA). CamA is needed for efficient sporulation and alters persistence in the colon. To discover potent and selective CamA inhibitors, we explored modifications of the solvent-exposed edge of the SAM adenosine moiety. Starting from the two parental compounds (6e and 7), we designed an adenosine analog (11a) carrying a 3-phenylpropyl moiety at the adenine N6-amino group, and a 3-(cyclohexylmethyl guanidine)-ethyl moiety at the sulfur atom off the ribose ring. Compound 11a (IC50 = 0.15 μM) is 10× and 5× more potent against CamA than 6e and 7, respectively. The structure of the CamA-DNA-inhibitor complex revealed that 11a adopts a U-shaped conformation, with the two branches folded toward each other, and the aliphatic and aromatic rings at the two ends interacting with one another. 11a occupies the entire hydrophobic surface (apparently unique to CamA) next to the adenosine binding site. Our work presents a hybrid knowledge-based and fragment-based approach to generating CamA inhibitors that would be chemical agents to examine the mechanism(s) of action and therapeutic potentials of CamA in C. difficile infection.
Collapse
Affiliation(s)
- Jujun Zhou
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Youchao Deng
- Department
of Medicinal Chemistry and Molecular Pharmacology, Institute for Drug
Discovery, Center for Cancer Research, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Iredia D. Iyamu
- Department
of Medicinal Chemistry and Molecular Pharmacology, Institute for Drug
Discovery, Center for Cancer Research, Purdue
University, West Lafayette, Indiana 47907, United States
| | - John R. Horton
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Dan Yu
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Taraneh Hajian
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Masoud Vedadi
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, ON M5S 1A8, Canada
- Drug
Discovery Program, Ontario Institute for
Cancer Research, Toronto, ON M5G 0A3, Canada
| | - Dante Rotili
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department
of Drug Chemistry and Technologies, Sapienza
University of Rome, P.le A. Moro 5, 00185 Rome, Italy
- Pasteur Institute,
Cenci-Bolognetti Foundation, Sapienza University
of Rome, P.le A. Moro 5, 00185 Rome, Italy
| | - Robert M. Blumenthal
- Department
of Medical Microbiology and Immunology and Program in Bioinformatics, The University of Toledo College of Medicine and Life
Sciences, Toledo, Ohio 43614, United States
| | - Xing Zhang
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| | - Rong Huang
- Department
of Medicinal Chemistry and Molecular Pharmacology, Institute for Drug
Discovery, Center for Cancer Research, Purdue
University, West Lafayette, Indiana 47907, United States
| | - Xiaodong Cheng
- Department
of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, Texas 77030, United States
| |
Collapse
|
17
|
Högbom M. Nobel symposium #168 Visions of bio-inorganic chemistry: metals and the molecules of life. FEBS Lett 2023; 597:3-5. [PMID: 36623847 DOI: 10.1002/1873-3468.14559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Martin Högbom
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
| |
Collapse
|