1
|
Geissler F, Nesic K, Kondrashova O, Dobrovic A, Swisher EM, Scott CL, J. Wakefield M. The role of aberrant DNA methylation in cancer initiation and clinical impacts. Ther Adv Med Oncol 2024; 16:17588359231220511. [PMID: 38293277 PMCID: PMC10826407 DOI: 10.1177/17588359231220511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 11/21/2023] [Indexed: 02/01/2024] Open
Abstract
Epigenetic alterations, including aberrant DNA methylation, are now recognized as bone fide hallmarks of cancer, which can contribute to cancer initiation, progression, therapy responses and therapy resistance. Methylation of gene promoters can have a range of impacts on cancer risk, clinical stratification and therapeutic outcomes. We provide several important examples of genes, which can be silenced or activated by promoter methylation and highlight their clinical implications. These include the mismatch DNA repair genes MLH1 and MSH2, homologous recombination DNA repair genes BRCA1 and RAD51C, the TERT oncogene and genes within the P15/P16/RB1/E2F tumour suppressor axis. We also discuss how these methylation changes might occur in the first place - whether in the context of the CpG island methylator phenotype or constitutional DNA methylation. The choice of assay used to measure methylation can have a significant impact on interpretation of methylation states, and some examples where this can influence clinical decision-making are presented. Aberrant DNA methylation patterns in circulating tumour DNA (ctDNA) are also showing great promise in the context of non-invasive cancer detection and monitoring using liquid biopsies; however, caution must be taken in interpreting these results in cases where constitutional methylation may be present. Thus, this review aims to provide researchers and clinicians with a comprehensive summary of this broad, but important subject, illustrating the potentials and pitfalls of assessing aberrant DNA methylation in cancer.
Collapse
Affiliation(s)
- Franziska Geissler
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
| | - Ksenija Nesic
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Olga Kondrashova
- QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Alexander Dobrovic
- University of Melbourne Department of Surgery, Austin Health, Heidelberg, VIC, Australia
| | | | - Clare L. Scott
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
- Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
- Peter MacCallum Cancer Centre and Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, VIC, Australia
- Royal Women’s Hospital, Parkville, VIC, Australia
- Royal Melbourne Hospital, Parkville, VIC, Australia
| | - Matthew J. Wakefield
- Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052Department of Obstetrics and Gynaecology, University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
2
|
Rasti A, Abazari O, Dayati P, Kardan Z, Salari A, Khalili M, Motlagh FM, Modarressi MH. Identification of Potential Key Genes Linked to Gender Differences in Bladder Cancer Based on Gene Expression Omnibus (GEO) Database. Adv Biomed Res 2023; 12:157. [PMID: 37564439 PMCID: PMC10410418 DOI: 10.4103/abr.abr_280_22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 11/05/2022] [Accepted: 11/14/2022] [Indexed: 08/12/2023] Open
Abstract
Background Growing evidence strongly indicates pivotal roles of gender differences in the occurrence and survival rate of patients with bladder cancer, with a higher incidence in males and poorer prognosis in females. Nevertheless, the molecular basis underlying gender-specific differences in bladder cancer remains unknown. The current study has tried to detect key genes contributing to gender differences in bladder cancer patients. Materials and Methods The gene expression profile of GSE13507 was firstly obtained from the Gene Expression Omnibus (GEO) database. Further, differentially expressed genes (DEGs) were screened between males and females using R software. Protein-protein interactive (PPI) network analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Kaplan-Meier survival analyses were also performed. Results We detected six hub genes contributing to gender differences in bladder cancer patients, containing IGF2, CCL5, ASPM, CDC20, BUB1B, and CCNB1. Our analyses demonstrated that CCNB1 and BUB1B were upregulated in tumor tissues of female subjects with bladder cancer. Other genes, such as IGF2 and CCL5, were associated with a poor outcome in male patients with bladder cancer. Additionally, three signaling pathways (focal adhesion, rheumatoid arthritis, and human T-cell leukemia virus infection) were identified to be differentially downregulated in bladder cancer versus normal samples in both genders. Conclusion Our findings suggested that gender differences may modulate the expression of key genes that contributed to bladder cancer occurrence and prognosis.
Collapse
Affiliation(s)
- Azam Rasti
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Omid Abazari
- Department of Clinical Biochemistry, School of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd, Iran
| | - Parisa Dayati
- Department of Clinical Biochemistry, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Kardan
- Department of Cellular Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran
- Systems Biology Research Lab, Bioinformatics Group, Systems Biology of the Next Generation Company (SBNGC), Qom, Iran
| | - Ali Salari
- Systems Biology Research Lab, Bioinformatics Group, Systems Biology of the Next Generation Company (SBNGC), Qom, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran
- Salari Institute of Cognitive and Behavioral Disorders (SICBD), Karaj, Alborz, Iran
| | - Masoud Khalili
- Department of Urology, Velayat Hospital, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Fatemeh Movahedi Motlagh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
3
|
Scalia P, Williams SJ, Fujita-Yamaguchi Y. Human IGF2 Gene Epigenetic and Transcriptional Regulation: At the Core of Developmental Growth and Tumorigenic Behavior. Biomedicines 2023; 11:1655. [PMID: 37371750 DOI: 10.3390/biomedicines11061655] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/02/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Regulation of the human IGF2 gene displays multiple layers of control, which secures a genetically and epigenetically predetermined gene expression pattern throughout embryonal growth and postnatal life. These predominantly nuclear regulatory mechanisms converge on the function of the IGF2-H19 gene cluster on Chromosome 11 and ultimately affect IGF2 gene expression. Deregulation of such control checkpoints leads to the enhancement of IGF2 gene transcription and/or transcript stabilization, ultimately leading to IGF-II peptide overproduction. This type of anomaly is responsible for the effects observed in terms of both abnormal fetal growth and increased cell proliferation, typically observed in pediatric overgrowth syndromes and cancer. We performed a review of relevant experimental work on the mechanisms affecting the human IGF2 gene at the epigenetic, transcriptional and transcript regulatory levels. The result of our work, indeed, provides a wider and diversified scenario for IGF2 gene activation than previously envisioned by shedding new light on its extended regulation. Overall, we focused on the functional integration between the epigenetic and genetic machinery driving its overexpression in overgrowth syndromes and malignancy, independently of the underlying presence of loss of imprinting (LOI). The molecular landscape provided at last strengthens the role of IGF2 in cancer initiation, progression and malignant phenotype maintenance. Finally, this review suggests potential actionable targets for IGF2 gene- and regulatory protein target-degradation therapies.
Collapse
Key Words
- (IGF2/H19) IG-DMR, intergenic differentially methylated region
- BWS, Beckwith–Wiedemann syndrome
- CCD, centrally conserved domain
- CNV, copy number variation
- CTCF, CCCTC binding factor
- DMD, differentially methylated domain
- DMR, differentially methylated region
- GOM, gain of methylation
- ICR1, imprinting control region 1
- IGF-II, insulin-like growth factor-2 peptide
- IGF2, insulin-like growth factor 2 gene
- LOI, loss of imprinting
- LOM, loss of methylation
- MOI, maintenance of imprinting
- SRS, Silver Russel Syndrome
- TF: transcription factor
- UPD, uniparental disomy
- WT1, Wilms Tumor protein 1
- mRNA transcript
- p0–p4: IGF2 promoters 0–4
Collapse
Affiliation(s)
- Pierluigi Scalia
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA, and 93100 Caltanissetta, Italy
- Sbarro Cancer Institute for Cancer Research and Molecular Medicine, CST, Biology Department, Temple University, Philadelphia, PA 19122, USA
| | - Stephen J Williams
- ISOPROG-Somatolink EPFP Research Network, Philadelphia, PA 19102, USA, and 93100 Caltanissetta, Italy
- Sbarro Cancer Institute for Cancer Research and Molecular Medicine, CST, Biology Department, Temple University, Philadelphia, PA 19122, USA
| | - Yoko Fujita-Yamaguchi
- Arthur Riggs Diabetes & Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
4
|
Ghafouri-Fard S, Abak A, Mohaqiq M, Shoorei H, Taheri M. The Interplay Between Non-coding RNAs and Insulin-Like Growth Factor Signaling in the Pathogenesis of Neoplasia. Front Cell Dev Biol 2021; 9:634512. [PMID: 33768092 PMCID: PMC7985092 DOI: 10.3389/fcell.2021.634512] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 02/02/2021] [Indexed: 12/11/2022] Open
Abstract
The insulin-like growth factors (IGFs) are polypeptides with similar sequences with insulin. These factors regulate cell growth, development, maturation, and aging via different processes including the interplay with MAPK, Akt, and PI3K. IGF signaling participates in the pathogenesis of neoplasia, insulin resistance, diabetes mellitus, polycystic ovarian syndrome, cerebral ischemic injury, fatty liver disease, and several other conditions. Recent investigations have demonstrated the interplay between non-coding RNAs and IGF signaling. This interplay has fundamental roles in the development of the mentioned disorders. We designed the current study to search the available data about the role of IGF-associated non-coding RNAs in the evolution of neoplasia and other conditions. As novel therapeutic strategies have been designed for modification of IGF signaling, identification of the impact of non-coding RNAs in this pathway is necessary for the prediction of response to these modalities.
Collapse
Affiliation(s)
- Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Atefe Abak
- Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahdi Mohaqiq
- School of Advancement, Centennial College, Ashtonbee Campus, Toronto, ON, Canada
- Wake Forest Institute for Regenerative Medicine, School of Medicine, Wake Forest University, Winston-Salem, NC, United States
| | - Hamed Shoorei
- Department of Anatomical Sciences, Faculty of Medicine, Biranjd University of Medical Sciences, Birjand, Iran
| | - Mohammad Taheri
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Kingshott G, Biernacka K, Sewell A, Gwiti P, Barker R, Zielinska H, Gilkes A, McCarthy K, Martin RM, Lane JA, McGeagh L, Koupparis A, Rowe E, Oxley J, Holly JMP, Perks CM. Alteration of Metabolic Conditions Impacts the Regulation of IGF-II/H19 Imprinting Status in Prostate Cancer. Cancers (Basel) 2021; 13:825. [PMID: 33669311 PMCID: PMC7920081 DOI: 10.3390/cancers13040825] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/01/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer is the second major cause of male cancer deaths. Obesity, type 2 diabetes, and cancer risk are linked. Insulin-like growth factor II (IGF-II) is involved in numerous cellular events, including proliferation and survival. The IGF-II gene shares its locus with the lncRNA, H19. IGF-II/H19 was the first gene to be identified as being "imprinted"-where the paternal copy is not transcribed-a silencing phenomenon lost in many cancer types. We disrupted imprinting behaviour in vitro by altering metabolic conditions and quantified it using RFLP, qPCR and pyrosequencing; changes to peptide were measured using RIA. Prostate tissue samples were analysed using ddPCR, pyrosequencing and IHC. We compared with in silico data, provided by TGCA on the cBIO Portal. We observed disruption of imprinting behaviour, in vitro, with a significant increase in IGF-II and a reciprocal decrease in H19 mRNA; the increased mRNA was not translated into peptides. In vivo, most specimens retained imprinting status apart from a small subset which showed reduced imprinting. A positive correlation was seen between IGF-II and H19 mRNA expression, which concurred with findings of larger Cancer Genome Atlas (TGCA) cohorts. This positive correlation did not affect IGF-II peptide. Our findings show that type 2 diabetes and/or obesity, can directly affect regulation growth factors involved in carcinogenesis, indirectly suggesting a modification of lifestyle habits may reduce cancer risk.
Collapse
Affiliation(s)
- Georgina Kingshott
- IGF & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, UK; (K.B.); (R.B.); (H.Z.); (J.M.P.H.); (C.M.P.)
| | - Kalina Biernacka
- IGF & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, UK; (K.B.); (R.B.); (H.Z.); (J.M.P.H.); (C.M.P.)
| | - Alex Sewell
- Department of Cellular Pathology, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, UK; (A.S.); (P.G.); (J.O.)
| | - Paida Gwiti
- Department of Cellular Pathology, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, UK; (A.S.); (P.G.); (J.O.)
- Department of Pathology, North West Anglia NHS Foundation Trust, Peterborough PE3 9GZ, UK
| | - Rachel Barker
- IGF & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, UK; (K.B.); (R.B.); (H.Z.); (J.M.P.H.); (C.M.P.)
| | - Hanna Zielinska
- IGF & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, UK; (K.B.); (R.B.); (H.Z.); (J.M.P.H.); (C.M.P.)
| | - Amanda Gilkes
- Department of Haematology, Cardiff University, Heath Park, Cardiff CF14 4XN, UK;
| | - Kathryn McCarthy
- Department of Surgery, Department of Medicine, Southmead Hospital, Bristol BS10 5NB, UK;
| | - Richard M. Martin
- Population Health Sciences, Bristol Medical School, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK;
- National Institute for Health Research, Biomedical Research Centre at University Hospitals Bristol and Weston NHS Foundation Trust and the University of Bristol, Biomedical Research Unit Offices, University Hospitals Bristol Education Centre, Dental Hospital, Lower Maudlin Street, Bristol BS1 2LY, UK
| | - J. Athene Lane
- Bristol Randomised Trials Collaboration, Population Health Sciences, Bristol Medical School, University of Bristol, Canynge Hall, 39 Whatley Road, Bristol BS8 2PS, UK;
| | - Lucy McGeagh
- Supportive Cancer Care Research Group, Faculty of Health and Life Sciences, Oxford Institute of Nursing, Midwifery and Allied Health Research, Oxford Brookes University, Jack Straws Lane, Marston, Oxford OX3 0FL, UK;
| | - Anthony Koupparis
- Department of Urology, Bristol Urological Institute, Southmead Hospital, Bristol BS10 5NB, UK; (A.K.); (E.R.)
| | - Edward Rowe
- Department of Urology, Bristol Urological Institute, Southmead Hospital, Bristol BS10 5NB, UK; (A.K.); (E.R.)
| | - Jon Oxley
- Department of Cellular Pathology, North Bristol NHS Trust, Southmead Hospital, Bristol BS10 5NB, UK; (A.S.); (P.G.); (J.O.)
| | - Jeff M. P. Holly
- IGF & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, UK; (K.B.); (R.B.); (H.Z.); (J.M.P.H.); (C.M.P.)
| | - Claire M. Perks
- IGF & Metabolic Endocrinology Group, Translational Health Sciences, Bristol Medical School, Learning & Research Building, Southmead Hospital, Bristol BS10 5NB, UK; (K.B.); (R.B.); (H.Z.); (J.M.P.H.); (C.M.P.)
| |
Collapse
|
6
|
Romero-Garcia S, Prado-Garcia H, Carlos-Reyes A. Role of DNA Methylation in the Resistance to Therapy in Solid Tumors. Front Oncol 2020; 10:1152. [PMID: 32850327 PMCID: PMC7426728 DOI: 10.3389/fonc.2020.01152] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 06/08/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advances in chemotherapeutic treatments against cancer, some types of highly aggressive and invasive cancer develop drug resistance against conventional therapies, which continues to be a major problem in the fight against cancer. In recent years, studies of alterations of DNA methylome have given us a better understanding of the role of DNA methylation in the development of tumors. DNA methylation (DNAm) is an epigenetic change that promotes the covalent transfer of methyl groups to DNA. This process suppresses gene expression through the modulation of the transcription machinery access to the chromatin or through the recruitment of methyl binding proteins. DNAm is regulated mainly by DNA methyltransferases. Aberrant DNAm contributes to tumor progression, metastasis, and resistance to current anti-tumoral therapies. Aberrant DNAm may occur through hypermethylation in the promoter regions of tumor suppressor genes, which leads to their silencing, while hypomethylation in the promoter regions of oncogenes can activate them. In this review, we discuss the impact of dysregulated methylation in certain genes, which impact signaling pathways associated with apoptosis avoidance, metastasis, and resistance to therapy. The analysis of methylome has revealed patterns of global methylation, which regulate important signaling pathways involved in therapy resistance in different cancer types, such as breast, colon, and lung cancer, among other solid tumors. This analysis has provided gene-expression signatures of methylated region-specific DNA that can be used to predict the treatment outcome in response to anti-cancer therapy. Additionally, changes in cancer methylome have been associated with the acquisition of drug resistance. We also review treatments with demethylating agents that, in combination with standard therapies, seem to be encouraging, as tumors that are in early stages can be successfully treated. On the other hand, tumors that are in advanced stages can be treated with these combination schemes, which could sensitize tumor cells that are resistant to the therapy. We propose that rational strategies, which combine specific demethylating agents with conventional treatment, may improve overall survival in cancer patients.
Collapse
Affiliation(s)
- Susana Romero-Garcia
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City, Mexico
| | - Heriberto Prado-Garcia
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City, Mexico
| | - Angeles Carlos-Reyes
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
7
|
Holly JMP, Biernacka K, Perks CM. The role of insulin-like growth factors in the development of prostate cancer. Expert Rev Endocrinol Metab 2020; 15:237-250. [PMID: 32441162 DOI: 10.1080/17446651.2020.1764844] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/01/2020] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Preclinical, clinical, and population studies have provided robust evidence for an important role for the insulin-like growth factor (IGF) system in the development of prostate cancer. AREAS COVERED An overview of the IGF system is provided. The evidence implicating the IGF system in the development of prostate cancer is summarized. The compelling evidence culminated in a number of clinical trials of agents targeting the system; the reasons for the failure of these trials are discussed. EXPERT OPINION Clinical trials of agents targeting the IGF system in prostate cancer were terminated due to limited objective clinical responses and are unlikely to be resumed unless a convincing predictive biomarker is identified that would enable the selection of likely responders. The aging population and increased screening will lead to greater diagnosis of prostate cancer. Although the vast majority will be indolent disease, the epidemics of obesity and diabetes will increase the proportion that progress to clinical disease. The increased population of worried men will result in more trials aimed to reduce the risk of disease progression; actual clinical endpoints will be challenging and the IGFs remain the best intermediate biomarkers to indicate a response that could alter the course of disease.
Collapse
Affiliation(s)
- Jeff M P Holly
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| | - Kalina Biernacka
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| | - Claire M Perks
- IGFs & Metabolic Endocrinology Group, Faculty of Health Sciences, School of Translational Health Science, University of Bristol, Southmead Hospital , Bristol, UK
| |
Collapse
|
8
|
Chen Y, Hesla AC, Lin Y, Ghaderi M, Liu M, Yang C, Zhang Y, Tsagkozis P, Larsson O, Haglund F. Transcriptome profiling of Ewing sarcomas - treatment resistance pathways and IGF-dependency. Mol Oncol 2020; 14:1101-1117. [PMID: 32115849 PMCID: PMC7191197 DOI: 10.1002/1878-0261.12655] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Revised: 02/11/2020] [Accepted: 02/27/2020] [Indexed: 11/06/2022] Open
Abstract
Ewing sarcomas (ESs) are aggressive sarcomas driven by EWS fusion genes. We sought to investigate whether whole-transcriptome sequencing (RNA-seq) could be used to detect patterns associated with chemotherapy response or tumor progression after first-line treatment. Transcriptome sequencing (RNA-seq) of 13 ES cases was performed. Among the differentially expressed pathways, we identified IGF2 expression as a potential driver of chemotherapy response and progression. We investigated the effect of IGF2 on proliferation, radioresistance, apoptosis, and the transcriptome pattern in four ES cell lines and the effect of IGF2 expression in a validation series of 14 patients. Transcriptome analysis identified differentially expressed genes (adj. P < 0.005) and pathways associated with chemotherapy response (285 genes), short overall survival (662 genes), and progression after treatment (447 genes). Imprinting independent promoter P3-mediated IGF2 expression was identified in a subset of cases with aggressive clinical course. In ES cell lines, IGF2 induced proliferation, but promoted radioresistance only in CADO cells. High IGF2 expression was also significantly associated with shorter overall survival in patients with ES. Transcriptome analysis of the clinical samples and the cell lines revealed an IGF-dependent signature, potentially related to a stem cell-like phenotype. Transcriptome analysis is a potentially powerful complementary tool to predict the clinical behavior of ES and may be utilized for clinical trial stratification strategies and personalized oncology. Certain gene signatures, for example, IGF-related pathways, are coupled to biological functions that could be of clinical importance. Finally, our results indicate that IGF inhibition may be successful as a first-line therapy in conjunction with conventional radiochemotherapy for a subset of patients.
Collapse
Affiliation(s)
- Yi Chen
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Asle C Hesla
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Orthopedic Surgery, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Yingbo Lin
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mehran Ghaderi
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Mingzhi Liu
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Chen Yang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Yifan Zhang
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Panagiotis Tsagkozis
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden.,Department of Orthopedic Surgery, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Olle Larsson
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Pathology and Cytology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Felix Haglund
- Department of Oncology-Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Clinical Pathology and Cytology, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
9
|
Expression of genes encoding IGF1, IGF2, and IGFBPs in blood of obese adolescents with insulin resistance. Endocr Regul 2020; 53:34-45. [PMID: 31517621 DOI: 10.2478/enr-2019-0005] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
OBJECTIVE The development of obesity and its metabolic complications is associated with dys-regulation of various intrinsic mechanisms, which control basic metabolic processes via changes in the expression of numerous regulatory genes. The main goal of this work was to study the association between the expression of insulin-like growth factors (IGF1 and IGF2) and IGF-binding proteins and insulin resistance in obese adolescents for evaluation of possible contribution of these genes in development of insulin resistance. METHODS The expression of IGF1, IGF2, and IGFBPs mRNA was measured in blood of obese adolescents with normal insulin sensitivity and insulin resistance in comparison with the normal (control) individuals. RESULTS In the blood of obese adolescents with normal insulin sensitivity the expression of IGFBP4, IGFBP5 and HTRA1 genes was down-regulated, but IGFBP2 and IGFBP7 genes up-regulated as compared to control (normal) group. At the same time, no significant changes in IGF1 and IGF2 gene expressions in this group of obese adolescents were found. Insulin resistance in obese adolescents led to up-regulation of IGF2, IGFBP2, and IGFBP7 gene expressions as well as to down-regulation of the expression of IGF1, IGFBP5 and HTRA1 genes in the blood in comparison with the obese patients, which have normal insulin sensitivity. Furthermore, the level of IGFBP4 gene expression was similar in both groups of obese adolescents. CONCLUSIONS Results of this investigation provide evidence that insulin resistance in obese adolescents is associated with gene specific changes in the expression of IGF1, IGF2, IGFBP2, IGFBP5, IGFBP7, and HTRA1 genes and these changes possibly contribute to the development of glucose intolerance and insulin resistance.
Collapse
|
10
|
He J, Zhou X, Li L, Han Z. Long Noncoding MAGI2-AS3 Suppresses Several Cellular Processes of Lung Squamous Cell Carcinoma Cells by Regulating miR-374a/b-5p/CADM2 Axis. Cancer Manag Res 2020; 12:289-302. [PMID: 32021443 PMCID: PMC6972594 DOI: 10.2147/cmar.s232595] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022] Open
Abstract
Background Lung squamous cell carcinoma (LUSC) accounts for approximately 30% of all lung cancers that possesses the highest occurrence and mortality in all cancer types. Long noncoding RNAs have been reported to modulate tumor development for several decades. Aim of the Study This research aims to investigate the role of MAGI2-AS3 in LUSC. Methods RT-qPCR tested genes (including MAGI2-AS3, miR-374a/b-5p and CADM2) expression. Cell proliferation was detected by colony formation and EdU assays. Cell migration and invasion were evaluated by transwell assay. Flow cytometry analysis of apoptotic cells and Western blot analysis on apoptosis-related genes were applied to measure cell apoptosis. Nuclear-cytoplasmic fractionation and FISH assay positioned MAGI2-AS3. The combination between miR-374a/b-5p and MAGI2-AS3 (or CADM2) was determined by luciferase reporter assay and RIP assay. Results MAGI2-AS3 inhibited the proliferative, migratory and invasive capability of LUSC cells with upregulated expression. Additionally, MAGI2-AS3 overexpression promoted cell apoptosis. We discovered that MAGI2-AS3 was located in the cytoplasm. Hereafter, we found out that MAGI2-AS3 targeted miR-374a/b-5p. CADM2 was targeted by miR-374a/b-5p. Finally, rescue assays indicated that the promoting effects of miR-374a/b-5p amplification on biological activities were restored by CADM2 addition. Conclusion In conclusion, lncRNA MAGI2-AS3 suppressed LUSC by regulating miR-374a/b-5p/CADM2 axis, which might potentially serve as a therapeutic marker for LUSC patients.
Collapse
Affiliation(s)
- Jia He
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, People's Republic of China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
| | - Xiaoyun Zhou
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, People's Republic of China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
| | - Li Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, People's Republic of China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
| | - Zhijun Han
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Beijing 100730, People's Republic of China.,Graduate School of Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing 100730, People's Republic of China
| |
Collapse
|