1
|
Peyvandi S, Bulliard M, Yilmaz A, Kauzlaric A, Marcone R, Haerri L, Coquoz O, Huang YT, Duffey N, Gafner L, Lorusso G, Fournier N, Lan Q, Rüegg C. Tumor-educated Gr1+CD11b+ cells drive breast cancer metastasis via OSM/IL-6/JAK-induced cancer cell plasticity. J Clin Invest 2024; 134:e166847. [PMID: 38236642 PMCID: PMC10940099 DOI: 10.1172/jci166847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/17/2024] [Indexed: 03/16/2024] Open
Abstract
Cancer cell plasticity contributes to therapy resistance and metastasis, which represent the main causes of cancer-related death, including in breast cancer. The tumor microenvironment drives cancer cell plasticity and metastasis, and unraveling the underlying cues may provide novel strategies for managing metastatic disease. Using breast cancer experimental models and transcriptomic analyses, we show that stem cell antigen-1 positive (SCA1+) murine breast cancer cells enriched during tumor progression and metastasis had higher in vitro cancer stem cell-like properties, enhanced in vivo metastatic ability, and generated tumors rich in Gr1hiLy6G+CD11b+ cells. In turn, tumor-educated Gr1+CD11b+ (Tu-Gr1+CD11b+) cells rapidly and transiently converted low metastatic SCA1- cells into highly metastatic SCA1+ cells via secreted oncostatin M (OSM) and IL-6. JAK inhibition prevented OSM/IL-6-induced SCA1+ population enrichment, while OSM/IL-6 depletion suppressed Tu-Gr1+CD11b+-induced SCA1+ population enrichment in vitro and metastasis in vivo. Moreover, chemotherapy-selected highly metastatic 4T1 cells maintained high SCA1+ positivity through autocrine IL-6 production, and in vitro JAK inhibition blunted SCA1 positivity and metastatic capacity. Importantly, Tu-Gr1+CD11b+ cells invoked a gene signature in tumor cells predicting shorter overall survival (OS), relapse-free survival (RFS), and lung metastasis in breast cancer patients. Collectively, our data identified OSM/IL-6/JAK as a clinically relevant paracrine/autocrine axis instigating breast cancer cell plasticity and triggering metastasis.
Collapse
Affiliation(s)
- Sanam Peyvandi
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Manon Bulliard
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Alev Yilmaz
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Annamaria Kauzlaric
- Translational Data Science Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Rachel Marcone
- Translational Data Science Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Lisa Haerri
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Oriana Coquoz
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Yu-Ting Huang
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Nathalie Duffey
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Laetitia Gafner
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Girieca Lorusso
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| | - Nadine Fournier
- Translational Data Science Group, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Qiang Lan
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
- Cell and Tissue Dynamics Research Program, Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Curzio Rüegg
- Pathology Unit, Department of Oncology, Microbiology and Immunology (OMI), Faculty of Science and Medicine, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
2
|
Nishibata T, Amino N, Tanaka-Kado R, Tsujimoto S, Kawashima T, Konagai S, Suzuki T, Takeuchi M. Blockade of EP4 by ASP7657 Modulates Myeloid Cell Differentiation In Vivo and Enhances the Antitumor Effect of Radiotherapy. BIOMED RESEARCH INTERNATIONAL 2023; 2023:7133726. [PMID: 38058393 PMCID: PMC10697779 DOI: 10.1155/2023/7133726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 10/20/2023] [Accepted: 10/31/2023] [Indexed: 12/08/2023]
Abstract
The tumor microenvironment (TME) is thought to influence the antitumor efficacy of immuno-oncology agents through various products of both tumor and stromal cells. One immune-suppressive factor is prostaglandin E2 (PGE2), a lipid mediator whose biosynthesis is regulated by ubiquitously expressed cyclooxygenase- (COX-) 1 and inducible COX-2. By activating its receptors, PGE2 induces immune suppression to modulate differentiation of myeloid cells into myeloid-derived suppressor cells (MDSCs) rather than dendritic cells (DCs). Pharmacological blockade of prostaglandin E receptor 4 (EP4) causes a decrease in MDSCs, reprogramming of macrophage polarization, and increase in tumor-infiltrated T cells, leading to enhancement of antitumor immunity in preclinical models. Here, we report the effects of the highly potent EP4 antagonist ASP7657 on the DC population in tumor and antitumor immune activation in an immunocompetent mouse tumor model. Oral administration of ASP7657 inhibited tumor growth, which was accompanied by an increase in intratumor DC and CD8+ T cell populations and a decrease in the M-MDSC population in a CT26 immunocompetent mouse model. The antitumor activity of ASP7657 was dependent on CD8+ T cells and enhanced when combined with an antiprogrammed cell death-1 (PD-1) antibody. Notably, ASP7657 also significantly enhanced the antitumor efficacy of radiotherapy in an anti-PD-1 antibody refractory model. These results indicate that the therapeutic potential of ASP7657 arises via upregulation of DCs and subsequent CD8+ T cell activation in addition to suppression of MDSCs in mouse models and that combining EP4 antagonists with radiotherapy or an anti-PD-1 antibody can improve antitumor efficacy.
Collapse
Affiliation(s)
- Toshihide Nishibata
- Immuno-oncology, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Nobuaki Amino
- Immuno-oncology, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Ruriko Tanaka-Kado
- Immuno-oncology, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Susumu Tsujimoto
- Immuno-oncology, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Tomoko Kawashima
- Immuno-oncology, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Satoshi Konagai
- Immuno-oncology, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Tomoyuki Suzuki
- Immuno-oncology, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| | - Masahiro Takeuchi
- Immuno-oncology, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki 305-8585, Japan
| |
Collapse
|
3
|
Sheta M, Yoshida K, Kanemoto H, Calderwood SK, Eguchi T. Stress-Inducible SCAND Factors Suppress the Stress Response and Are Biomarkers for Enhanced Prognosis in Cancers. Int J Mol Sci 2023; 24:5168. [PMID: 36982267 PMCID: PMC10049278 DOI: 10.3390/ijms24065168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
The cell stress response is an essential system present in every cell for responding and adapting to environmental stimulations. A major program for stress response is the heat shock factor (HSF)-heat shock protein (HSP) system that maintains proteostasis in cells and promotes cancer progression. However, less is known about how the cell stress response is regulated by alternative transcription factors. Here, we show that the SCAN domain (SCAND)-containing transcription factors (SCAN-TFs) are involved in repressing the stress response in cancer. SCAND1 and SCAND2 are SCAND-only proteins that can hetero-oligomerize with SCAN-zinc finger transcription factors, such as MZF1(ZSCAN6), for accessing DNA and transcriptionally co-repressing target genes. We found that heat stress induced the expression of SCAND1, SCAND2, and MZF1 bound to HSP90 gene promoter regions in prostate cancer cells. Moreover, heat stress switched the transcript variants' expression from long noncoding RNA (lncRNA-SCAND2P) to protein-coding mRNA of SCAND2, potentially by regulating alternative splicing. High expression of HSP90AA1 correlated with poorer prognoses in several cancer types, although SCAND1 and MZF1 blocked the heat shock responsiveness of HSP90AA1 in prostate cancer cells. Consistent with this, gene expression of SCAND2, SCAND1, and MZF1 was negatively correlated with HSP90 gene expression in prostate adenocarcinoma. By searching databases of patient-derived tumor samples, we found that MZF1 and SCAND2 RNA were more highly expressed in normal tissues than in tumor tissues in several cancer types. Of note, high RNA expression of SCAND2, SCAND1, and MZF1 correlated with enhanced prognoses of pancreatic cancer and head and neck cancers. Additionally, high expression of SCAND2 RNA was correlated with better prognoses of lung adenocarcinoma and sarcoma. These data suggest that the stress-inducible SCAN-TFs can function as a feedback system, suppressing excessive stress response and inhibiting cancers.
Collapse
Affiliation(s)
- Mona Sheta
- Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Department of Cancer Biology, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Kunihiro Yoshida
- Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Hideka Kanemoto
- Department of Oral and Maxillofacial Surgery, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| | - Stuart K. Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Takanori Eguchi
- Department of Dental Pharmacology, Faculty of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
| |
Collapse
|
4
|
Extracellular Vesicles: New Classification and Tumor Immunosuppression. BIOLOGY 2023; 12:biology12010110. [PMID: 36671802 PMCID: PMC9856004 DOI: 10.3390/biology12010110] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 01/13/2023]
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-surrounded vesicles carrying various types of molecules. These EV cargoes are often used as pathophysiological biomarkers and delivered to recipient cells whose fates are often altered in local and distant tissues. Classical EVs are exosomes, microvesicles, and apoptotic bodies, while recent studies discovered autophagic EVs, stressed EVs, and matrix vesicles. Here, we classify classical and new EVs and non-EV nanoparticles. We also review EVs-mediated intercellular communication between cancer cells and various types of tumor-associated cells, such as cancer-associated fibroblasts, adipocytes, blood vessels, lymphatic vessels, and immune cells. Of note, cancer EVs play crucial roles in immunosuppression, immune evasion, and immunotherapy resistance. Thus, cancer EVs change hot tumors into cold ones. Moreover, cancer EVs affect nonimmune cells to promote cellular transformation, including epithelial-to-mesenchymal transition (EMT), chemoresistance, tumor matrix production, destruction of biological barriers, angiogenesis, lymphangiogenesis, and metastatic niche formation.
Collapse
|
5
|
Okusha Y, Guerrero-Gimenez ME, Lang BJ, Borges TJ, Stevenson MA, Truman AW, Calderwood SK. MicroRNA-570 targets the HSP chaperone network, increases proteotoxic stress and inhibits mammary tumor cell migration. Sci Rep 2022; 12:15582. [PMID: 36114410 PMCID: PMC9481609 DOI: 10.1038/s41598-022-19533-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/30/2022] [Indexed: 11/09/2022] Open
Abstract
The dynamic network of chaperone interactions known as the chaperome contributes significantly to the proteotoxic cell response and the malignant phenotype. To bypass the inherent redundancy in the network, we have used a microRNA (mir) approach to target multiple members of the chaperome simultaneously. We identified a potent microRNA, miR-570 that could bind the 3'untranslated regions of multiple HSP mRNAs and inhibit HSP synthesis. Transfection of cells with this miR species reduced expression of multiple HSPs, inhibited the heat shock response and reduced tumor cell growth while acted additively in combination with cytotoxic drugs. As overexpression of miR-570 elicited tumor suppressive effects, we inferred that this miR could play a potential role in inhibiting tumorigenesis and cancer cell growth. In accordance with this hypothesis, we determined a significant role for miR-570 in regulating markers of mammary tumor progression, including cell motility and invasion. Our data provide a proof of the principle that the tumor chaperome can be targeted by microRNAs suggesting a potential therapeutic avenue towards cancer therapy.
Collapse
Affiliation(s)
- Yuka Okusha
- Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA. .,JSPS Overseas Research Fellow, Tokyo, 102-0083, Japan.
| | - Martin E. Guerrero-Gimenez
- grid.38142.3c000000041936754XBeth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA ,grid.412108.e0000 0001 2185 5065Institute of Biochemistry and Biotechnology, School of Medicine, National University of Cuyo, 5500 Mendoza, Argentina
| | - Benjamin J. Lang
- grid.38142.3c000000041936754XBeth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Thiago J. Borges
- grid.38142.3c000000041936754XCenter for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02129 USA
| | - Mary A. Stevenson
- grid.38142.3c000000041936754XBeth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| | - Andrew W. Truman
- grid.266859.60000 0000 8598 2218Department of Biological Sciences, The University of North Carolina at Charlotte, Charlotte, NC 28223 USA
| | - Stuart K. Calderwood
- grid.38142.3c000000041936754XBeth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215 USA
| |
Collapse
|
6
|
Okusha Y, Lang BJ, Murshid A, Borges TJ, Holton KM, Clark-Matott J, Doshi S, Ikezu T, Calderwood SK. Extracellular Hsp90α stimulates a unique innate gene profile in microglial cells with simultaneous activation of Nrf2 and protection from oxidative stress. Cell Stress Chaperones 2022; 27:461-478. [PMID: 35689138 PMCID: PMC9485360 DOI: 10.1007/s12192-022-01279-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 05/01/2022] [Accepted: 05/15/2022] [Indexed: 11/03/2022] Open
Abstract
Delivery of exogenous heat shock protein 90α (Hsp90α) and/or its induced expression in neural tissues has been suggested as a potential strategy to combat neurodegenerative disease. However, within a neurodegenerative context, a pro-inflammatory response to extracellular Hsp90α (eHsp90α) could undermine strategies to use it for therapeutic intervention. The aim of this study was to investigate the biological effects of eHsp90α on microglial cells, the primary mediators of inflammatory responses in the brain. Transcriptomic profiling by RNA-seq of primary microglia and the cultured EOC2 microglial cell line treated with eHsp90α showed the chaperone to stimulate activation of innate immune responses in microglia that were characterized by an increase in NF-kB-regulated genes. Further characterization showed this response to be substantially lower in amplitude than the effects of other inflammatory stimuli such as fibrillar amyloid-β (fAβ) or lipopolysaccharide (LPS). Additionally, the toxicity of conditioned media obtained from microglia treated with fAβ was attenuated by addition of eHsp90α. Using a co-culture system of microglia and hippocampal neuronal cell line HT22 cells separated by a chamber insert, the neurotoxicity of medium conditioned by microglia treated with fAβ was reduced when eHsp90α was also added. Mechanistically, eHsp90α was shown to activate Nrf2, a response which attenuated fAβ-induced nitric oxide production. The data thus suggested that eHsp90α protects against fAβ-induced oxidative stress. We also report eHsp90α to induce expression of macrophage receptor with collagenous structure (Marco), which would permit receptor-mediated endocytosis of fAβ.
Collapse
Affiliation(s)
- Yuka Okusha
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
- JSPS Overseas Research Fellowship, Tokyo, 102-0083, Japan.
| | - Benjamin J Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Ayesha Murshid
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Thiago J Borges
- Center for Transplantation Sciences, Department of Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02129, USA
| | - Kristina M Holton
- Research Computing, Harvard Medical School, Boston, MA, 02215, USA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Joanne Clark-Matott
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Sachin Doshi
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA
| | - Tsuneya Ikezu
- Department of Neuroscience, Molecular NeuroTherapeutics Laboratory, Mayo Clinic Florida, Jacksonville, FL, 32224, USA
| | - Stuart K Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, 02215, USA.
| |
Collapse
|
7
|
Omolara AE, Alabdulatif A, Abiodun OI, Alawida M, Alabdulatif A, Alshoura WH, Arshad H. The internet of things security: A survey encompassing unexplored areas and new insights. Comput Secur 2022. [DOI: 10.1016/j.cose.2021.102494] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Taeb S, Mosleh-Shirazi MA, Ghaderi A, Mortazavi SMJ, Razmkhah M. Radiation-Induced Bystander Effects of Adipose-Derived Mesenchymal Stem Cells. CELL JOURNAL 2021; 23:612-618. [PMID: 34939753 PMCID: PMC8665987 DOI: 10.22074/cellj.2021.7522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/31/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVE The interaction of tumor cells with surrounding stem cells such as adipose-derived mesenchymal stem cells (ASCs) would be a crucial mechanism of tumor progression. It has been shown that irradiation can affect tumor microenvironment through different mechanisms. Given that, we aimed to examine the bystander radiation-induced effects of ASCs on different cancer cell lines. MATERIALS AND METHODS In this experimental study, ASCs were extracted from five healthy donors, cultured and then irradiated with a 5Gy of gamma radiation. Following 72 hours of incubation, irradiated ASCs-conditioned media (IACM) and non-irradiated ASCs-conditioned media (NIACM) were collected. Following incubation of different cell lines, Jurkat, LNCaP, U87-MG, MDA-MB-231 and MCF-7, in different media, DMEM, NIACM, and IACM, ALDEFLUOR assay and wound healing assays, were conducted. Using quantitative real-time polymerase chain reaction (qRT-PCR), the expression of ATP-binding cassette transporter genes, ABCA1 and ABCG2, was measured in these cell lines. RESULTS NIACM significantly increased ALDH activity in MDA-MB-231 cell (P=0.02), while IACM was associated with significant decrease in the LNCaP and MCF-7 cell lines, respectively P=0.02, P=0.03, compared to DMEM as the control. The area of the scratch site was significantly reduced in MDA-MB-231 cells cultured with NIACM compared to DMEM (P=0.04). Furthermore, ABCA1 mRNA expression was considerably decreased in IACM- but not in DMEMtreated LNCaP line (P=0.01). CONCLUSION It seems, after exposing to radiation, ASCs modify to prevent tumor development and metastasis through their radiation-induced bystander effects. Therefore, a better understanding of ASCs function in the tumor microenvironment may provide new insights into therapeutic strategies to surmount radio-resistance in cancer treatment.
Collapse
Affiliation(s)
- Shahram Taeb
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of
Medical Sciences, Shiraz, Iran
| | - Mohammad Amin Mosleh-Shirazi
- Ionizing and Non-ionizing Radiation Protection Research Center (INIRPRC), School of Paramedical Sciences, Shiraz University of
Medical Sciences, Shiraz, Iran,. Department of Radio-oncology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran,Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Mohammad Javad Mortazavi
- Department of Medical Physics and Engineering, Shiraz University of Medical Sciences, Shiraz, Iran,P.O.Box: 71345-1755Department of Medical Physics and EngineeringShiraz University of Medical SciencesShirazIranP.O.Box: 71345-1798Shiraz Institute for Cancer ResearchSchool of MedicineShiraz University of Medical SciencesShirazIran
Emails: ,
| | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran,P.O.Box: 71345-1755Department of Medical Physics and EngineeringShiraz University of Medical SciencesShirazIranP.O.Box: 71345-1798Shiraz Institute for Cancer ResearchSchool of MedicineShiraz University of Medical SciencesShirazIran
Emails: ,
| |
Collapse
|
9
|
Prince TL, Lang BJ, Guerrero-Gimenez ME, Fernandez-Muñoz JM, Ackerman A, Calderwood SK. HSF1: Primary Factor in Molecular Chaperone Expression and a Major Contributor to Cancer Morbidity. Cells 2020; 9:E1046. [PMID: 32331382 PMCID: PMC7226471 DOI: 10.3390/cells9041046] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 04/17/2020] [Accepted: 04/19/2020] [Indexed: 02/07/2023] Open
Abstract
Heat shock factor 1 (HSF1) is the primary component for initiation of the powerful heat shock response (HSR) in eukaryotes. The HSR is an evolutionarily conserved mechanism for responding to proteotoxic stress and involves the rapid expression of heat shock protein (HSP) molecular chaperones that promote cell viability by facilitating proteostasis. HSF1 activity is amplified in many tumor contexts in a manner that resembles a chronic state of stress, characterized by high levels of HSP gene expression as well as HSF1-mediated non-HSP gene regulation. HSF1 and its gene targets are essential for tumorigenesis across several experimental tumor models, and facilitate metastatic and resistant properties within cancer cells. Recent studies have suggested the significant potential of HSF1 as a therapeutic target and have motivated research efforts to understand the mechanisms of HSF1 regulation and develop methods for pharmacological intervention. We review what is currently known regarding the contribution of HSF1 activity to cancer pathology, its regulation and expression across human cancers, and strategies to target HSF1 for cancer therapy.
Collapse
Affiliation(s)
- Thomas L. Prince
- Department of Molecular Functional Genomics, Geisinger Clinic, Danville, PA 17821, USA
| | - Benjamin J. Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| | - Martin E. Guerrero-Gimenez
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Buenos Aires B1657, Argentina
| | - Juan Manuel Fernandez-Muñoz
- Laboratory of Oncology, Institute of Medicine and Experimental Biology of Cuyo (IMBECU), National Scientific and Technical Research Council (CONICET), Buenos Aires B1657, Argentina
| | - Andrew Ackerman
- Department of Molecular Functional Genomics, Geisinger Clinic, Danville, PA 17821, USA
| | - Stuart K. Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
10
|
Eguchi T, Sogawa C, Ono K, Matsumoto M, Tran MT, Okusha Y, Lang BJ, Okamoto K, Calderwood SK. Cell Stress Induced Stressome Release Including Damaged Membrane Vesicles and Extracellular HSP90 by Prostate Cancer Cells. Cells 2020; 9:cells9030755. [PMID: 32204513 PMCID: PMC7140686 DOI: 10.3390/cells9030755] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/14/2020] [Accepted: 03/16/2020] [Indexed: 12/12/2022] Open
Abstract
Tumor cells exhibit therapeutic stress resistance-associated secretory phenotype involving extracellular vesicles (EVs) such as oncosomes and heat shock proteins (HSPs). Such a secretory phenotype occurs in response to cell stress and cancer therapeutics. HSPs are stress-responsive molecular chaperones promoting proper protein folding, while also being released from cells with EVs as well as a soluble form known as alarmins. We have here investigated the secretory phenotype of castration-resistant prostate cancer (CRPC) cells using proteome analysis. We have also examined the roles of the key co-chaperone CDC37 in the release of EV proteins including CD9 and epithelial-to-mesenchymal transition (EMT), a key event in tumor progression. EVs derived from CRPC cells promoted EMT in normal prostate epithelial cells. Some HSP family members and their potential receptor CD91/LRP1 were enriched at high levels in CRPC cell-derived EVs among over 700 other protein types found by mass spectrometry. The small EVs (30-200 nm in size) were released even in a non-heated condition from the prostate cancer cells, whereas the EMT-coupled release of EVs (200-500 nm) and damaged membrane vesicles with associated HSP90α was increased after heat shock stress (HSS). GAPDH and lactate dehydrogenase, a marker of membrane leakage/damage, were also found in conditioned media upon HSS. During this stress response, the intracellular chaperone CDC37 was transcriptionally induced by heat shock factor 1 (HSF1), which activated the CDC37 core promoter, containing an interspecies conserved heat shock element. In contrast, knockdown of CDC37 decreased EMT-coupled release of CD9-containing vesicles. Triple siRNA targeting CDC37, HSP90α, and HSP90β was required for efficient reduction of this chaperone trio and to reduce tumorigenicity of the CRPC cells in vivo. Taken together, we define "stressome" as cellular stress-induced all secretion products, including EVs (200-500 nm), membrane-damaged vesicles and remnants, and extracellular HSP90 and GAPDH. Our data also indicated that CDC37 is crucial for the release of vesicular proteins and tumor progression in prostate cancer.
Collapse
Affiliation(s)
- Takanori Eguchi
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (C.S.); (M.T.T.); (Y.O.); (K.O.)
- Advanced Research Center for Oral and Craniofacial Sciences, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan
- Correspondence: (T.E.); (S.K.C.); Tel.: +81-86-235-6662 (T.E.); +1-617-735-2947 (S.K.C.)
| | - Chiharu Sogawa
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (C.S.); (M.T.T.); (Y.O.); (K.O.)
| | - Kisho Ono
- Department of Oral and Maxillofacial Surgery, Okayama University Hospital, Okayama 700-0914, Japan;
| | - Masaki Matsumoto
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan;
| | - Manh Tien Tran
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (C.S.); (M.T.T.); (Y.O.); (K.O.)
| | - Yuka Okusha
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (C.S.); (M.T.T.); (Y.O.); (K.O.)
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Benjamin J. Lang
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama 700-8525, Japan; (C.S.); (M.T.T.); (Y.O.); (K.O.)
| | - Stuart K. Calderwood
- Department of Radiation Oncology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA;
- Correspondence: (T.E.); (S.K.C.); Tel.: +81-86-235-6662 (T.E.); +1-617-735-2947 (S.K.C.)
| |
Collapse
|
11
|
A Novel Model of Cancer Drug Resistance: Oncosomal Release of Cytotoxic and Antibody-Based Drugs. BIOLOGY 2020; 9:biology9030047. [PMID: 32150875 PMCID: PMC7150871 DOI: 10.3390/biology9030047] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/23/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022]
Abstract
Extracellular vesicles (EVs), such as exosomes or oncosomes, often carry oncogenic molecules derived from tumor cells. In addition, accumulating evidence indicates that tumor cells can eject anti-cancer drugs such as chemotherapeutics and targeted drugs within EVs, a novel mechanism of drug resistance. The EV-releasing drug resistance phenotype is often coupled with cellular dedifferentiation and transformation in cells undergoing epithelial-mesenchymal transition (EMT), and the adoption of a cancer stem cell phenotype. The release of EVs is also involved in immunosuppression. Herein, we address different aspects by which EVs modulate the tumor microenvironment to become resistant to anticancer and antibody-based drugs, as well as the concept of the resistance-associated secretory phenotype (RASP).
Collapse
|
12
|
Heat Shock Proteins Are Essential Components in Transformation and Tumor Progression: Cancer Cell Intrinsic Pathways and Beyond. Int J Mol Sci 2019; 20:ijms20184507. [PMID: 31514477 PMCID: PMC6769451 DOI: 10.3390/ijms20184507] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 02/08/2023] Open
Abstract
Heat shock protein (HSP) synthesis is switched on in a remarkably wide range of tumor cells, in both experimental animal systems and in human cancer, in which these proteins accumulate in high levels. In each case, elevated HSP concentrations bode ill for the patient, and are associated with a poor outlook in terms of survival in most cancer types. The significance of elevated HSPs is underpinned by their essential roles in mediating tumor cell intrinsic traits such as unscheduled cell division, escape from programmed cell death and senescence, de novo angiogenesis, and increased invasion and metastasis. An increased HSP expression thus seems essential for tumorigenesis. Perhaps of equal significance is the pronounced interplay between cancer cells and the tumor milieu, with essential roles for intracellular HSPs in the properties of the stromal cells, and their roles in programming malignant cells and in the release of HSPs from cancer cells to influence the behavior of the adjacent tumor and infiltrating the normal cells. These findings of a triple role for elevated HSP expression in tumorigenesis strongly support the targeting of HSPs in cancer, especially given the role of such stress proteins in resistance to conventional therapies.
Collapse
|