1
|
Löhr JM. Pancreas 2000. My journey with the central organ. Pancreatology 2024; 24:671-676. [PMID: 38641487 DOI: 10.1016/j.pan.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 03/27/2024] [Indexed: 04/21/2024]
Abstract
The European Pancreatic Club Lifetime Achievement Award is a distinction awarded for research on the pancreas and service to European Pancreatology. It comes with the obligation to submit a review article to our society's journal, Pancreatology. It was awarded to me 2023 and I take this opportunity to highlight my journey with the central organ AKA the pancreas, that is inseparatable from "Pancreas 2000" - an educational program for future pancreatologists, inaugurated by Karolinska Institutet.
Collapse
Affiliation(s)
- J-Matthias Löhr
- Karolinska Institutet, Alfred Nobels Allé 8, S-141 86, Stockholm, Sweden.
| |
Collapse
|
2
|
Pantaleo A, Forte G, Fasano C, Lepore Signorile M, Sanese P, De Marco K, Di Nicola E, Latrofa M, Grossi V, Disciglio V, Simone C. Understanding the Genetic Landscape of Pancreatic Ductal Adenocarcinoma to Support Personalized Medicine: A Systematic Review. Cancers (Basel) 2023; 16:56. [PMID: 38201484 PMCID: PMC10778202 DOI: 10.3390/cancers16010056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/13/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most fatal malignancies worldwide. While population-wide screening recommendations for PDAC in asymptomatic individuals are not achievable due to its relatively low incidence, pancreatic cancer surveillance programs are recommended for patients with germline causative variants in PDAC susceptibility genes or a strong family history. In this study, we sought to determine the prevalence and significance of germline alterations in major genes (ATM, BRCA1, BRCA2, CDKN2A, EPCAM, MLH1, MSH2, MSH6, PALB2, PMS2, STK11, TP53) involved in PDAC susceptibility. We performed a systematic review of PubMed publications reporting germline variants identified in these genes in PDAC patients. Overall, the retrieved articles included 1493 PDAC patients. A high proportion of these patients (n = 1225/1493, 82%) were found to harbor alterations in genes (ATM, BRCA1, BRCA2, PALB2) involved in the homologous recombination repair (HRR) pathway. Specifically, the remaining PDAC patients were reported to carry alterations in genes playing a role in other cancer pathways (CDKN2A, STK11, TP53; n = 181/1493, 12.1%) or in the mismatch repair (MMR) pathway (MLH1, MSH2, MSH6, PMS2; n = 87/1493, 5.8%). Our findings highlight the importance of germline genetic characterization in PDAC patients for better personalized targeted therapies, clinical management, and surveillance.
Collapse
Affiliation(s)
- Antonino Pantaleo
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Giovanna Forte
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Candida Fasano
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Martina Lepore Signorile
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Paola Sanese
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Katia De Marco
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Elisabetta Di Nicola
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Marialaura Latrofa
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Valentina Grossi
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Vittoria Disciglio
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
| | - Cristiano Simone
- Medical Genetics, National Institute of Gastroenterology-IRCCS “Saverio de Bellis” Research Hospital, 70013 Bari, Italy; (A.P.); (G.F.); (C.F.); (M.L.S.); (P.S.); (K.D.M.); (E.D.N.); (M.L.); (V.G.)
- Medical Genetics, Department of Precision and Regenerative Medicine and Jonic Area (DiMePRe-J), University of Bari Aldo Moro, 70124 Bari, Italy
| |
Collapse
|
3
|
Löhr JM. The FIRST-Dx Study Takes Steps Toward Personalized Cancer Therapy. JAMA Netw Open 2023; 6:e2323298. [PMID: 37459105 DOI: 10.1001/jamanetworkopen.2023.23298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Affiliation(s)
- J-Matthias Löhr
- Karolinska Institutet and Karolinska Comprehensive Cancer Center, Stockholm, Sweden
| |
Collapse
|
4
|
CLCA4 and MS4A12 as the significant gene biomarkers of primary colorectal cancer. Biosci Rep 2021; 40:226087. [PMID: 32797167 PMCID: PMC7441370 DOI: 10.1042/bsr20200963] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 08/13/2020] [Accepted: 08/14/2020] [Indexed: 02/07/2023] Open
Abstract
Background: Primary colorectal cancer (PCRC) is a common digestive tract cancer in the elderly. However, the treatment effect of PCRC is still limited, and the long-term survival rate is low. Therefore, further exploring the pathogenesis of PCRC, and searching for specific molecular targets for diagnosis are the development trends of precise medical treatment, which have important clinical significance. Methods: The public data were downloaded from Gene Expression Omnibus (GEO) database. Verification for repeatability of intra-group data was performed by Pearson’s correlation test and principal component analysis. Differentially expressed genes (DEGs) between normal and PCRC were identified, and the protein–protein interaction (PPI) network was constructed. Significant module and hub genes were found in the PPI network. A total of 192 PCRC patients were recruited between 2010 and 2019 from the Fourth Hospital of Hebei Medical University. RT-PCR was used to measure the relative expression of CLCA4 and MS4A12. Furthermore, the study explored the effect of expression of CLCA4 and MS4A12 for overall survival. Results: A total of 53 DEGs were identified between PCRC and normal colorectal tissues. Ten hub genes concerned to PCRC were screened, namely CLCA4, GUCA2A, GCG, SST, MS4A12, PLP1, CHGA, PYY, VIP, and GUCA2B. The PCRC patients with low expression of CLCA4 and MS4A12 has a worse overall survival than high expression of CLCA4 and MS4A12 (P<0.05). Conclusion: The research of DEGs in PCRC (53 DEGs, 10 hub genes, especially CLCA4 and MS4A12) and related signaling pathways is conducive to the differential analysis of the molecular mechanism of PCRC.
Collapse
|
5
|
Barreto SG, Michael MZ, Keating DJ. Islets and pancreatic ductal adenocarcinoma - An opportunity for translational research from the 'Bench to the Bedside'. Pancreatology 2020; 20:385-390. [PMID: 32057682 DOI: 10.1016/j.pan.2020.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/15/2020] [Accepted: 02/01/2020] [Indexed: 02/06/2023]
Abstract
The islet-acinar axis is of prime importance to the optimal functioning of the human pancreas. Not only is this inter-relationship important for normal physiological processes, it is also relevant in diseased states, including chronic pancreatitis and pancreatic ductal adenocarcinoma (PDAC). Early experiments, nearly 4 decades ago, explored the role of islets in the development and progression of PDAC. These led to further studies that provided compelling evidence to support the role of islets and their hormones in PDAC. This association presents oncologists with therapeutic options not only for managing, but potentially preventing PDAC, a cancer that is well known for its poor patient outcomes. This review will discuss the accumulated evidence regarding the role of islets and their hormones in PDAC and highlight areas for future research.
Collapse
Affiliation(s)
- Savio G Barreto
- Division of Surgery and Perioperative Medicine, Flinders Medical Centre, Bedford Park, Adelaide, South Australia, Australia; College of Medicine and Public Health, Flinders University, South Australia, Australia.
| | - Michael Z Michael
- Division of Surgery and Perioperative Medicine, Flinders Medical Centre, Bedford Park, Adelaide, South Australia, Australia; College of Medicine and Public Health, Flinders University, South Australia, Australia
| | - Damien J Keating
- College of Medicine and Public Health, Flinders University, South Australia, Australia
| |
Collapse
|
6
|
Azad RK, Shulaev V. Metabolomics technology and bioinformatics for precision medicine. Brief Bioinform 2019; 20:1957-1971. [PMID: 29304189 PMCID: PMC6954408 DOI: 10.1093/bib/bbx170] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 11/29/2017] [Indexed: 12/14/2022] Open
Abstract
Precision medicine is rapidly emerging as a strategy to tailor medical treatment to a small group or even individual patients based on their genetics, environment and lifestyle. Precision medicine relies heavily on developments in systems biology and omics disciplines, including metabolomics. Combination of metabolomics with sophisticated bioinformatics analysis and mathematical modeling has an extreme power to provide a metabolic snapshot of the patient over the course of disease and treatment or classifying patients into subpopulations and subgroups requiring individual medical treatment. Although a powerful approach, metabolomics have certain limitations in technology and bioinformatics. We will review various aspects of metabolomics technology and bioinformatics, from data generation, bioinformatics analysis, data fusion and mathematical modeling to data management, in the context of precision medicine.
Collapse
Affiliation(s)
| | - Vladimir Shulaev
- Corresponding author: Vladimir Shulaev, Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX 76210, USA. Tel.: 940-369-5368; Fax: 940-565-3821; E-mail:
| |
Collapse
|
7
|
Brusselaers N, Ekwall K, Durand-Dubief M. Copy number of 8q24.3 drives HSF1 expression and patient outcome in cancer: an individual patient data meta-analysis. Hum Genomics 2019; 13:54. [PMID: 31699156 PMCID: PMC6836670 DOI: 10.1186/s40246-019-0241-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 10/01/2019] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND The heat-shock transcription factor 1 (HSF1) has been linked to cell proliferation and survival in cancer and has been proposed as a biomarker for poor prognosis. Here, we assessed the role of HSF1 expression in relation to copy number alteration (CNA) and cancer prognosis. METHODS Using 10,287 cancer genomes from The Cancer Genome Atlas and Cbioportal databases, we assessed the association of HSF1 expression with CNA and cancer prognosis. CNA of 8q24.3 was categorized as diploid (reference), deletion (fewer copies), gain (+ 1 copy) and amplification (≥ + 2 copies). Multivariate logistic regression modeling was used to assess 5-year survival among those with a first cancer diagnosis and complete follow-up data (N = 9568), categorized per anatomical location and histology, assessing interaction with tumor stage, and expressed as odds ratios and 95% confidence intervals. RESULTS We found that only 54.1% of all tumors have a normal predicted 8q24.3 copy number and that 8q24.3 located genes including HSF1 are mainly overexpressed due to increased copies number of 8q24.3 in different cancers. The tumor of patients having respectively gain (+ 1 copy) and amplification (≥ + 2 copies) of 8q24.3 display a global increase of 5-year mortality (odds ratio = 1.98, 95% CI 1.22-3.21) and (OR = 2.19, 1.13-4.26) after full adjustment. For separate cancer types, tumor patients with 8q24.3 deletion showed a marked increase of 5-year mortality in uterine (OR = 4.84, [2.75-8.51]), colorectal (OR = 4.12, [1.15-14.82]), and ovarian (OR = 1.83, [1.39-2.41]) cancers; and decreased mortality in kidney cancer (OR = 0.41, [0.21-0.82]). Gain of 8q24.3 resulted in significant mortality changes in 5-year mortality for cancer of the uterus (OR = 3.67, [2.03-6.66]), lung (OR = 1.76, [1.24-2.51]), colorectal (OR = 1.75, [1.32-2.31]) cancers; and amplification for uterine (OR = 4.58, [1.43-14.65]), prostate (OR = 4.41 [3.41-5.71]), head and neck (OR = 2.68, [2.17-3.30]), and stomach (OR = 0.56, [0.36-0.87]) cancers. CONCLUSIONS Here, we show that CNAs of 8q24.3 genes, including HSF1, are tightly linked to 8q24.3 copy number in tumor patients and can affect patient outcome. Our results indicate that the integration of 8q24.3 CNA detection may be a useful predictor for cancer prognosis.
Collapse
Affiliation(s)
- Nele Brusselaers
- Centre for Translational Microbiome Research (CTMR), Department of Microbiology, Tumor and Cell biology, Karolinska Institutet, Karolinska Hospital, SE-17176, Stockholm, Sweden
- Science for Life Laboratory (SciLifeLab), SE-17165, Stockholm, Sweden
| | - Karl Ekwall
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo building, Blickagången 16, S-141 52, Huddinge, Sweden
| | - Mickael Durand-Dubief
- Department of Biosciences and Nutrition, Karolinska Institutet, Neo building, Blickagången 16, S-141 52, Huddinge, Sweden.
| |
Collapse
|
8
|
Forster T, Huettner F, Springfeld C, Loehr M, Kalkum E, Hackbusch M, Hackert T, Diener M, Probst P. Cetuximab in Pancreatic Cancer Therapy: A Systematic Review and Meta-Analysis. Oncology 2019; 98:53-60. [DOI: 10.1159/000502844] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 08/05/2019] [Indexed: 11/19/2022]
|
9
|
Lu W, Li N, Liao F. Identification of Key Genes and Pathways in Pancreatic Cancer Gene Expression Profile by Integrative Analysis. Genes (Basel) 2019; 10:genes10080612. [PMID: 31412643 PMCID: PMC6722756 DOI: 10.3390/genes10080612] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2019] [Revised: 07/31/2019] [Accepted: 08/07/2019] [Indexed: 12/15/2022] Open
Abstract
Background: Pancreatic cancer is one of the malignant tumors that threaten human health. Methods: The gene expression profiles of GSE15471, GSE19650, GSE32676 and GSE71989 were downloaded from the gene expression omnibus database including pancreatic cancer and normal samples. The differentially expressed genes between the two types of samples were identified with the Limma package using R language. The gene ontology functional and pathway enrichment analyses of differentially-expressed genes were performed by the DAVID software followed by the construction of a protein–protein interaction network. Hub gene identification was performed by the plug-in cytoHubba in cytoscape software, and the reliability and survival analysis of hub genes was carried out in The Cancer Genome Atlas gene expression data. Results: The 138 differentially expressed genes were significantly enriched in biological processes including cell migration, cell adhesion and several pathways, mainly associated with extracellular matrix-receptor interaction and focal adhesion pathway in pancreatic cancer. The top hub genes, namely thrombospondin 1, DNA topoisomerase II alpha, syndecan 1, maternal embryonic leucine zipper kinase and proto-oncogene receptor tyrosine kinase Met were identified from the protein–protein interaction network. The expression levels of hub genes were consistent with data obtained in The Cancer Genome Atlas. DNA topoisomerase II alpha, syndecan 1, maternal embryonic leucine zipper kinase and proto-oncogene receptor tyrosine kinase Met were significantly linked with poor survival in pancreatic adenocarcinoma. Conclusions: These hub genes may be used as potential targets for pancreatic cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Wenzong Lu
- Department of Biomedical Engineering, College of Electronic and Information Engineering, Xi'an Technological University, Xi'an 710021, China.
| | - Ning Li
- Department of Biomedical Engineering, College of Electronic and Information Engineering, Xi'an Technological University, Xi'an 710021, China
| | - Fuyuan Liao
- Department of Biomedical Engineering, College of Electronic and Information Engineering, Xi'an Technological University, Xi'an 710021, China
| |
Collapse
|
10
|
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is lethal, and the majority of patients present with locally advanced or metastatic disease that is not amenable to cure. Thus, with surgical resection being the only curative modality, it is critical that disease is identified at an earlier stage to allow the appropriate therapy to be applied. Unfortunately, a specific biomarker for early diagnosis has not yet been identified; hence, no screening process exists. Recently, high-throughput screening and next-generation sequencing (NGS) have led to the identification of novel biomarkers for many disease processes, and work has commenced in PDAC. Genomic data generated by NGS not only have the potential to assist clinicians in early diagnosis and screening, especially in high-risk populations, but also may eventually allow the development of personalized treatment programs with targeted therapies, given the large number of gene mutations seen in PDAC. This review introduces the basic concepts of NGS and provides a comprehensive review of the current understanding of genetics in PDAC as related to discoveries made using NGS.
Collapse
|
11
|
Chandramouli B, Melino G, Chillemi G. Smyd2 conformational changes in response to p53 binding: role of the C-terminal domain. Mol Oncol 2019; 13:1450-1461. [PMID: 31069954 PMCID: PMC6547616 DOI: 10.1002/1878-0261.12502] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 05/01/2019] [Accepted: 05/08/2019] [Indexed: 12/24/2022] Open
Abstract
Smyd2 lysine methyltransferase regulates monomethylation of histone and nonhistone lysine residues using S‐adenosylmethionine cofactor as the methyl donor. The nonhistone interactors include several tumorigenic targets, including p53. Understanding this interaction would allow the structural principles that underpin Smyd2‐mediated p53 methylation to be elucidated. Here, we performed μ‐second molecular dynamics (MD) simulations on binary Smyd2‐cofactor and ternary Smyd2‐cofactor‐p53 peptide complexes. We considered both unmethylated and monomethylated p53 peptides (at Lys370 and Lys372). The results indicate that (a) the degree of conformational freedom of the C‐terminal domain of Smyd2 is restricted by the presence of the p53 peptide substrate, (b) the Smyd2 C‐terminal domain shows distinct dynamic properties when interacting with unmethylated and methylated p53 peptides, and (c) Lys372 methylation confines the p53 peptide conformation, with detectable influence on Lys370 accessibility to the cofactor. These MD results are therefore of relevance for studying the biology of p53 in cancer progression.
Collapse
Affiliation(s)
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome 'Tor Vergata', Italy.,Medical Research Council, Toxicology Unit, Department of Pathology, Cambridge University, Cambridge, UK
| | - Giovanni Chillemi
- Department for Innovation in Biological, Agro-Food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy.,National Council of Research, CNR, Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies, Bari, Italy
| |
Collapse
|
12
|
Pea A, Cheng L, Luchini C. Dissecting the molecular landscape of pancreatic cancer: towards a precision medicine approach. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2019. [DOI: 10.1080/23808993.2019.1604135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Antonio Pea
- Department of General and Pancreatic Surgery, The Pancreas Institute, University and Hospital Trust of Verona, Verona, Italy
| | - Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Claudio Luchini
- Department of Diagnostics and Public Health, Section of Pathology, University and Hospital Trust of Verona, Verona, Italy
| |
Collapse
|
13
|
An Integrative Data Mining and Omics-Based Translational Model for the Identification and Validation of Oncogenic Biomarkers of Pancreatic Cancer. Cancers (Basel) 2019; 11:cancers11020155. [PMID: 30700038 PMCID: PMC6407035 DOI: 10.3390/cancers11020155] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/20/2022] Open
Abstract
Substantial alterations at the multi-omics level of pancreatic cancer (PC) impede the possibility to diagnose and treat patients in early stages. Herein, we conducted an integrative omics-based translational analysis, utilizing next-generation sequencing, transcriptome meta-analysis, and immunohistochemistry, combined with statistical learning, to validate multiplex biomarker candidates for the diagnosis, prognosis, and management of PC. Experiment-based validation was conducted and supportive evidence for the essentiality of the candidates in PC were found at gene expression or protein level by practical biochemical methods. Remarkably, the random forests (RF) model exhibited an excellent diagnostic performance and LAMC2, ANXA2, ADAM9, and APLP2 greatly influenced its decisions. An explanation approach for the RF model was successfully constructed. Moreover, protein expression of LAMC2, ANXA2, ADAM9, and APLP2 was found correlated and significantly higher in PC patients in independent cohorts. Survival analysis revealed that patients with high expression of ADAM9 (Hazard ratio (HR)OS = 2.2, p-value < 0.001), ANXA2 (HROS = 2.1, p-value < 0.001), and LAMC2 (HRDFS = 1.8, p-value = 0.012) exhibited poorer survival rates. In conclusion, we successfully explore hidden biological insights from large-scale omics data and suggest that LAMC2, ANXA2, ADAM9, and APLP2 are robust biomarkers for early diagnosis, prognosis, and management for PC.
Collapse
|
14
|
Sun W, Lee J, Zhang S, Benyshek C, Dokmeci MR, Khademhosseini A. Engineering Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801039. [PMID: 30643715 PMCID: PMC6325626 DOI: 10.1002/advs.201801039] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 09/10/2018] [Indexed: 05/18/2023]
Abstract
Advances in genomic sequencing and bioinformatics have led to the prospect of precision medicine where therapeutics can be advised by the genetic background of individuals. For example, mapping cancer genomics has revealed numerous genes that affect the therapeutic outcome of a drug. Through materials and cell engineering, many opportunities exist for engineers to contribute to precision medicine, such as engineering biosensors for diagnosis and health status monitoring, developing smart formulations for the controlled release of drugs, programming immune cells for targeted cancer therapy, differentiating pluripotent stem cells into desired lineages, fabricating bioscaffolds that support cell growth, or constructing "organs-on-chips" that can screen the effects of drugs. Collective engineering efforts will help transform precision medicine into a more personalized and effective healthcare approach. As continuous progress is made in engineering techniques, more tools will be available to fully realize precision medicine's potential.
Collapse
Affiliation(s)
- Wujin Sun
- Department of BioengineeringUniversity of California–Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive Therapeutics (C‐MIT)California NanoSystems InstituteUniversity of California–Los AngelesLos AngelesCA90095USA
| | - Junmin Lee
- Department of BioengineeringUniversity of California–Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive Therapeutics (C‐MIT)California NanoSystems InstituteUniversity of California–Los AngelesLos AngelesCA90095USA
| | - Shiming Zhang
- Department of BioengineeringUniversity of California–Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive Therapeutics (C‐MIT)California NanoSystems InstituteUniversity of California–Los AngelesLos AngelesCA90095USA
| | - Cole Benyshek
- Department of BioengineeringUniversity of California–Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive Therapeutics (C‐MIT)California NanoSystems InstituteUniversity of California–Los AngelesLos AngelesCA90095USA
| | - Mehmet R. Dokmeci
- Department of BioengineeringUniversity of California–Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive Therapeutics (C‐MIT)California NanoSystems InstituteUniversity of California–Los AngelesLos AngelesCA90095USA
- Department of RadiologyUniversity of California–Los AngelesLos AngelesCA90095USA
| | - Ali Khademhosseini
- Department of BioengineeringUniversity of California–Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive Therapeutics (C‐MIT)California NanoSystems InstituteUniversity of California–Los AngelesLos AngelesCA90095USA
- Department of RadiologyUniversity of California–Los AngelesLos AngelesCA90095USA
- Jonsson Comprehensive Cancer CenterUniversity of California–Los Angeles10833 Le Conte AveLos AngelesCA90024USA
- Department of Chemical and Biomolecular EngineeringUniversity of California–Los AngelesLos AngelesCA90095USA
- Center of NanotechnologyDepartment of PhysicsKing Abdulaziz UniversityJeddah21569Saudi Arabia
- Department of Bioindustrial TechnologiesCollege of Animal Bioscience and TechnologyKonkuk UniversitySeoul05029Republic of Korea
| |
Collapse
|
15
|
Hayashi H, Tanishima S, Fujii K, Mori R, Okamura Y, Yanagita E, Matsuoka R, Amano T, Kinoshita I, Komatsu Y, Dosaka-Akita H, Nishihara H. Genomic testing for pancreatic cancer in clinical practice as real-world evidence. Pancreatology 2018; 18:647-654. [PMID: 30055942 DOI: 10.1016/j.pan.2018.07.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 06/20/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022]
Abstract
BACKGROUND Precision medicine guided by comprehensive genome sequencing represents a potential treatment strategy for pancreatic cancer. However, clinical sequencing for pancreatic cancer entails several practical difficulties. We have launched an in-house clinical sequencing system and started genomic testing for patients with cancer in clinical practice. We have analyzed the clinical utility of this system in pancreatic cancer. METHODS We retrospectively reviewed 20 patients with pancreatic cancer who visited our division. Genomic DNA was extracted from both tumor tissue and peripheral blood mononuclear cells obtained from the patients. We performed a comprehensive genomic testing using targeted amplicon sequencing for 160 cancer-related genes. The primary endpoints were the detection rates of potential actionable and druggable gene alterations. The secondary endpoints were the detection rate of secondary germline findings, the rate of re-biopsy required for genome sequencing, survival time after the initial visit (post-sequencing survival time), and turnaround time. RESULTS Although re-biopsy was required for 25% (5/20) of all patients, genomic testing was performed in all patients. Actionable and druggable gene alterations were detected in 100% (20/20) and 35% (7/20) of patients, respectively, whereas secondary germline findings were detected in 5% (1/20) of patients. The median turnaround times for physicians and patients were 20 and 26 days, respectively. The median post-sequencing survival time was 10.3 months. Only 10% (2/20) of all patients were treated with therapeutic agents based on the outcomes of genomic testing. CONCLUSIONS The clinical application of comprehensive genomic testing for pancreatic cancer was feasible and promising in clinical practice.
Collapse
Affiliation(s)
- Hideyuki Hayashi
- Division of Clinical Cancer Genomics, Hokkaido University Hospital, Sapporo, Japan.
| | - Shigeki Tanishima
- Department of Biomedical Informatics Development, Mitsubishi Space Software Co., Ltd, Tokyo, Japan
| | - Kyoko Fujii
- Division of Clinical Cancer Genomics, Hokkaido University Hospital, Sapporo, Japan
| | - Ryo Mori
- Department of Biomedical Informatics Development, Mitsubishi Space Software Co., Ltd, Tokyo, Japan
| | - Yasunobu Okamura
- Department of Biomedical Informatics Development, Mitsubishi Space Software Co., Ltd, Tokyo, Japan
| | - Emmy Yanagita
- Division of Clinical Cancer Genomics, Hokkaido University Hospital, Sapporo, Japan
| | - Ryosuke Matsuoka
- Division of Clinical Cancer Genomics, Hokkaido University Hospital, Sapporo, Japan
| | - Toraji Amano
- Hokkaido University Hospital Clinical Research and Medical Innovation Center, Sapporo, Japan
| | - Ichiro Kinoshita
- Department of Medical Oncology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Yoshito Komatsu
- Department of Cancer Chemotherapy, Hokkaido University Hospital Cancer Center, Sapporo, Japan
| | - Hirotoshi Dosaka-Akita
- Division of Clinical Cancer Genomics, Hokkaido University Hospital, Sapporo, Japan; Department of Medical Oncology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Hiroshi Nishihara
- Division of Clinical Cancer Genomics, Hokkaido University Hospital, Sapporo, Japan
| |
Collapse
|
16
|
Löhr JM, Kordes M, Rutkowski W, Heuchel R, Gustafsson-Liljefors M, Russom A, Nilsson M. Overcoming diagnostic issues in precision treatment of pancreatic cancer. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2018. [DOI: 10.1080/23808993.2018.1476061] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- J.-Matthias Löhr
- Department of Cancer Medicine, Division for Upper GI, Karolinska University Hospital, Stockholm, Sweden
- CLINTEC, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Maximilian Kordes
- Department of Cancer Medicine, Division for Upper GI, Karolinska University Hospital, Stockholm, Sweden
- CLINTEC, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Wiktor Rutkowski
- CLINTEC, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | - Rainer Heuchel
- CLINTEC, Karolinska Institutet, Science for Life Laboratory, Stockholm, Sweden
| | | | | | | |
Collapse
|
17
|
Ho J, Li X, Zhang L, Liang Y, Hu W, Yau JCW, Chan H, Gin T, Chan MTV, Tse G, Wu WKK. Translational genomics in pancreatic ductal adenocarcinoma: A review with re-analysis of TCGA dataset. Semin Cancer Biol 2018; 55:70-77. [PMID: 29705685 DOI: 10.1016/j.semcancer.2018.04.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/16/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022]
Abstract
Malignancy of the pancreas is a leading cause of cancer-related mortality, with the highest case-fatality of all cancers. Nevertheless, the lack of sensitive biomarkers and presence of biological heterogeneity precludes its early detection and effective treatment. The recent introduction of next-generation sequencing allows characterization of multiple driver mutations at genome- and exome-wide levels. Sequencing of DNA and RNA from circulating tumour cells has also opened an exciting era of non-invasive procedures for tumour detection and prognostication. This massively-parallel sequencing technology has uncovered the previously obscure molecular mechanisms, providing clues for better stratification of patients and identification of druggable targets for the disease. Identification of active oncogenic pathways and gene-gene interactions may reveal oncogene addiction and synthetic lethality. Relevant findings can be extrapolated to develop targeted and personalized therapeutic interventions. In addition to known mutational events, the role of chromosomal rearrangements in pancreatic neoplasms is gradually uncovered. Coupled with bioinformatics pipelines and epidemiological analyses, a better framework for risk stratification and prognostication of pancreatic cancer will be possible in the near future. In this review, we discuss how translational genomic studies facilitate our understanding of pathobiology, and development of novel diagnostics and therapeutics for pancreatic ductal adenocarcinoma with emphases on whole genome sequencing, whole exome sequencing, and liquid biopsies. We have also re-analyzed The Cancer Genome Atlas (TCGA) dataset to look for genetic features associated with altered survival in patients with pancreatic ductal adenocarcinoma.
Collapse
Affiliation(s)
- Jeffery Ho
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Xianchun Li
- State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China; Public Laboratory, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 00060, China
| | - Lin Zhang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Yonghao Liang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Wei Hu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Johnny C W Yau
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Hung Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Tony Gin
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China
| | - Matthew T V Chan
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China.
| | - Gary Tse
- Department of Medicine & Therapeutics, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - William K K Wu
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, China; State Key Laboratory of Digestive Diseases, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| |
Collapse
|
18
|
Keane MG, Shah A, Pereira SP, Joshi D. Novel biomarkers and endoscopic techniques for diagnosing pancreaticobiliary malignancy. F1000Res 2017; 6:1643. [PMID: 28944047 PMCID: PMC5585877 DOI: 10.12688/f1000research.11371.1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/06/2017] [Indexed: 12/12/2022] Open
Abstract
The UK incidence of pancreatic ductal adenocarcinoma is 9 per 100,000 population, and biliary tract cancer occurs at a rate of 1–2 per 100,000. The incidence of both cancers is increasing annually and these tumours continue to be diagnosed late and at an advanced stage, limiting options for curative treatment. Population-based screening programmes do not exist for these cancers, and diagnosis currently is dependent on symptom recognition, but often symptoms are not present until the disease is advanced. Recently, a number of promising blood and urine biomarkers have been described for pancreaticobiliary malignancy and are summarised in this review. Novel endoscopic techniques such as single-operator cholangioscopy and confocal endomicroscopy have been used in some centres to enhance standard endoscopic diagnostic techniques and are also evaluated in this review.
Collapse
Affiliation(s)
| | - Amar Shah
- Institute of Liver Studies, King's College Hospital, London, UK
| | - Stephen P Pereira
- UCL Institute for Liver and Digestive Health, Royal Free Campus, London, UK
| | - Deepak Joshi
- Institute of Liver Studies, King's College Hospital, London, UK
| |
Collapse
|