1
|
Tian G, Zuo L, Li J, Zheng X, Gao F. HCG18 Promotes Cell Proliferation and Stemness in Cholangiocarcinoma via the miR-194-5p/KRT18/MAPK Signaling. Biochem Genet 2025:10.1007/s10528-025-11020-7. [PMID: 39776371 DOI: 10.1007/s10528-025-11020-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 01/02/2025] [Indexed: 01/11/2025]
Abstract
Accumulating evidence has demonstrated that Keratin18 (KRT18) functions as a pivotal gene in the progression of various cancers. However, its role in cholangiocarcinoma (CCA) remains unexplored. Our study elucidated the biological functions and underlying mechanisms of KRT18 in CCA. Bioinformatic databases were used to identify potential miRNAs and lncRNAs. The cellular localization of KRT18 and lncRNA HCG18 was examined through subcellular fractionation. Expression levels of genes were assessed by qRT-PCR, while protein levels were measured via western blot. Cell viability was analyzed using CCK-8 assays. Colony formation and EdU assays assessed cell proliferation, and sphere formation assays evaluated stem cell properties. The interactions between HCG18, miR-194-5p, and KRT18 were explored through RNA immunoprecipitation, RNA pulldown, and luciferase reporter assays. A xenograft tumor model was conducted to evaluate the in vivo function. In CCA tissues and cell lines, KRT18 expression was elevated. Functionally, silencing KRT18 reduced cell proliferation and stemness and inhibited cell cycle. Mechanistically, miR-194-5p directly targeted KRT18. HCG18, which was upregulated in CCA, interacted with miR-194-5p. Overexpression of KRT18 negated the effects of HCG18 suppression on CCA cell proliferation and stemness. Activation of MAPK signaling reversed the antitumor effects of KRT18 downregulation on CCA in vitro. Moreover, HCG18 was found to activate MAPK signaling through the miR-194-5p/KRT18 pathway. The in vivo assay demonstrated that HCG18 knockdown inhibited tumor growth by the miR-194-5p/KRT18/MAPK axis. HCG18 can promote cell proliferation and stem cell characteristics in CCA through the miR-194-5p/KRT18/MAPK signaling.
Collapse
Affiliation(s)
- Guodong Tian
- Department of Hepatopancreatobilary Surgery, The First College of Clinical Medical Sciences, China Three Gorges University, No.183 Yiling Avenue, Wujiagang District, Yichang, 443000, Hubei, China
| | - Lu Zuo
- Department of Geriatric, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, 443000, China
| | - Jie Li
- Department of Hepatopancreatobilary Surgery, The First College of Clinical Medical Sciences, China Three Gorges University, No.183 Yiling Avenue, Wujiagang District, Yichang, 443000, Hubei, China
| | - Xin Zheng
- Department of Hepatopancreatobilary Surgery, The First College of Clinical Medical Sciences, China Three Gorges University, No.183 Yiling Avenue, Wujiagang District, Yichang, 443000, Hubei, China.
| | - Feng Gao
- Department of Geriatric, The First College of Clinical Medical Sciences, China Three Gorges University, Yichang, 443000, China
| |
Collapse
|
2
|
Li J, Ding S, Li M, Zou B, Chu M, Gu G, Chen C, Liu YJ, Zheng K, Meng Z. LncRNA PVT1 promotes malignant progression by regulating the miR-7-5p/CDKL1 axis in oral squamous cell carcinoma. Mol Cell Probes 2024; 78:101995. [PMID: 39617072 DOI: 10.1016/j.mcp.2024.101995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/27/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024]
Abstract
Oral squamous cell carcinoma (OSCC), one of the most common types of head and neck squamous cell carcinoma (HNSCC), is characterized by high incidence and mortality. PVT1 is a long non-coding RNA (lncRNA) that plays an oncogenic role in various cancer types. This study aims to reveal the role and underlying molecular mechanism of PVT1 in OSCC progression. The expression levels of PVT1, miR-7-5p, and CDKL1 mRNA were evaluated using qRT-PCR. Western blot and IHC analysis were conducted to determine the protein expression of CDKL1. The biological functions of PVT1, miR-7-5p, and CDKL1 in OSCC were investigated through CCK-8, transwell migration and invasion assays. In vivo experiments utilized a xenograft model to examine the impact of PVT1 on OSCC. Furthermore, the interaction among PVT1, miR-7-5p, and CDKL1 was explored using RNA pull down assay and luciferase reporter assays. We found that PVT1 enhanced cell proliferation, migration, and invasion by targeting CDKL1. In addition, PVT1 functions as a sponge to modulate miR-7-5p, thereby influencing the expression of CDKL1 and the progression of OSCC. In conclusion, this study illustrates that the "PVT1/miR-7-5p/CDKL1" pathway is capable of promoting the progression of OSCC and may serve as a promising target for developing treatment strategies for OSCC.
Collapse
Affiliation(s)
- Jun Li
- Chemical Engineering College, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China; Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, China.
| | - Shuxin Ding
- School of Stomatology, Shandong Second Medical University, Weifang, Shangdong 261000, China
| | - Min Li
- Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, China
| | - Bo Zou
- Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, China
| | - Miaomiao Chu
- Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, China
| | - Guohao Gu
- Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, China
| | - Cheng Chen
- Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, China
| | - Yu-Jiao Liu
- Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, China
| | - Ke Zheng
- Chemical Engineering College, Qingdao University of Science and Technology, Qingdao, Shandong 266042, China
| | - Zhen Meng
- Department of Stomatology & Precision Biomedical Laboratory, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong 252000, China
| |
Collapse
|
3
|
Feng P, Yang F, Zang D, Bai D, Xu L, Fu Y, You R, Liu T, Yang X. Deciphering the roles of cellular and extracellular non-coding RNAs in chemotherapy-induced cardiotoxicity. Mol Cell Biochem 2024:10.1007/s11010-024-05143-5. [PMID: 39485641 DOI: 10.1007/s11010-024-05143-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 10/18/2024] [Indexed: 11/03/2024]
Abstract
Chemotherapy-induced cardiotoxicity is a major adverse effect, driven by multiple factors in its pathogenesis. Notably, RNAs have emerged as significant contributors in both cancer and heart failure (HF). RNAs carry genetic and metabolic information that mirrors the current state of cells, making them valuable as potential biomarkers and therapeutic tools for diagnosing, predicting, and treating a range of diseases, including cardiotoxicity. Over 97% of the genome is transcribed into non-coding RNAs (ncRNAs), including ribosomal RNA (rRNAs), transfer RNAs (tRNAs), and newly identified microRNAs (miRNAs), circular RNAs (circRNAs), and long non-coding RNAs (lncRNAs). NcRNAs function not only within their originating cells but also in recipient cells by being transported through extracellular compartments, referred to as extracellular RNAs (exRNAs). Since ncRNAs were identified as key regulators of gene expression, numerous studies have highlighted their significance in both cancer and cardiovascular diseases. Nevertheless, the role of ncRNAs in cardiotoxicity remains not fully elucidated. The study aims to review the existing knowledge on ncRNAs in Cardio-Oncology and explore the potential of ncRNA-based biomarkers and therapies. These investigations could advance the clinical application of ncRNA research, improving early detection and mitigating of chemotherapy-induced cardiotoxicity.
Collapse
Affiliation(s)
- Pan Feng
- Baoji Hospital of Traditional Chinese Medicine, Baoji, 721000, China
| | - Fan Yang
- Guang'an Men Hospital, Chinese Academy of Chinese Medical Sciences, Beijing, 100053, China
| | - Dongmei Zang
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Dapeng Bai
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Liyan Xu
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Yueyun Fu
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Ranran You
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, 102400, China
| | - Tao Liu
- Honghui Hospital, Xi'an Jiaotong University, Xi'an, 710068, China.
| | - Xinyu Yang
- Fangshan Hospital Beijing University of Chinese Medicine, Beijing, 102400, China.
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
4
|
Meng Z, Li T, Li J, Ding S, Liu Y, Zhao G, Chen C, Zhao P, Zhou L. LncRNAPVT1 is Associated with Cancer-Associated Fibroblasts Proliferation Through Regulating TGF-βin Oral Squamous Cell Carcinoma. Immunol Invest 2024; 53:1250-1263. [PMID: 39189542 DOI: 10.1080/08820139.2024.2395874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
INTRODUCTION Human oral squamous cell carcinoma (OSCC) is the most common type of oral cancer and has a poor survival rate. Cell-cell communication between OSCC cells and cancer-associated fibroblasts (CAFs) plays important roles in OSCC progression. We previously demonstrated that CAFs promote OSCC cell migration and invasion. However, how OSCC cells influence CAFs proliferation is unknown. METHODS Knockdown of PVT1 was confirmed using lentivirus infection technique. CAFs in tissues were identified by staining the cells with α-SMA using immunohistochemical technique. CCK-8 assay was used to evaluate cell proliferation. The mRNA level of a gene was measured by qRT-PCR. Secreted TGF-β were detected using ELISA assay. RESULTS We found that knockdown of the long non-coding RNA (lncRNA) plasmacytoma variant translocation 1 (PVT1) was associated with a low density of CAFs in xenograft tumors in mice; further analysis revealed that PVT1 in OSCC cells induced CAF proliferation through transforming growth factor (TGF)-β. DISCUSSION Our results demonstrate that lncRNA PVT1 in tumor cells participates in CAF development in OSCC by regulating TGF-β. This study revealed a new mechanism by which PVT1 regulates OSCC progression and PVT1 is a potential therapeutic target in OSCC.
Collapse
Affiliation(s)
- Zhen Meng
- Biomedical Laboratory, Medical School of Liaocheng University, Liaocheng, Shandong Province, P.R. China
| | - Tongjuan Li
- Department of Stomatology, Anqiu Municipal Hospital, Weifang, Shandong Province, P.R. China
| | - Jun Li
- Precision Biomedical Laboratory of Liaocheng, Liaocheng People's Hospital, Medical School of Liaocheng University, Liaocheng, Shandong Province, P.R. China
| | - Shuxin Ding
- Department of Oral and Maxillofacial Surgery, Liaocheng People's Hospital, Liaocheng, Shandong Province, P.R. China
- Department of Oral and Maxillofacial Surgery, School of Stomatology, Weifang Medicial University, Weifang, Shandong Province, P.R. China
| | - Yujiao Liu
- Department of Oral and Maxillofacial Surgery, Liaocheng People's Hospital, Liaocheng, Shandong Province, P.R. China
| | - Guoli Zhao
- Department of Pathology, Liaocheng Tumor Hospital, Liaocheng, Shandong Province, P.R. China
| | - Cheng Chen
- Department of Oral and Maxillofacial Surgery, Liaocheng People's Hospital, Liaocheng, Shandong Province, P.R. China
| | - Peng Zhao
- Department of Oral and Maxillofacial Surgery, Liaocheng People's Hospital, Liaocheng, Shandong Province, P.R. China
| | - Longxun Zhou
- Department of Oral and Maxillofacial Surgery, Liaocheng People's Hospital, Liaocheng, Shandong Province, P.R. China
| |
Collapse
|
5
|
Qiu F, Yu G, Li M, Li Z, Zhang Q, Mu X, Cheng Y, Zhai P, Liu Q. Identification and Verification of a Glycolysis-Related lncRNA Prognostic Signature for Hepatocellular Carcinoma. Horm Metab Res 2024; 56:827-834. [PMID: 38772393 DOI: 10.1055/a-2314-0988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Hepatocellular carcinoma (HCC) is a primary liver cancer with a high mortality rate. The search for a new biomarker could help the prognosis of HCC patients. We identified the glycolytic gene set associated with HCC and the glycolytic lncRNA based on TCGA and MsigDB databases. According to these lncRNAs, K-means clustering, and regression analysis were performed on the patients. Two groups of HCC patients with different lncRNA expression levels were obtained based on K-means clustering results. The results of difference analysis and enrichment analysis showed that DEmRNA in the two HCC populations with significant survival differences was mainly enriched in transmembrane transporter complex, RNA polymerase II specificity, cAMP signaling pathway, and calcium signaling pathway. In addition, a prognostic model of HCC with 4 DElncRNAs was constructed based on regression analysis. ROC curve analysis showed that the model had good predictive performance. Drug predictionresults showed that the efficacy of JQ1, niraparib, and teniposide was higher in the low-risk group than in the high-risk group. In conclusion, this study preliminarily identified glycolytic-related prognostic features of lncRNAs in HCC and constructed a risk assessment model. The results of this study are expected to guide the prognosis assessment of clinical HCC patients.
Collapse
Affiliation(s)
- Fakai Qiu
- Minimally Invasive Interventional Division, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Guozheng Yu
- Minimally Invasive Interventional Division, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Mei Li
- Minimally Invasive Interventional Division, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Zhubin Li
- Minimally Invasive Interventional Division, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Qinyang Zhang
- Minimally Invasive Interventional Division, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Xudong Mu
- Minimally Invasive Interventional Division, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Yuan Cheng
- Minimally Invasive Interventional Division, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Pengtao Zhai
- Minimally Invasive Interventional Division, Shaanxi Provincial Cancer Hospital, Xi'an, China
| | - Qunyi Liu
- Minimally Invasive Interventional Division, Shaanxi Provincial Cancer Hospital, Xi'an, China
| |
Collapse
|
6
|
Lu J, Ren Q, Qi W, Yang N, He Y. The Clinical Significance and the Potential Regulatory Mechanism of the LncRNA OIP5-AS1 in Paediatric Severe Community-Acquired Pneumonia Blood Through the MiR-150-5p/PDCD4 Axis. Immunol Invest 2024; 53:541-558. [PMID: 38294019 DOI: 10.1080/08820139.2024.2309557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
BACKGROUND This study aimed to elucidate the clinical significance and regulatory mechanism of the long non-coding RNA OIP5-AS1 in severe community-acquired pneumonia (SCAP) among paediatric patients. METHODS qRT-PCR was used to assess the mRNA levels of OIP5-AS1. ROC curve analysis was used to assess the diagnostic significance of OIP5-AS1. Short-term prognostic significance was evaluated through Kaplan-Meier survival. An in vitro cell model was developed using LPS-induced MRC-5 cells. CCK-8, flow cytometry, and ELISA were conducted to measure cell viability, apoptosis, and inflammatory factor levels. The association between miR-150-5p and PDCD4 was confirmed through DLR assays. RESULTS Elevated OIP5-AS1 were observed in paediatric patients with SCAP, which enabled effective differentiation from healthy individuals. High expression of OIP5-AS1 correlated with reduced survival rates. OIP5-AS1 knockdown attenuated cell viability suppression and the promotion of apoptosis and inflammatory factors induced by LPS. However, this attenuation was reversed by reduced levels of miR-150-5p. miR-150-5p was identified as a target of PDCD4 and OIP5-AS1. CONCLUSION Increased OIP5-AS1 levels show potential as a valuable diagnostic and prognostic biomarker for paediatric patients with SCAP. This study illustrates its role in regulating cell viability, apoptosis, and the inflammatory response via the miR-150-5p/PDCD4 axis, acting as a ceRNA.
Collapse
Affiliation(s)
- Juan Lu
- Department of Pediatrics, Xingtai People's Hospital, Xingtai, Hebei, China
| | - Qingguo Ren
- Department of Pediatrics, Xingtai People's Hospital, Xingtai, Hebei, China
| | - Weiwei Qi
- Department of Pediatrics, Xingtai People's Hospital, Xingtai, Hebei, China
| | - Ning Yang
- Department of Pediatrics, Xingtai People's Hospital, Xingtai, Hebei, China
| | - Yuanyuan He
- Department of Pediatrics, Xingtai People's Hospital, Xingtai, Hebei, China
| |
Collapse
|
7
|
Wang J, Yao G, Zhang B, Zhao Z, Fan Y. Interaction between miR‑206 and lncRNA MALAT1 in regulating viability and invasion in hepatocellular carcinoma. Oncol Lett 2024; 27:5. [PMID: 38028177 PMCID: PMC10665983 DOI: 10.3892/ol.2023.14138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 06/19/2023] [Indexed: 12/01/2023] Open
Abstract
MicroRNAs (miRNAs) are strongly associated to the progression of hepatocellular carcinoma (HCC), which presents a high potential for diagnosis and treatment; however, the role of miRNAs is still largely unknown. The aim of the present study was to examine the expression and the biological role of miRNA (miR)-206 in the development of HCC, and to identify the underlying molecular mechanism. Results from this study show that miR-206 was significantly downregulated in HCC tissues and cell lines. It was observed that low expression of miR-206 was linked to advanced TNM stage, tumor nodularity and venous infiltration in patients with HCC; low miR-206 expression was associated with shorter survival times. miR-206 overexpression using miR-206 mimics notably decreased the proliferative ability and increased apoptosis of MHCC97-H and HCCLM3 HCC cell lines. Overexpression of miR-206 suppressed invasiveness associated with reduced epithelial-mesenchymal transition. Moreover, the c-Met oncogene, which is upregulated in HCC tissues, was negatively associated with the expression of miR-206. Notably, it was shown that miR-206 may exert its antitumor effect through suppressing c-Met/Akt/mTOR signaling. Low expression of miR-206 was shown to be regulated by lncRNA MALAT1 in HCC. Collectively, this study presented evidence that miR-206 was controlled by lncRNA MALAT1 and partially suppressed the proliferation and invasion of HCC through the c-Met/Akt/mTOR signaling pathway. According to these results, understanding MALAT1/miR-206-dependent regulation may lead to potential approaches for diagnosis and prospective treatment of HCC.
Collapse
Affiliation(s)
- Jun Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Guoliang Yao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Beike Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Zerui Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| | - Yonggang Fan
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan 471003, P.R. China
| |
Collapse
|
8
|
Zhou M, He X, Mei C, Ou C. Exosome derived from tumor-associated macrophages: biogenesis, functions, and therapeutic implications in human cancers. Biomark Res 2023; 11:100. [PMID: 37981718 PMCID: PMC10658727 DOI: 10.1186/s40364-023-00538-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023] Open
Abstract
Tumor-associated macrophages (TAMs), one of the most abundant immune cell types in the tumor microenvironment (TME), account for approximately 50% of the local hematopoietic cells. TAMs play an important role in tumorigenesis and tumor development through crosstalk between various immune cells and cytokines in the TME. Exosomes are small extracellular vesicles with a diameter of 50-150 nm, that can transfer biological information (e.g., proteins, nucleic acids, and lipids) from secretory cells to recipient cells through the circulatory system, thereby influencing the progression of various human diseases, including cancer. Recent studies have suggested that TAMs-derived exosomes play crucial roles in malignant cell proliferation, invasion, metastasis, angiogenesis, immune responses, drug resistance, and tumor metabolic reprogramming. TAMs-derived exosomes have the potential to be targeted for tumor therapy. In addition, the abnormal expression of non-coding RNAs and proteins in TAMs-derived exosomes is closely related to the clinicopathological features of patients with cancer, and these exosomes are expected to become new liquid biopsy markers for the early diagnosis, prognosis, and monitoring of tumors. In this review, we explored the role of TAMs-derived exosomes in tumorigenesis to provide new diagnostic biomarkers and therapeutic targets for cancer prevention.
Collapse
Affiliation(s)
- Manli Zhou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Xiaoyun He
- Departments of Ultrasound Imaging, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Cheng Mei
- Department of Blood Transfusion, Xiangya Hospital, Clinical Transfusion Research Center, Central South University, Changsha, 410008, Hunan, China.
| | - Chunlin Ou
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
9
|
Chang S, Zhuang Z, Jin C. MetaLnc9 facilitates osteogenesis of human bone marrow mesenchymal stem cells by activating the AKT pathway. Connect Tissue Res 2023; 64:532-542. [PMID: 37427853 DOI: 10.1080/03008207.2023.2232463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 03/08/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
AIM OF THE STUDY To investigate the role of MetaLnc9 in the osteogenesis of human bone marrow mesenchymal stem cells (hBMSCs). MATERIALS AND METHODS We used lentiviruses to knockdown or overexpress MetaLnc9 in hBMSCs. qRT-PCR was employed to determine the mRNA levels of osteogenic-related genes in transfected cells. ALP staining and activity assay, ARS staining and quantification were used to identify the degree of osteogenic differentiation. Ectopic bone formation was conducted to examine the osteogenesis of transfected cells in vivo. AKT pathway activator SC-79 and inhibitor LY294002 were used to validate the relationship between MetaLnc9 and AKT signaling pathway. RESULTS The expression of MetaLnc9 was significantly upregulated in the osteogenic differentiation of hBMSCs. MetaLnc9 knockdown inhibited the osteogenesis of hBMSCs, whereas overexpression of it promoted the osteogenic differentiation both in vitro and in vivo. Taking a deeper insight, we found that MetaLnc9 enhanced the osteogenic differentiation by activating AKT signaling. The inhibitor of AKT signaling LY294002 could reverse the positive effect on osteogenesis brought by MetaLnc9 overexpression, whereas the activator of AKT signaling SC-79 could reverse the negative effect caused by MetaLnc9 knockdown. CONCLUSION Our works uncovered a vital role of MetaLnc9 in osteogenesis via regulating the AKT signaling pathway. [Figure: see text].
Collapse
Affiliation(s)
- Sijia Chang
- First Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
| | - Ziyao Zhuang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Chanyuan Jin
- Second Clinical Division, Peking University School and Hospital of Stomatology, Beijing, China
- National Center of Stomatology; National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing, China
| |
Collapse
|
10
|
RezaSoltani M, Forouzesh F, Salehi Z, Zabihi MR, Rejali L, Nazemalhosseini-Mojarad E. Identification of LncPVT1 and CircPVT1 as prognostic biomarkers in human colorectal polyps. Sci Rep 2023; 13:13113. [PMID: 37573419 PMCID: PMC10423217 DOI: 10.1038/s41598-023-40288-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/08/2023] [Indexed: 08/14/2023] Open
Abstract
LncPVT1 and CircPVT1 are isoforms for the PVT1 gene and are associated with cancer progression and carcinogenesis. Our study investigated the expression of LncPVT1 and CircPVT1 in colon adenoma polyps. 40 tissues of colorectal polyps and 40 normal-adjacent tissues (NATs) were taken. The expression of LncPVT1 and CircPVT1 was evaluated through qRael-Time PCR. The relation between expression and features of clinicopathological was explored. The ceRNA network was constructed by LncPVT1 and CircPVT1 and predicted miRNAs and miRNAs targets. Further, hub nodes in this network were determined using the cytoHubba package. Over-expressed LncPVT1 and CircPVT1 were differentiated in polyp and NATs. The expression level of LncPVT1 and CircPVT1 were significantly higher in adenoma polyps than in hyperplastic polyps. The area under the curve of the ROC estimate for the LncPVT1 and CircPVT1 was 0.74 and 0.77, respectively. A positive correlation was observed between the LncPVT1 expression and CircPVT1. Three miRNAs, including hsa-miR-484, hsa-miR-24-3p, hsa-miR-423-5p, and CircPVT1, were detected as ceRNA hub nodes. In this study, expression profiles of LncPVT1 and CircPVT1 were significantly higher in precancerous polyps. In addition, based on our in silico analysis, LncPVT1, CircPVT1/miR-484, miR-24-3p, miR-423-5p/PLAGL2 axis might be involved in colon cancer development. LncPVT1 and CircPVT1 can be prescribed as warning problems as potential prognostic biomarkers in patients with pre-CRC colon polyps.
Collapse
Affiliation(s)
- Mahsa RezaSoltani
- Medical Genomics Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Flora Forouzesh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, P.O. Box: 193951495, Tehran, Iran.
| | - Zahra Salehi
- Hematology-Oncology and Stem Cell Transplantation Research Center, Tehran University of Medical Sciences, Tehran, Iran
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad-Reza Zabihi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leili Rejali
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsan Nazemalhosseini-Mojarad
- Department of Cancer, Gastroenterology and Liver Disease Research center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
11
|
Zhang H, Zhang J, Luan S, Liu Z, Li X, Liu B, Yuan Y. Unraveling the Complexity of Regulated Cell Death in Esophageal Cancer: from Underlying Mechanisms to Targeted Therapeutics. Int J Biol Sci 2023; 19:3831-3868. [PMID: 37564206 PMCID: PMC10411468 DOI: 10.7150/ijbs.85753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 07/13/2023] [Indexed: 08/12/2023] Open
Abstract
Esophageal cancer (EC) is the sixth most common and the seventh most deadly malignancy of the digestive tract, representing a major global health challenge. Despite the availability of multimodal therapeutic strategies, the existing EC treatments continue to yield unsatisfactory results due to their limited efficacy and severe side effects. Recently, knowledge of the subroutines and molecular mechanisms of regulated cell death (RCD) has progressed rapidly, enhancing the understanding of key pathways related to the occurrence, progression, and treatment of many types of tumors, including EC. In this context, the use of small-molecule compounds to target such RCD subroutines has emerged as a promising therapeutic strategy for patients with EC. Thus, in this review, we firstly discussed the risk factors and prevention of EC. We then outlined the established treatment regimens for patients with EC. Furthermore, we not only briefly summarized the mechanisms of five best studied subroutines of RCD related to EC, including apoptosis, ferroptosis, pyroptosis, necroptosis and autophagy, but also outlined the recent advances in the development of small-molecule compounds and long non-coding RNA (lncRNA) targeting the abovementioned RCD subroutines, which may serve as a new therapeutic strategy for patients with EC in the future.
Collapse
Affiliation(s)
- Haowen Zhang
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jin Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, 518000, China
| | - Siyuan Luan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiying Liu
- School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, 518000, China
| | - Xiaokun Li
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yong Yuan
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Motlagh FM, Kadkhoda S, Motamedrad M, Javidzade P, Khalilian S, Modarressi MH, Ghafouri-Fard S. Roles of non-coding RNAs in cell death pathways involved in the treatment of resistance and recurrence of cancer. Pathol Res Pract 2023; 247:154542. [PMID: 37244050 DOI: 10.1016/j.prp.2023.154542] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/13/2023] [Accepted: 05/16/2023] [Indexed: 05/29/2023]
Abstract
Considering the burden of cancer, a number of methods have been applied to control or stop it. However, because of drug resistance or cancer recurrence, these treatments usually face failure. Combination of modulation of expression of non-coding RNAs (ncRNAs) with other treatments can increase treatment-sensitivity of tumors but these approaches still face some challenges. Gathering information in this field is a prerequisite to find more efficient cures for cancer. Cancer cells use ncRNAs to enhance uncontrolled proliferation originated from inactivation of cell death routs. In this review article, the main routes of cell death and involved ncRNAs in these routes are discussed. Moreover, extant information in the role of different ncRNAs on cell death pathways involved in the treatment resistance and cancer recurrence is summarized.
Collapse
Affiliation(s)
- Fatemeh Movahedi Motlagh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Sabzevar University of Medical Sciences, Sabzevar, Iran
| | - Sepideh Kadkhoda
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Motamedrad
- Division of Human Nutrition, University of Alberta, Edmonton, AB T6G 2P5, Canada; Department of Biology, Faculty of Science, University of Birjand, Birjand, Iran
| | - Parisa Javidzade
- Department of Genetics, Faculty of Science, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sheyda Khalilian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Soudeh Ghafouri-Fard
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
13
|
Wu K, Chang F, Li W, Wei D, Cao S, Xie Y, Li C, Lei D. Preliminary study based on methylation and transcriptome gene sequencing of lncRNAs and immune infiltration in hypopharyngeal carcinoma. Front Oncol 2023; 13:1117622. [PMID: 37182154 PMCID: PMC10168126 DOI: 10.3389/fonc.2023.1117622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/21/2023] [Indexed: 05/16/2023] Open
Abstract
Background Hypopharyngeal squamous cell cancer (HSCC) is one of the most malignant tumors of the head and neck. It is not easy to detect in the early stage due to its hidden location; thus, lymph node metastasis is highly likely at diagnosis, leading to a poor prognosis. It is believed that epigenetic modification is related to cancer invasion and metastasis. However, the role of m6A-related lncRNA in the tumor microenvironment (TME) of HSCC remains unclear. Methods The whole transcriptome and methylation sequencing of 5 pairs of HSCC tissues and adjacent tissues were performed to identify the methylation and transcriptome profiles of lncRNAs. The biological significance of lncRNAs differentially expressing the m6A peak was analyzed by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. By constructing an m6A lncRNA-microRNA network, the mechanism of m6A lncRNAs in HSCC was analyzed. The relative expression levels of selected lncRNAs were examined by quantitative polymerase chain reaction. The CIBERSORT algorithm was used to evaluate the relative proportion of immune cell infiltration in HSCC and paracancerous tissues. Results Based on an in-depth analysis of the sequencing results, 14413 differentially expressed lncRNAs were revealed, including 7329 up-regulated and 7084 down-regulated lncRNAs. Additionally, 4542 up-methylated and 2253 down-methylated lncRNAs were detected. We demonstrated methylation patterns and gene expression profiles of lncRNAs of HSCC transcriptome. In the intersection analysis of lncRNAs and methylated lncRNAs, 51 lncRNAs with up-regulated transcriptome and methylation and 40 lncRNAs with down-regulated transcriptome and methylation were screened, and significantly differentiated lncRNAs were further studied. In the immune cell infiltration analysis, B cell memory was significantly elevated in cancer tissue, while γδT cell amount was significantly decreased. Conclusion m6A modification of lncRNAs might be involved in HSCC pathogenesis. Infiltration of immune cells in HSCC might provide a new direction for its treatment. This study provides new insights for exploring the possible HSCC pathogenesis and searching for new potential therapeutic targets.
Collapse
Affiliation(s)
- Kainan Wu
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Fen Chang
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wenming Li
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Dongmin Wei
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shengda Cao
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yulin Xie
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ce Li
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Dapeng Lei
- Department of Otorhinolaryngology, Qilu Hospital of Shandong University, NHC Key Laboratory of Otorhinolaryngology (Shandong University), Jinan, Shandong, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
14
|
Retraction statement: Down‐regulation of long noncoding
RNA PVT1
inhibits esophageal carcinoma cell migration and invasion and promotes cell apoptosis via
microRNA
‐145‐mediated inhibition of
FSCN1. Mol Oncol 2022. [DOI: 10.1002/1878-0261.13332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
|
15
|
Liu X, Li Y, Jiang X, Deng Y, Ma C, Yu Q, Gao D. Long non-coding RNA: Multiple effects on the differentiation, maturity and cell function of dendritic cells. Clin Immunol 2022; 245:109167. [DOI: 10.1016/j.clim.2022.109167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/29/2022] [Accepted: 10/15/2022] [Indexed: 11/15/2022]
|
16
|
Huang T, Wu Z, Zhu S. The roles and mechanisms of the lncRNA-miRNA axis in the progression of esophageal cancer: a narrative review. J Thorac Dis 2022; 14:4545-4559. [PMID: 36524088 PMCID: PMC9745524 DOI: 10.21037/jtd-22-1449] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 11/08/2022] [Indexed: 12/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Esophageal cancer is one of the most common malignant digestive tract tumors. Despite various treatment methods, the prognosis of patients remains unsatisfactory, largely due to an insufficient understanding of the mechanisms involved in the pathogenesis and progression of esophageal cancer. More than 98% of the nucleotide sequences in the human genome do not encode proteins, and their transcription products are noncoding RNAs (ncRNAs), mainly long noncoding RNAs (lncRNAs) and microRNAs (miRNAs). Experiments have shown that lncRNAs and miRNAs play crucial roles in the occurrence and progression of various human malignancies. These ncRNAs influence the progression of esophageal cancer through an intricate regulatory network. We herein summarized the roles and mechanisms of the lncRNA-miRNA axis in esophageal cancer cell proliferation, apoptosis, epithelial-mesenchymal transition (EMT), invasion and metastasis, drug resistance, radiotherapy resistance, and angiogenesis. This review provides a rationale for anticancer therapy that targets the lncRNA-miRNA axis in esophageal cancer. METHODS Related articles published in the PubMed database between 05/30/2008 to 09/10/2022 were identified using the following terms: "lncRNA AND miRNA AND esophageal cancer", "lncRNA AND miRNA AND cell proliferation", "lncRNA AND miRNA AND apoptosis", "lncRNA AND miRNA AND EMT", "lncRNA AND miRNA AND invasion and metastasis", "lncRNA AND miRNA AND drug resistance", and "lncRNA AND miRNA AND radiotherapy resistance". Published articles written in English available to readers were considered. KEY CONTENT AND FINDINGS We summarized the roles of the lncRNA-miRNA axis in the progression of esophageal cancer, including cell proliferation, apoptosis, EMT, invasion and metastasis, drug resistance, radio resistance, and other progressions, and determined that the lncRNA-miRNA axis may serve as a potential clinical treatment target for esophageal cancer. CONCLUSIONS The lncRNA-miRNA axis is closely related to the progression of esophageal cancer and may act as a potential biological target for the clinical treatment of patients with esophageal cancer.
Collapse
Affiliation(s)
- Tao Huang
- Department of Thoracic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, China
| | - Zhihao Wu
- Research Laboratory of Tumor Microenvironment, Wannan Medical College, Wuhu, China
- School of Preclinical Medicine, Wannan Medical College, Wuhu, China
| | - Shaojin Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, China
| |
Collapse
|
17
|
Li R, Wang X, Zhu C, Wang K. lncRNA PVT1: a novel oncogene in multiple cancers. Cell Mol Biol Lett 2022; 27:84. [PMID: 36195846 PMCID: PMC9533616 DOI: 10.1186/s11658-022-00385-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 09/07/2022] [Indexed: 12/01/2022] Open
Abstract
Long noncoding RNAs are involved in epigenetic gene modification, including binding to the chromatin rearrangement complex in pre-transcriptional regulation and to gene promoters in gene expression regulation, as well as acting as microRNA sponges to control messenger RNA levels in post-transcriptional regulation. An increasing number of studies have found that long noncoding RNA plasmacytoma variant translocation 1 (PVT1) plays an important role in cancer development. In this review of a large number of studies on PVT1, we found that PVT1 is closely related to tumor onset, proliferation, invasion, epithelial–mesenchymal transformation, and apoptosis, as well as poor prognosis and radiotherapy and chemotherapy resistance in some cancers. This review comprehensively describes PVT1 expression in various cancers and presents novel approaches to the diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Ruiming Li
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Xia Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China
| | - Chunming Zhu
- Department of Family Medicine, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| | - Kefeng Wang
- Department of Urology, Shengjing Hospital of China Medical University, #36 Sanhao Street, Heping District, Shenyang, 110004, Liaoning, China.
| |
Collapse
|
18
|
Long non-coding RNA PVT1 promotes tumor progression by regulating the Wnt pathway in human esophageal squamous cell carcinoma. Chin Med J (Engl) 2022; 135:1861-1863. [PMID: 35716115 PMCID: PMC9521778 DOI: 10.1097/cm9.0000000000002066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|
19
|
Study on the Function and Mechanism of miR-585-3p Inhibiting the Progression of Ovarian Cancer Cells by Targeting FSCN1 to Block the MAPK Signaling Pathway. Anal Cell Pathol (Amst) 2022; 2022:1732365. [PMID: 35602576 PMCID: PMC9122712 DOI: 10.1155/2022/1732365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 03/22/2022] [Accepted: 04/09/2022] [Indexed: 11/17/2022] Open
Abstract
Ovarian cancer (OC) is the leading cause of death for women diagnosed with gynecological cancer. Studies have shown that dysregulated miRNA expression is related to various cancers, including OC. Here, we aimed to explore the biological function and mechanism of miR-585-3p in the occurrence and development of OC. The expression level of miR-585-3p was found to be low in OC tissues and cells. We analyzed the biological function of miR-585-3p in OC through in vitro cell experiments. The results indicated that overexpression of miR-585-3p inhibited the proliferation, invasion, and migration of SW626 cells, while low expression of miR-585-3p had the opposite effect in SKOV3 cells. We then screened the target genes of miR-585-3p through miRDB database and detected the expression of target genes in OC cells. FSCN1 was found to be most significantly upregulated in OC cells. Dual-luciferase reporter assays revealed FSCN1 as a potential target of miR-585-3p. Western blot analysis showed that miR-585-3p targeted FSCN1 to inhibit protein phosphorylation of ERK. In vivo animal experiments also confirmed that miR-585-3p targets FSCN1 to inhibit tumor growth and block the MAPK signaling pathway. In summary, miR-585-3p inhibits the proliferation, migration, and invasion of OC cells by targeting FSCN1, and its mechanism of action may be achieved by inhibiting the activation of the MAPK signaling pathway. miR-585-3p may serve as a potential biomarker and therapeutic target for OC.
Collapse
|
20
|
Shan DD, Zheng QX, Wang J, Chen Z. Small nucleolar RNA host gene 3 functions as a novel biomarker in liver cancer and other tumour progression. World J Gastroenterol 2022; 28:1641-1655. [PMID: 35581965 PMCID: PMC9048787 DOI: 10.3748/wjg.v28.i16.1641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 03/16/2022] [Indexed: 02/06/2023] Open
Abstract
Cancer has become the most life-threatening disease in the world. Mutations in and aberrant expression of genes encoding proteins and mutations in noncoding RNAs, especially long noncoding RNAs (lncRNAs), have significant effects in human cancers. LncRNAs have no protein-coding ability but function extensively in numerous physiological and pathological processes. Small nucleolar RNA host gene 3 (SNHG3) is a novel lncRNA and has been reported to be differentially expressed in various tumors, such as liver cancer, gastric cancer, and glioma. However, the interaction mechanisms for the regulation between SNHG3 and tumor progression are poorly understood. In this review, we summarize the results of SNHG3 studies in humans, animal models, and cells to underline the expression and role of SNHG3 in cancer. SNHG3 expression is upregulated in most tumors and is detrimental to patient prognosis. SNHG3 expression in lung adenocarcinoma remains controversial. Concurrently, SNHG3 affects oncogenes and tumor suppressor genes through various mechanisms, including competing endogenous RNA effects. A deeper understanding of the contribution of SNHG3 in clinical applications and tumor development may provide a new target for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Dan-Dan Shan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Qiu-Xian Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Jing Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| | - Zhi Chen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang Province, China
| |
Collapse
|
21
|
Cai H, Wang R, Tang Z, Lu T, Cui Y. FSCN1 Promotes Esophageal Carcinoma Progression Through Downregulating PTK6 via its RNA-Binding Protein Effect. Front Pharmacol 2022; 13:868296. [PMID: 35401239 PMCID: PMC8984143 DOI: 10.3389/fphar.2022.868296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: Esophageal squamous cell carcinoma (ESCC) causes many deaths worldwide every year. Fascin actin-bundling protein 1(FSCN1) has been reported to be a promoter of ESCC via its actin-binding function, however, its new role as an RNA-binding protein (RBP) has not been investigated. Here, we explored the RBP role of FSCN1 in the development of ESCC. Methods: Whole-genome expression sequencing was performed to screen for altered genes after FSCN1 knockdown. RNA immunoprecipitation was performed to determine the target mRNA of FSCN1 as an RBP. In vitro experiments with ECA-109 and KYSE-150 and ex vivo experiments in tumor-bearing mice were performed to investigate the effects of FSCN1 and Protein Tyrosine Kinase 6 (PTK6) on ESCC progression. Results: FSCN1 could downregulate mRNA and the protein level of PTK6. The binding position of PTK6 (PTK6-T2) pre-mRNA to FSCN1 was determined. PTK6-T2 blocked the binding between FSCN1 and the pre-mRNA of PTK6, and thus reversed the promotion effect of FSCN1 on ESCC tumor progression via the AKT/GSK3β signaling pathway. Conclusion: A novel effect of FSCN1, RBP-binding with the pre-mRNA of PTK6, was confirmed to play an important role in ESCC progression. PTK6-T2, which is a specific inhibitor of FSCN1 binding to the pre-mRNA of PTK6, could impede the development of ESCC.
Collapse
Affiliation(s)
- Hongfei Cai
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Rui Wang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China.,Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, China
| | - Ze Tang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Tianyu Lu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Youbin Cui
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
22
|
Chen C, Xie B, Li Z, Chen L, Chen Y, Zhou J, Ju S, Zhou Y, Zhang X, Zhuo W, Yang J, Mao M, Xu L, Wang L. Fascin enhances the vulnerability of breast cancer to erastin-induced ferroptosis. Cell Death Dis 2022; 13:150. [PMID: 35165254 PMCID: PMC8844358 DOI: 10.1038/s41419-022-04579-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 12/31/2021] [Accepted: 01/21/2022] [Indexed: 01/09/2023]
Abstract
Ferroptosis, which is characterized by intracellular iron accumulation and lipid peroxidation, is a newly described form of regulated cell death that may play a key role in tumour suppression. In the present study, we investigated the expression profiles and biological effects of fascin actin-bundling protein 1 (Fascin, gene name FSCN1) in breast cancer. In addition, bioinformatics analysis of the TCGA cancer database and gain- and loss-of-function studies showed that Fascin enhances sensitivity to erastin-induced ferroptosis. Mechanistically, Fascin directly interacts with cysteine/glutamate transporter (xCT, gene name SLC7A11) and decreases its stability via the ubiquitin-mediated proteasome degradation pathway. Furthermore, we observed that Fascin is substantially upregulated in tamoxifen-resistant breast cancer cell lines, and drug-resistant cells were also more vulnerable to erastin-induced ferroptosis. Taken together, our findings reveal a previously unidentified role of Fascin in ferroptosis by regulating xCT. Thus, ferroptosis activation in breast cancer with high Fascin level may serve as a potential treatment.
Collapse
Affiliation(s)
- Cong Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Bojian Xie
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China.,Department of Surgical Oncology, Taizhou Hospital, Wenzhou Medical University, Taizhou, China
| | - Zhaoqing Li
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Lini Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Yongxia Chen
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Jichun Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Siwei Ju
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Yulu Zhou
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Xun Zhang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Wenying Zhuo
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Jingjing Yang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Misha Mao
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Ling Xu
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China
| | - Linbo Wang
- Department of Surgical Oncology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China. .,Biomedical Research Center and Key Laboratory of Biotherapy of Zhejiang Province, Hangzhou, China.
| |
Collapse
|
23
|
Yan S, Xu J, Liu B, Ma L, Tan H, Fang C. Integrative bioinformatics analysis identifies LINC01614 as a potential prognostic signature in esophageal cancer. Transl Cancer Res 2022; 10:1804-1812. [PMID: 35116503 PMCID: PMC8798299 DOI: 10.21037/tcr-20-2529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 02/07/2021] [Indexed: 12/26/2022]
Abstract
Background Esophageal cancer (EC) is one of the most common gastrointestinal cancers and the incidence is on the increase in recent years. The aim of the present study was to assess novel long non-coding RNA (lncRNA) biomarkers for the prognosis of EC through the analysis of gene expression microarrays. Methods Three datasets (GSE53622, GSE53624, and GSE53625) were downloaded from the Gene Expression Omnibus (GEO) database and EC patients’ clinical information were from The Cancer Genome Atlas (TCGA) databases. Differentially expressed genes (DEGs) were screened by comparing tumor tissues with normal tissues using limma R package. The Gene Expression Profiling Interactive Analysis 2 (GEPIA2) database was used to obtain the novel lncRNAs and their co-expression genes in EC and these were visualized with the Cytoscape software. The Kyoto Encyclopedia of Genes and Genomes (KEGG) Orthology Based Annotation System (KOBAS) database was used to analyze the functions enrichment of selected DEGs. Cell Counting Kit-8 (CCK8) and Transwell assays were used to further confirm the function of target lncRNAs. Results We identified 24 differentially expressed (DE) lncRNAs and 659 DE mRNAs from the intersection of GEO and TCGA databases. And we found that only LINC01614 was concerned with a candidate prognostic signature in EC. “Extracellular matrix (ECM)-receptor interaction” and “PI3K-Akt signaling pathway” were observed, and we constructed a lncRNA-mRNA co-expression network for EC that includes LINC01614 and 64 mRNAs. The results of CCK8 and Transwell assays showed that suppression of LINC01614 inhibited EC cell proliferation and migration. Conclusions Our study might provide LINC01614 as a novel lncRNA biomarker for diagnosis and prognosis in EC.
Collapse
Affiliation(s)
- Shuo Yan
- Department of Interventional Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jichong Xu
- Department of Interventional Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Bingyan Liu
- Department of Interventional Radiology, Tongren Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Lin Ma
- Department of Interventional Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Huaqiao Tan
- Department of Interventional Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Chun Fang
- Department of Interventional Radiology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
24
|
Guo F, Liu Y, Cheng Y, Zhang Q, Quan W, Wei Y, Hong L. Transcriptome analysis reveals the potential biological function of FSCN1 in HeLa cervical cancer cells. PeerJ 2022; 10:e12909. [PMID: 35178306 PMCID: PMC8817631 DOI: 10.7717/peerj.12909] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 01/19/2022] [Indexed: 01/11/2023] Open
Abstract
Fascin actin-bundling protein 1 (FSCN1), an actin-bundling protein associated with cell migration and invasion, is highly expressed in various tumor tissues. FSCN1 has also been reported to be a marker of increased invasive potential in cervical cancers. However, the functions of FSCN1 are still not fully understood in cervical cancers. Here, the gene expression profile of HeLa cells transfected with FSCN1 shRNA (shFSCN1) was compared with that of cells transfected with empty vector (shCtrl). The results showed that shFSCN1 extensively affected the transcription level of 5,043 genes in HeLa cells. In particular, Gene Ontology (GO) analysis showed that a large number of upregulated genes were annotated with terms including transcription regulation and DNA binding. The downregulated genes were enriched in some cancer pathways, including angiogenesis and cell adhesion. qPCR validation confirmed that FSCN1 knockdown significantly affected the expression of selected genes in HeLa cells either negatively or positively. Expression analysis in TCGA (The Cancer Genome Atlas) revealed that FSCN1 had negative correlations with several transcription factors and a positive correlation with an angiogenic factor (angiopoietin like 4, ANGPTL4) in cervical tumor tissue. In particular, validation by Western blotting showed that FSCN1 knockdown decreased the protein level of ANGPTL4. Our results demonstrated that FSCN1 is not only an actin-binding protein but also a transcriptional regulator and an angiogenic factor in cervical cancer. Thus, our study provides important insights for further study on the regulatory mechanism of FSCN1 in cervical cancer.
Collapse
Affiliation(s)
- Fengqin Guo
- Department of Obstetrics & Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yanliang Liu
- Department of Gastrointestinal Surgery II, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Yanxiang Cheng
- Department of Obstetrics & Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Qifan Zhang
- Department of Obstetrics & Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | - Weili Quan
- ABLife BioBigData Institute, Wuhan, Hubei Province, China
| | - Yaxun Wei
- Center for Genome Analysis, ABLife Inc., Wuhan, Hubei Province, China
| | - Li Hong
- Department of Obstetrics & Gynecology, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| |
Collapse
|
25
|
Lu J, Xiao Z, Xu M, Li L. New Insights into LINC00346 and its Role in Disease. Front Cell Dev Biol 2022; 9:819785. [PMID: 35096842 PMCID: PMC8794746 DOI: 10.3389/fcell.2021.819785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/28/2021] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence has shown that long intergenic non-protein-coding RNA 346 (LINC00346) functions as an oncogene in the tumorigenesis of several cancers. The expression level of LINC00346 has been shown to be obviously correlated with prognosis, lymphoma metastasis, histological grade, TNM stage, tumor size and pathologic stage. LINC00346 has been found to regulate specific cellular functions by interacting with several molecules and signaling pathways. In this review, we summarize recent evidence concerning the role of LINC00346 in the occurrence and development of diseases. We also discuss the potential clinical utility of LINC00346, thereby providing new insight into the diagnosis and treatment of diseases. In addition, we further discuss the potential clinical utility of LINC00346 in the diagnosis, prognostication, and treatment of diseases.
Collapse
Affiliation(s)
- Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Zhaoying Xiao
- Department of Infectious Diseases Shengzhou People' Hospital, Shengzhou Branch, The Fisrt Affiliated Hospital of Zhejiang University, Shengzhou, China
| | - Mengqiu Xu
- Department of Infectious Diseases Shengzhou People' Hospital, Shengzhou Branch, The Fisrt Affiliated Hospital of Zhejiang University, Shengzhou, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
26
|
CircPVT1: a pivotal circular node intersecting Long Non-Coding-PVT1 and c-MYC oncogenic signals. Mol Cancer 2022; 21:33. [PMID: 35090471 PMCID: PMC8796571 DOI: 10.1186/s12943-022-01514-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/18/2022] [Indexed: 12/11/2022] Open
Abstract
The role of circular RNAs in oncogenesis has begun to be widely studied in recent years, due to the significant impact that these molecules have in disease pathogenesis, as well as their potential for the future of innovative therapies. Moreover, due to their characteristically circular shape, circular RNAs are very resistant molecules to RNA degradation whose levels are easily assessed in body fluids. Accordingly, they represent an opportunity for the discovery of new diagnostic and prognostic markers in a wide range of diseases. Among circular RNAs, circPVT1 is a rather peculiar one that originates from the circularization of the exon 2 of the PVT1 gene that encodes a pro-tumorigenic long non-coding RNA named lncPVT1. There are a few examples of circular RNAs that derive from a locus producing another non-coding RNA. Despite their apparent transcriptional independence, which occurs using two different promoters, a possible synergistic effect in tumorigenesis cannot be excluded considering that both have been reported to correlate with the oncogenic phenotype. This complex mechanism of regulation appears to also be controlled by c-MYC. Indeed, the PVT1 locus is located only 53 Kb downstream c-MYC gene, a well-known oncogene that regulates the expression levels of about 15% of all genes. Here, we review circPVT1 origin and biogenesis highlighting the most important mechanisms through which it plays a fundamental role in oncogenesis, such as the well-known sponge activity on microRNAs, as well as its paradigmatic interactome link with lncPVT1 and c-MYC expression.
Collapse
|
27
|
Xi X, Hu Z, Wu Q, Hu K, Cao Z, Zhou J, Liao J, Zhang Z, Hu Y, Zhong X, Bao Y. High expression of small nucleolar RNA host gene 3 predicts poor prognosis and promotes bone metastasis in prostate cancer by activating transforming growth factor-beta signaling. Bioengineered 2022; 13:1895-1907. [PMID: 35030969 PMCID: PMC8805939 DOI: 10.1080/21655979.2021.2020393] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Bone metastasis is closely related to tumor death in prostate cancer (PC). Long noncoding RNA small nucleolar RNA host gene 3 (SNHG3) has been implicated in the initiation and progression of multiple human cancers. Nevertheless, the biological function of SNHG3 in PC has not been elucidated. Our results indicated that SNHG3 was upregulated in bone metastasis-positive PC tissues compared to bone metastasis-negative PC tissues and adjacent normal tissues. High expression of SNHG3 indicates advanced clinicopathological features and predicts poor prognosis in patients with PC. Meanwhile, SNHG3 knockdown suppressed the proliferation, migration, and invasion abilities of PC cells and inhibited PC cell metastasis to the bone. Mechanistically, SNHG3 enhanced the expression of transforming growth factor beta receptor 1 (TGFBR1) and activated transforming growth factor-Beta (TGF-β) signaling by targeting miR-214-3p. Our study demonstrated the novel role of the SNHG3/miR-214-3p/TGF-β axis in tumor growth and bone metastasis in PC, indicating that SNHG3 may act as a biomarker and promising therapeutic target against PC.
Collapse
Affiliation(s)
- Xinhua Xi
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Zhengbo Hu
- Department of Orthopedics, Shaoguan First People's Hospital Affiliated Southern Medical University, Shaoguan, Guangdong, China
| | - Qiang Wu
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Konghe Hu
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Zhengguo Cao
- Department of Urology, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Jun Zhou
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Junjian Liao
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Zhipeng Zhang
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Yongyu Hu
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Xueren Zhong
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| | - Yongzheng Bao
- Department of Orthopaedics, Yuebei People's Hospital Affiliated to Shantou University Medical College, Shaoguan, Guangdong, China
| |
Collapse
|
28
|
Chen J, Cheng L, Zou W, Wang R, Wang X, Chen Z. ADAMTS9-AS1 Constrains Breast Cancer Cell Invasion and Proliferation via Sequestering miR-301b-3p. Front Cell Dev Biol 2021; 9:719993. [PMID: 34900984 PMCID: PMC8652087 DOI: 10.3389/fcell.2021.719993] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Accepted: 10/14/2021] [Indexed: 12/20/2022] Open
Abstract
Objective: For determination of how ADAMTS9-AS1/miR-301b-3p/TGFBR2/JAK STAT signaling axis modulates progression of breast cancer cells. Methods: Target lncRNA was determined by differential analysis of breast cancer expression data and survival analysis. Differentially expressed miRNAs and target mRNAs that had binding sites with target lncRNA were predicted. GSEA software was used to carry out pathway enrichment analysis for mRNAs. Binding of the researched genes were tested with RNA binding protein immunoprecipitation (RIP). How miR-301b-3p bound TGFBR2 mRNA was tested by dual-luciferase method. Transwell, colony formation, EdU approaches were employed for verification of invasion and proliferation of breast cancer cells in each treatment group. Results: Markedly inactivated ADAMTS9-AS1 in breast cancer pertained to patient’s prognosis. MiR-301b-3p was capable of binding TGFBR2/ADAMTS9-AS1. However, overexpression of ADAMTS9-AS1 stimulated miR-301b-3p binding ADAMTS9-AS1 and repressed miR-301b-3p binding TGFBR2 mRNA. ADAMTS9-AS1 interference enhanced cancer proliferation and invasion, facilitated levels of KI67, PCNA, MMP-9 and MMP-2, and activated the JAK STAT signaling pathway. While silencing miR-301b-3p reversed the effect of ADAMTS9-AS1 interference. In addition, TGFBR2 interference or restraining JAK STAT signaling counteracted the effect of ADAMTS9-AS1. Conclusion: ADAMTS9-AS1 could sequester miR-301b-3p to inhibit progression of breast cancer via TGFBR2/JAK STAT pathway. This study supplies a rationale for incremental apprehension of ADAMTS9-AS1 in breast cancer progression.
Collapse
Affiliation(s)
- Junqing Chen
- Department of Breast Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Ling Cheng
- Shanghai Engineering Research Center of Pharmaceutical Translation, Shanghai, China
| | - Weibin Zou
- Department of Breast Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Rong Wang
- Department of Breast Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Xiaojia Wang
- Department of Breast Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| | - Zhanhong Chen
- Department of Breast Medical Oncology, The Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital, Hangzhou, China.,Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
29
|
Mardani M, Rashedi S, Keykhaei M, Farrokhpour H, Azadnajafabad S, Tavolinejad H, Rezaei N. Long non-coding RNAs (lncRNAs) as prognostic and diagnostic biomarkers in multiple myeloma: A systematic review and meta-analysis. Pathol Res Pract 2021; 229:153726. [PMID: 34942515 DOI: 10.1016/j.prp.2021.153726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/10/2021] [Accepted: 11/26/2021] [Indexed: 12/27/2022]
Abstract
BACKGROUND Recently, emerging studies have demonstrated the utility of particular long non-coding RNAs (lncRNAs) as useful biomarkers for the diagnosis and prognosis of multiple myeloma (MM). We systematically reviewed the literature and conducted a meta-analysis to quantify the predictive effectiveness of lncRNAs in the prognosis and diagnosis of MM. METHODS A systematic search was performed in PubMed, Embase, and Web of Science until March 24, 2021. A meta-analysis was conducted to explore the correlation between the expression of lncRNAs and prognostic endpoints, including overall survival (OS), progression-free survival (PFS), and disease-free survival (DFS) or event-free survival (EFS). Moreover, the diagnostic performance of lncRNAs in MM was investigated by calculating accuracy metrics. RESULTS Overall, 43 studies were included in this systematic review, amongst which 36 studies assessed prognostic endpoints (including 5499 participants and 69 lncRNAs), and 11 studies evaluated diagnostic outcomes (with 1723 participants and 11 lncRNAs). The overexpression of CRNDE (hazard ratio (HR)= 1.94, 95% confidence interval (CI) 1.61, 2.34), NEAT1 (HR=1.97, 95%CI 1.36, 2.85), PVT1 (HR=1.92, 95%CI 1.25, 2.97), and TCF7 (HR=1.98, 95%CI 1.42, 2.76) was significantly associated with reduced OS. Furthermore, upregulation of PVT1 was significantly correlated with poor PFS (HR=1.86, 95%CI 1.29, 2.68). The pooled diagnostic performance of lncRNAs was as follows: sensitivity 0.78 (95%CI 0.73, 0.82), specificity 0.88 (95%CI 0.83, 0.92), and area under the curve 0.89 (95%CI 0.86, 0.92). CONCLUSIONS Our results revealed the potential significance of lncRNAs in MM as diagnostic and prognostic markers, which may be the future targets for individualized therapy.
Collapse
Affiliation(s)
- Mahta Mardani
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Sina Rashedi
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mohammad Keykhaei
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Hossein Farrokhpour
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Sina Azadnajafabad
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran; Department of Surgery, Tehran University of Medical Sciences, Tehran, Iran.
| | - Hamed Tavolinejad
- Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Subha ST, Chin JW, Cheah YK, Mohtarrudin N, Saidi HI. Multiple microRNA signature panel as promising potential for diagnosis and prognosis of head and neck cancer. Mol Biol Rep 2021; 49:1501-1511. [PMID: 34837627 DOI: 10.1007/s11033-021-06954-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 11/11/2021] [Indexed: 01/10/2023]
Abstract
MicroRNAs are small non-coding RNA that regulate gene expressions of human body. To date, numerous studies have reported that microRNAs possess great diagnostic and prognostic power in head and neck cancer and had governed a lot of attention. The factor for the successfulness of miRNAs in these aspects is due to cancer being fundamentally tied to genetic changes, which are regulated by these miRNAs. Head and neck cancer, leading the world record for cancer as number sixth, is caused by multiple risk factors such as tobacco consumption, alcohol consumption, dietary factors, ethnicity, family history, and human papilloma virus. It derives at locations such as oral cavity, pharynx, larynx, paranasal sinus and salivary gland and have high rate of mortality with high recurrence rate. Besides, head and neck cancer is also usually having poor prognosis due to its asymptomatic nature. However, this diagnostic and prognostic power can be further improved by using multiple panels of miRNA as a signature or even combined with TNM staging system to obtain even more remarkable results. This is due to multiple factors such as tumour heterogeneity and components of the tumour which may affect the composition of miRNAs. This review covers the examples of such miRNA signatures, compare their diagnostic and prognostic powers, discuss some controversial roles of unreported miRNAs, and the molecular mechanisms of the miRNAs in gene targeting and pathways.
Collapse
Affiliation(s)
- Sethu Thakachy Subha
- Department of Otorhinolaryngology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Jun Wei Chin
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Yoke Kqueen Cheah
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Norhafizah Mohtarrudin
- Department of Pathology, Faculty of Medicine and Health Sciences, University Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Hasni Idayu Saidi
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| |
Collapse
|
31
|
Zhang RN, Wu DM, Wu LP, Gao GW. LncRNA LINC00337 sponges mir-1285-3p to promote proliferation and metastasis of lung adenocarcinoma cells by upregulating YTHDF1. Cancer Cell Int 2021; 21:550. [PMID: 34663343 PMCID: PMC8524958 DOI: 10.1186/s12935-021-02253-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 10/07/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Emerging studies have shown that long noncoding RNAs (lncRNAs) predominantly function in the carcinogenesis of multiple developing human tumors. The current study aimed to investigate the underlying mechanisms of LINC00337 in lung adenocarcinoma. METHODS We analyzed TCGA and GTEx datasets and chose LINC00337 as the research object. Cell proliferation, cell apoptosis, cell cycle, migration, and invasion were detected in the gain and loss experiments of LINC00337 both in vitro and in vivo. Moreover, RNA pull-down, luciferase reporter assays, western blotting analysis, and rescue experiments were performed to investigate the underlying molecular mechanisms of LINC00337 function. RESULTS LINC00337 expression was remarkably upregulated in lung adenocarcinoma. In addition, LINC00337 knockdown was shown to repress cell migration, invasion, and proliferation, as well as the cell cycle, and gear up apoptosis in lung adenocarcinoma in vitro and in vivo. With respect to the mechanism, LINC00337 knockdown boosted miR-1285-3p expression and then restrained YTHDF1 expression post-transcriptionally. Crucially, both miR-1285-3p decrement and YTHDF1 overexpression successfully reversed the influence on cell proliferation, migration, invasion, and apoptosis caused by LINC00337 shRNA. CONCLUSIONS These results suggest that LINC00337 acts as an oncogenic lncRNA, targeting miR-1285-3p and regulating YTHDF1 expression, to promote the progression of lung adenocarcinoma.
Collapse
Affiliation(s)
- Ru-Nan Zhang
- Department of Radiation Oncology, Xinxiang Central Hospital, No.56 Jinsui Road, Xinxiang, 453000, Henan, People's Republic of China.
| | - Dong-Mei Wu
- Department of Radiation Oncology, Xinxiang Central Hospital, No.56 Jinsui Road, Xinxiang, 453000, Henan, People's Republic of China
| | - Li-Ping Wu
- Department of Radiation Oncology, Xinxiang Central Hospital, No.56 Jinsui Road, Xinxiang, 453000, Henan, People's Republic of China
| | - Guo-Wei Gao
- Department of Radiation Oncology, Xinxiang Central Hospital, No.56 Jinsui Road, Xinxiang, 453000, Henan, People's Republic of China
| |
Collapse
|
32
|
Zhang HJ, Chen G, Chen SW, Fu ZW, Zhou HF, Feng ZB, Mo JX, Li CB, Liu J. Overexpression of cyclin-dependent kinase 1 in esophageal squamous cell carcinoma and its clinical significance. FEBS Open Bio 2021; 11:3126-3141. [PMID: 34586751 PMCID: PMC8564100 DOI: 10.1002/2211-5463.13306] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/04/2021] [Accepted: 09/28/2021] [Indexed: 12/25/2022] Open
Abstract
Cyclin‐dependent kinase 1 (CDK1) plays a significant role in certain malignancies. However, it remains unclear whether CDK1 plays a role in esophageal squamous cell carcinoma (ESCC). The aim of this study was to analyze the expression and clinical value of CDK1 in ESCC. CDK1 protein in 151 ESCC tissues and 138 normal esophageal tissues was detected by immunohistochemistry. RNA‐seq of eight pairs of ESCC and adjacent esophageal specimens was performed to evaluate the levels of CDK1 mRNA. Microarray and external RNA‐seq data from 664 cases of ESCC and 1733 cases of control tissues were used to verify the difference in CDK1 expression between the two groups. A comprehensive analysis of all data was performed to evaluate the difference in CDK1 between ESCC tissues and control tissues. Further, functional enrichment analyses were performed based on differentially expressed genes (DEGs) of ESCC and co‐expressed genes (CEGs) of CDK1. In addition, a lncRNA‐miRNA‐CDK1 network was constructed. The expression of CDK1 protein was obviously increased in ESCC tissues (3.540 ± 2.923 vs. 1.040 ± 1.632, P < 0.001). RNA‐seq indicated that the mRNA level of CDK1 was also highly expressed in ESCC tissues (5.261 ± 0.703 vs. 2.229 ± 1.161, P < 0.0001). Comprehensive analysis revealed consistent up‐regulation of CDK1 (SMD = 1.41; 95% CI 1.00–1.83). Further, functional enrichment analyses revealed that the functions of these genes were mainly concentrated in the cell cycle. A triple regulatory network of PVT1‐hsa‐miR‐145‐5p/hsa‐miR‐30c‐5p‐CDK1 was constructed using in silico analysis. In summary, overexpression of CDK1 is closely related to ESCC tumorigenesis.
Collapse
Affiliation(s)
- Han-Jie Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Shang-Wei Chen
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zong-Wang Fu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Hua-Fu Zhou
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zhen-Bo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jun-Xian Mo
- Department of Cardio-Thoracic Surgery, The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, China.,Wuzhou Gongren Hospital, Wuzhou, China
| | - Chang-Bo Li
- Department of Cardio-Thoracic Surgery, The Seventh Affiliated Hospital of Guangxi Medical University, Wuzhou, China.,Wuzhou Gongren Hospital, Wuzhou, China
| | - Jun Liu
- Department of Cardio-Thoracic Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
33
|
Long Non-coding RNAs: Potential Players in Cardiotoxicity Induced by Chemotherapy Drugs. Cardiovasc Toxicol 2021; 22:191-206. [PMID: 34417760 DOI: 10.1007/s12012-021-09681-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/24/2021] [Indexed: 10/20/2022]
Abstract
One of the most important side effects of chemotherapy is cardiovascular complications, such as cardiotoxicity. Many factors are involved in the pathogenesis of cardiotoxicity; one of the most important of which is long non-coding RNAs (lncRNAs). lncRNA has 200-1000 nucleotides. It is involved in important processes such as cell proliferation, regeneration and apoptosis; today it is used as a prognostic and diagnostic factor. A, various drugs by acting on lncRNAs can affect cells. Therefore, by accurately identifying IncRNAs function, we can play an effective role in preventing the development of cardiotoxicity-induced chemotherapy drugs, and use them as a therapeutic strategy to improve clinical symptoms and increase patient survival.
Collapse
|
34
|
Exosomal lncRNA PVT1/VEGFA Axis Promotes Colon Cancer Metastasis and Stemness by Downregulation of Tumor Suppressor miR-152-3p. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:9959807. [PMID: 34336125 PMCID: PMC8315867 DOI: 10.1155/2021/9959807] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/22/2021] [Accepted: 06/21/2021] [Indexed: 01/05/2023]
Abstract
Background Treating advanced colon cancer remains challenging in clinical settings because of the development of drug resistance and distant metastasis. Mechanisms underlying the metastasis of colon cancer are complex and unclear. Methods Computational analysis was performed to determine genes associated with the exosomal long noncoding (lncRNA) plasmacytoma variant translocation 1 (PVT1)/vascular endothelial growth factor A (VEGFA) axis in patients with colon cancer. The biological importance of the exosomal lncRNA PVT1/VEGFA axis was examined in vitro by using HCT116 and LoVo cell lines and in vivo by using a patient-derived xenograft (PDX) mouse model through knockdown (by silencing of PVT1) and overexpression (by adding serum exosomes isolated from patients with distant metastasis (M-exo)). Results The in silico analysis demonstrated that PVT1 overexpression was associated with poor prognosis and increased expression of metastatic markers such as VEGFA and epidermal growth factor receptor (EGFR). This finding was further validated in a small cohort of patients with colon cancer in whom increased PVT1 expression was correlated with colon cancer incidence, disease recurrence, and distant metastasis. M-exo were enriched with PVT1 and VEGFA, and both migratory and invasive abilities of colon cancer cell lines increased when they were cocultured with M-exo. The metastasis-promoting effect was accompanied by increased expression of Twist1, vimentin, and MMP2. M-exo promoted metastasis in PDX mice. In vitro silencing of PVT1 reduced colon tumorigenic properties including migratory, invasive, colony forming, and tumorsphere generation abilities. Further analysis revealed that PVT1, VEGFA, and EGFR interact with and are regulated by miR-152-3p. Increased miR-152-3p expression reduced tumorigenesis, where increased tumorigenesis was observed when miR-152-3p expression was downregulated. Conclusion Exosomal PVT1 promotes colon cancer metastasis through its association with EGFR and VEGFA expression. miR-152-3p targets both PVT1 and VEGFA, and this regulatory pathway can be explored for drug development and as a prognostic biomarker.
Collapse
|
35
|
Long noncoding RNA PVT1 promotes tumour progression via the miR-128/ZEB1 axis and predicts poor prognosis in esophageal cancer. Clin Res Hepatol Gastroenterol 2021; 45:101701. [PMID: 33848670 DOI: 10.1016/j.clinre.2021.101701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 02/04/2023]
Abstract
PURPOSE To confirm the value of PVT1 as a prognostic marker both in tumour tissue and serum of patients with esophageal cancer and clarify the mechanism. METHODS This study analyzed data obtained from 76 patients who were surgically treated from January 1, 2015, to December 31, 2016, and received a pathological diagnosis of ESCC. PVT1 levels in tumour tissue and serum were detected by qRT-PCR. Patient data were extracted from medical records, and follow-up evaluations were performed. The roles of PVT1 in proliferation, migration and invasion were by CCK-8 and Transwell in stable knockdown PVT1 cell lines. Signal pathways PVT1 promotes esophageal cancer were detected by qRT-PCR and western blot. RESULTS PVT1 was overexpression in esophageal cancer tissues and high levels of PVT1 were correlated with lymphatic metastasis, high TNM stage and postoperative metastasis. High levels of PVT1 in tissues were correlated with worse metastasis-free survival (MFS) (HR: 2.578, 95% CI: 1.369-4.853). High level of PVT1 in serum was correlated with postoperative metastasis. High levels of PVT1 in serum were correlated with worse overall survival (OS) (HR: 2.124, 95% CI: 1.078-4.186) and worse MFS (HR: 2.786, 95% CI: 1.557-4.985). Knockdown of PVT1 decreased the cell proliferation, migration and invasion abilities of esophageal cancer cell lines. The expression of ZEB1 was significantly downregulated, and the expression of E-cadherin was increased by the knockdown of PVT1. Knockdown of miR-128 restored the altered proliferation, migration and invasion and the expression of ZEB1 and E-cadherin caused by knockdown of PVT1. CONCLUSIONS High levels of PVT1 in serum were correlated with postoperative metastasis and a poor prognosis. PVT1 promoted ESCC progression via the miR-128/ZEB1/E-cadherin axis.
Collapse
|
36
|
Shi Y, Yang D, Qin Y. Identifying prognostic lncRNAs based on a ceRNA regulatory network in laryngeal squamous cell carcinoma. BMC Cancer 2021; 21:705. [PMID: 34130645 PMCID: PMC8207764 DOI: 10.1186/s12885-021-08422-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose Growing evidence demonstrates that long non-coding RNAs (lncRNAs) play a crucial role as competing endogenous RNAs (ceRNAs) in tumor occurrence. The lncRNAs’ functions and clinical significance in laryngeal squamous cell carcinoma (LSCC) remain unclear. The study aims to reveal the lncRNA-associated ceRNA regulatory network of LSCC and clarify its clinical relevance. Methods Here, we obtained LSCC transcriptome data from The Cancer Genome Atlas (TCGA) database and identified the differential expression profile of lncRNAs, miRNAs, and mRNAs by the EdgeR R package. The function enrichment analysis of mRNAs was performed using clusterProfiler R package and GSEA3.0. Then, we constructed a ceRNA network and prognosis model based on lncRNAs through bioinformatic methods. Moreover, we explored the functions of prognosis-related lncRNA in LSCC by CCK-8 and transwell assay. Results 1961 lncRNAs, 69 miRNAs, and 2224 mRNAs were identified as differentially expressed genes in LSCC tissues. According to the transcriptome differential expression profile, a ceRNA network containing 61 lncRNAs, 21 miRNAs, and 77 mRNAs was established. Then, four lncRNAs (AC011933.2, FAM30A, LINC02086, LINC02575) were identified from the ceRNA network to build a prognosis model for LSCC patients. And we found that LINC02086 and LINC02575 promoted the proliferation, migration, and invasion of LSCC cells while AC011933.2 and FAM30A inhibited these biological functions in vitro. Furthermore, we validated that LINc02086/miR-770-5p/SLC26A2 axis promoted migration in LSCC. Conclusion Four lncRNAs of the ceRNA network were abnormally expressed and related to patient prognosis in LSCC. They played a significant role in the progress of LSCC via affecting the proliferation and metastasis of tumor cells. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08422-2.
Collapse
Affiliation(s)
- Yong Shi
- Department of Reproductive Medicine Center of the First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450000, China.
| | - Dongli Yang
- Department of Otorhinolaryngology Head and Neck Surgery, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| | - Yixiao Qin
- Department of Otorhinolaryngology Head and Neck Surgery, The First Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, China
| |
Collapse
|
37
|
Ristic B, Kopel J, Sherazi SAA, Gupta S, Sachdeva S, Bansal P, Ali A, Perisetti A, Goyal H. Emerging Role of Fascin-1 in the Pathogenesis, Diagnosis, and Treatment of the Gastrointestinal Cancers. Cancers (Basel) 2021; 13:cancers13112536. [PMID: 34064154 PMCID: PMC8196771 DOI: 10.3390/cancers13112536] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 12/25/2022] Open
Abstract
Simple Summary Gastrointestinal (GI) cancers, including esophageal, gastric, colorectal, liver, and pancreatic cancers, remain as one of the leading causes of death worldwide, with a large proportion accounting for fatalities related to metastatic disease. The active involvement of fascin-1 in forming membrane protrusions crucial for cellular movement has been identified as an important molecular mechanism behind the phenotypic switch from the localized to the metastatic tumor. Thus, fascin-1 expression status in the malignant tissue has been utilized as an important component in determining the patient’s clinicopathological outcomes. In this review, we provide an up-to-date literature review of the role of fascin-1 in the initiation and metastatic progression of GI tract cancers, its involvement in patients’ clinical outcomes, and its potential as a therapeutic target. Abstract Gastrointestinal (GI) cancers, including esophageal, gastric, colorectal, liver, and pancreatic cancers, remain as one of the leading causes of death worldwide, with a large proportion accounting for fatalities related to metastatic disease. Invasion of primary cancer occurs by the actin cytoskeleton remodeling, including the formation of the filopodia, stereocilia, and other finger-like membrane protrusions. The crucial step of actin remodeling in the malignant cells is mediated by the fascin protein family, with fascin-1 being the most active. Fascin-1 is an actin-binding protein that cross-links filamentous actin into tightly packed parallel bundles, giving rise to finger-like cell protrusions, thus equipping the cell with the machinery necessary for adhesion, motility, and invasion. Thus, fascin-1 has been noted to be a key component for determining patient diagnosis and treatment plan. Indeed, the overexpression of fascin-1 in GI tract cancers has been associated with a poor clinical prognosis and metastatic progression. Moreover, fascin-1 has received attention as a potential therapeutic target for metastatic GI tract cancers. In this review, we provide an up-to-date literature review of the role of fascin-1 in the initiation of GI tract cancers, metastatic progression, and patients’ clinical outcomes.
Collapse
Affiliation(s)
- Bojana Ristic
- Cell Biology and Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Jonathan Kopel
- Department of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Syed A. A. Sherazi
- Department of Medicine, John H Stroger Jr Hospital of Cook County, Chicago, IL 60612, USA;
| | - Shweta Gupta
- Division of Hematology-Oncology, John H Stroger Jr Hospital of Cook County, Chicago, IL 60612, USA;
| | - Sonali Sachdeva
- Department of Cardiology, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Pardeep Bansal
- Department of Gastroenterology, Mercy Health-St. Vincent Medical Center, Toledo, OH 43608, USA;
| | - Aman Ali
- Department of Medicine, The Commonwealth Medical College, Scranton, PA 18510, USA;
| | - Abhilash Perisetti
- Department of Gastroenterology and Hepatology, The University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA;
| | - Hemant Goyal
- The Wright Center for Graduate Medical Education, Scranton, PA 18510, USA
- Correspondence:
| |
Collapse
|
38
|
Tang J, Xu H, Liu Q, Zheng J, Pan C, Li Z, Wen W, Wang J, Zhu Q, Wang Z, Chen L. LncRNA LOC146880 promotes esophageal squamous cell carcinoma progression via miR-328-5p/FSCN1/MAPK axis. Aging (Albany NY) 2021; 13:14198-14218. [PMID: 34016787 PMCID: PMC8202886 DOI: 10.18632/aging.203037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 03/27/2021] [Indexed: 04/09/2023]
Abstract
We investigated the role of long non-coding RNA (lncRNA) LOC146880 in esophageal squamous cell carcinoma (ESCC). LOC146880 was significantly upregulated in ESCC tissues (n = 21) and cell lines compared to the corresponding controls. Higher LOC146880 expression correlated with poorer overall survival (OS) of ESCC patients. Moreover, CREB-binding protein (CBP) and H3K27 acetylation levels were significantly higher in the LOC146880 promoter in ESCC cell lines than in the controls. LOC146880 silencing inhibited in vitro proliferation, invasion, migration, and epithelial-mesenchymal transition of ESCC cells. LOC146880 silencing also induced G1-phase cell cycle arrest and apoptosis in ESCC cells. Bioinformatics analysis, dual luciferase reporter assays, and RNA immunoprecipitation assays showed that LOC146880 regulates FSCN1 expression in ESCC cells by sponging miR-328-5p. Moreover, FSCN1 expression correlated with activation of the MAPK signaling pathway in ESCC cells and tissues. In vivo xenograft tumor volume and liver metastasis were significantly reduced in nude mice injected with LOC146880-silenced ESCC cells as compared to those injected with control shRNA-transfected ESCC cells. These findings show that the LOC146880/miR-328-5p/FSCN1/MAPK axis regulates ESCC progression in vitro and in vivo. LOC146880 is thus a promising prognostic biomarker and potential therapeutic target in ESCC.
Collapse
Affiliation(s)
- Jianwei Tang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Honglei Xu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Qiang Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Jianan Zheng
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Cheng Pan
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Zhihua Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Wei Wen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Jun Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Quan Zhu
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Zhibo Wang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| | - Liang Chen
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu Province, China
| |
Collapse
|
39
|
Bai Y, Lin H, Chen J, Wu Y, Yu S. Identification of Prognostic Glycolysis-Related lncRNA Signature in Tumor Immune Microenvironment of Hepatocellular Carcinoma. Front Mol Biosci 2021; 8:645084. [PMID: 33968985 PMCID: PMC8100457 DOI: 10.3389/fmolb.2021.645084] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 02/19/2021] [Indexed: 12/13/2022] Open
Abstract
Purpose: The purpose of this study was to construct a novel risk scoring model with prognostic value that could elucidate tumor immune microenvironment of hepatocellular carcinoma (HCC). Samples and methods: Data were obtained through The Cancer Genome Atlas (TCGA) database. Univariate Cox analysis, least absolute shrinkage and selection operator (LASSO) analysis, and multivariate Cox analysis were carried out to screen for glycolysis-related long noncoding RNAs (lncRNAs) that could provide prognostic value. Finally, we established a risk score model to describe the characteristics of the model and verify its prediction accuracy. The receiver operating characteristic (ROC) curves of 1, 3, and 5 years of overall survival (OS) were depicted with risk score and some clinical features. ESTIMATE algorithm, single-sample gene set enrichment analysis (ssGSEA), and CIBERSORT analysis were employed to reveal the characteristics of tumor immune microenvironment in HCC. The nomogram was drawn by screening indicators with high prognostic accuracy. The correlation of risk signature with immune infiltration and immune checkpoint blockade (ICB) therapy was analyzed. After enrichment of related genes, active behaviors and pathways in high-risk groups were identified and lncRNAs related to poor prognosis were validated in vitro. Finally, the impact of MIR4435-2HG upon ICB treatment was uncovered. Results: After screening through multiple steps, four glycolysis-related lncRNAs were obtained. The risk score constructed with the four lncRNAs was found to significantly correlate with prognosis of samples. From the ROC curve of samples with 1, 3, and 5 years of OS, two indicators were identified with high prognostic accuracy and were used to draw a nomogram. Besides, the risk score significantly correlated with immune score, immune-related signature, infiltrating immune cells (i.e. B cells, etc.), and ICB key molecules (i.e. CTLA4,etc.). Gene enrichment analysis indicated that multiple biological behaviors and pathways were active in the high-risk group. In vitro validation results showed that MIR4435-2HG was highly expressed in the two cell lines, which had a significant impact on the OS of samples. Finally, we corroborated that MIR4435-2HG had intimate relationship with ICB therapy in hepatocellular carcinoma. Conclusion: We elucidated the crucial role of risk signature in immune cell infiltration and immunotherapy, which might contribute to clinical strategies and clinical outcome prediction of HCC.
Collapse
Affiliation(s)
- Yang Bai
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China.,Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiping Lin
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jiaqi Chen
- The Affiliated Hospital of Stomatology, School of Stomatology, Zhejiang University School of Medicine, and Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, China
| | - Yulian Wu
- Department of Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shi'an Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| |
Collapse
|
40
|
Cong R, Kong F, Ma J, Li Q, Yang H, Ma X. The PVT1/miR-612/CENP-H/CDK1 axis promotes malignant progression of advanced endometrial cancer. Am J Cancer Res 2021; 11:1480-1502. [PMID: 33948369 PMCID: PMC8085881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 02/24/2021] [Indexed: 06/12/2023] Open
Abstract
Our previous study introduced the oncogenic role of the long non-coding RNA plasmacytoma variant translocation 1 (PVT1) in endometrial cancer (EC). In this study, we aimed to construct a PVT1-centered competing endogenous RNA (ceRNA) network to outline a regulatory axis that might promote the malignant progression of advanced EC. Raw Uterine Corpus Endometrial Carcinoma (UCEC) datasets were collected from The Cancer Genome Atlas (TCGA) database and used for construction of the PVT1-centered ceRNA network. The ceRNA binding sites were established using dual-luciferase assays. FISH assays displayed the co-location of PVT1 and miR-612 in EC cells. Immunohistochemistry, in situ hybridization, qRT-PCR, and western blots were used to assess the expression of miR-612 and CENP-H in EC tissues, and their functions on biological behaviours were examined by a series of in vitro and in vivo assays. Molecule interactions were illustrated by co-transfection assays. The bioinformatics analysis showed that PVT1/miR-612/CENP-H/CDK1 axis played a vital role in the malignant progression of advanced EC. MiR-612 was downregulated in EC tissues and acted as a tumour suppressor to inhibit cell proliferation, migration, invasion, and promote cell apoptosis. CENP-H was found overexpressed in EC tissues, and the expression level was correlated to diagnosis and prognosis of EC. Hyperactivated CENP-H promoted cell proliferation, migration, invasion, and inhibited cell apoptosis. Overexpressed CENP-H prevented the anti-tumour effects observed with upregulated miR-612; knockdown of miR-612 also suppressed the anti-tumour effects of downregulated PVT1. Knockdown of PVT1 together with upregulated miR-612 exerted the strongest anti-tumour effects in nude mice. These effects were mediated by CDK1 through modulation of the Akt/mTOR signaling pathway. In conclusion, the PVT1/miR-612/CENP-H/CDK1 axis promoted the malignant progression of advanced EC and could serve as a promising target for potential treatments.
Collapse
Affiliation(s)
- Rong Cong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University Sanhao Street, Shenyang, People's Republic of China
| | - Fanfei Kong
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University Sanhao Street, Shenyang, People's Republic of China
| | - Jian Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University Sanhao Street, Shenyang, People's Republic of China
| | - Qing Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University Sanhao Street, Shenyang, People's Republic of China
| | - Hui Yang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University Sanhao Street, Shenyang, People's Republic of China
| | - Xiaoxin Ma
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University Sanhao Street, Shenyang, People's Republic of China
| |
Collapse
|
41
|
Liu H, Zhang Y, Li L, Cao J, Guo Y, Wu Y, Gao W. Fascin actin-bundling protein 1 in human cancer: promising biomarker or therapeutic target? Mol Ther Oncolytics 2021; 20:240-264. [PMID: 33614909 PMCID: PMC7873579 DOI: 10.1016/j.omto.2020.12.014] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Fascin actin-bundling protein 1 (FSCN1) is a highly conserved actin-bundling protein that cross links F-actin microfilaments into tight, parallel bundles. Elevated FSCN1 levels have been reported in many types of human cancers and have been correlated with aggressive clinical progression, poor prognosis, and survival outcomes. The overexpression of FSCN1 in cancer cells has been associated with tumor growth, migration, invasion, and metastasis. Currently, FSCN1 is recognized as a candidate biomarker for multiple cancer types and as a potential therapeutic target. The aim of this study was to provide a brief overview of the FSCN1 gene and protein structure and elucidate on its actin-bundling activity and physiological functions. The main focus was on the role of FSCN1 and its upregulatory mechanisms and significance in cancer cells. Up-to-date studies on FSCN1 as a novel biomarker and therapeutic target for human cancers are reviewed. It is shown that FSCN1 is an unusual biomarker and a potential therapeutic target for cancer.
Collapse
Affiliation(s)
- Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Yu Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Li Li
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Jimin Cao
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Physiology, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Otolaryngology Head & Neck Surgery, First Hospital of Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
- Department of Cell Biology and Genetics, School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| |
Collapse
|
42
|
Li Z, Cai S, Li H, Gu J, Tian Y, Cao J, Yu D, Tang Z. Developing a lncRNA Signature to Predict the Radiotherapy Response of Lower-Grade Gliomas Using Co-expression and ceRNA Network Analysis. Front Oncol 2021; 11:622880. [PMID: 33767991 PMCID: PMC7985253 DOI: 10.3389/fonc.2021.622880] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/15/2021] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Lower-grade glioma (LGG) is a type of central nervous system tumor that includes WHO grade II and grade III gliomas. Despite developments in medical science and technology and the availability of several treatment options, the management of LGG warrants further research. Surgical treatment for LGG treatment poses a challenge owing to its often inaccessible locations in the brain. Although radiation therapy (RT) is the most important approach in this condition and offers more advantages compared to surgery and chemotherapy, it is associated with certain limitations. Responses can vary from individual to individual based on genetic differences. The relationship between non-coding RNA and the response to radiation therapy, especially at the molecular level, is still undefined. METHODS In this study, using The Cancer Genome Atlas dataset and bioinformatics, the gene co-expression network that is involved in the response to radiation therapy in lower-grade gliomas was determined, and the ceRNA network of radiotherapy response was constructed based on three databases of RNA interaction. Next, survival analysis was performed for hub genes in the co-expression network, and the high-efficiency biomarkers that could predict the prognosis of patients with LGG undergoing radiotherapy was identified. RESULTS We found that some modules in the co-expression network were related to the radiotherapy responses in patients with LGG. Based on the genes in those modules and the three databases, we constructed a ceRNA network for the regulation of radiotherapy responses in LGG. We identified the hub genes and found that the long non-coding RNA, DRAIC, is a potential molecular biomarker to predict the prognosis of radiotherapy in LGG.
Collapse
Affiliation(s)
- Zhongyang Li
- School of Radiation Medicine and Protection, Soochow University Medical College (SUMC), Suzhou, China
| | - Shang Cai
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Huijun Li
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Provincial Key Laboratory of Geriatrics Prevention and Translational Medicine, School of Public Health, Soochow University Medical College, Suzhou, China
| | - Jincheng Gu
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Provincial Key Laboratory of Geriatrics Prevention and Translational Medicine, School of Public Health, Soochow University Medical College, Suzhou, China
| | - Ye Tian
- Department of Radiotherapy and Oncology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Radiotherapy and Oncology, Soochow University, Suzhou, China
| | - Jianping Cao
- School of Radiation Medicine and Protection, Soochow University Medical College (SUMC), Suzhou, China
- School of Radiation Medicine and Protection and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Dong Yu
- School of Radiation Medicine and Protection, Soochow University Medical College (SUMC), Suzhou, China
| | - Zaixiang Tang
- Department of Biostatistics, School of Public Health, Medical College of Soochow University, Suzhou, China
- Jiangsu Provincial Key Laboratory of Geriatrics Prevention and Translational Medicine, School of Public Health, Soochow University Medical College, Suzhou, China
| |
Collapse
|
43
|
Bi Y, Zeng DX, Ye W, Xiao M, Yang QL, Ling Y. LncRNA PVT1 promotes cells proliferation via PI3K–AKT–mTOR Pathway in gastrointestinal stromal tumor. ALL LIFE 2021. [DOI: 10.1080/26895293.2021.1889685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Affiliation(s)
- YanZhi Bi
- Department of Medical Oncology, The Third Affiliated Hospital of Soochow University, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, People’s Republic of China
| | - Dong Xiang Zeng
- Department of Medical Oncology, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, People’s Republic of China
| | - Wei Ye
- Department of Medical Oncology, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, People’s Republic of China
| | - Min Xiao
- Department of Medical Oncology, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, People’s Republic of China
| | - Quan Liang Yang
- Department of Medical Oncology, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, People’s Republic of China
| | - Yang Ling
- Department of Medical Oncology, Changzhou Tumor Hospital Affiliated to Soochow University, Changzhou, People’s Republic of China
| |
Collapse
|
44
|
Chen J, Li X, Yang L, Zhang J. Long Non-coding RNA LINC01969 Promotes Ovarian Cancer by Regulating the miR-144-5p/LARP1 Axis as a Competing Endogenous RNA. Front Cell Dev Biol 2021; 8:625730. [PMID: 33614632 PMCID: PMC7889973 DOI: 10.3389/fcell.2020.625730] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Accepted: 12/28/2020] [Indexed: 12/19/2022] Open
Abstract
Accumulating evidence has shown that long non-coding RNAs (lncRNAs) can be used as biological markers and treatment targets in cancer and play various roles in cancer-related biological processes. However, the lncRNA expression profiles and their roles and action mechanisms in ovarian cancer (OC) are largely unknown. Here, we assessed the lncRNA expression profiles in OC tissues from The Cancer Genome Atlas (TCGA) database, and one upregulated lncRNA, LINC01969, was selected for further study. LINC01969 expression levels in 41 patients were verified using quantitative real-time polymerase chain reaction (qRT-PCR). The in vitro effects of LINC01969 on OC cell migration, invasion, and proliferation were determined by the CCK-8, ethynyl-2-deoxyuridine (EdU), wound healing, and Transwell assays. Epithelial–mesenchymal transition (EMT) was evaluated using qRT-PCR and Western blotting. The molecular mechanisms of LINC01969 in OC were assessed through bioinformatics analysis, RNA-binding protein immunoprecipitation (RIP), dual luciferase reporter gene assays, and a rescue experiment. Finally, in vivo experiments were conducted to evaluate the functions of LINC01969. The results of the current study showed that LINC01969 was dramatically upregulated in OC, and patients with lower LINC01969 expression levels tended to have better overall survival. Further experiments demonstrated that LINC01969 promoted the migration, invasion, and proliferation of OC cells in vitro and sped up tumor growth in vivo. Additionally, LINC01969, which primarily exists in the cytoplasm, boosted LARP1 expression by sponging miR-144-5p and promoted the malignant phenotypes of OC cells. In conclusion, the LINC01969/miR-144-5p/LARP1 axis is a newly identified regulatory signaling pathway involved in OC progression.
Collapse
Affiliation(s)
- Jinxin Chen
- Department of Gynecology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Xiaocen Li
- Department of Graduate School, Dalian Medical University, Dalian, China
| | - Lu Yang
- Medical Oncology Department of Gastrointestinal Cancer, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| | - Jingru Zhang
- Department of Gynecology, Liaoning Cancer Hospital and Institute, Cancer Hospital of China Medical University, Shenyang, China
| |
Collapse
|
45
|
Wilson C, Kanhere A. 8q24.21 Locus: A Paradigm to Link Non-Coding RNAs, Genome Polymorphisms and Cancer. Int J Mol Sci 2021; 22:1094. [PMID: 33499210 PMCID: PMC7865353 DOI: 10.3390/ijms22031094] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 01/17/2023] Open
Abstract
The majority of the human genome is comprised of non-protein-coding genes, but the relevance of non-coding RNAs in complex diseases has yet to be fully elucidated. One class of non-coding RNAs is long non-coding RNAs or lncRNAs, many of which have been identified to play a range of roles in transcription and translation. While the clinical importance of the majority of lncRNAs have yet to be identified, it is puzzling that a large number of disease-associated genetic variations are seen in lncRNA genes. The 8q24.21 locus is rich in lncRNAs and very few protein-coding genes are located in this region. Interestingly, the 8q24.21 region is also a hot spot for genetic variants associated with an increased risk of cancer. Research focusing on the lncRNAs in this area of the genome has indicated clinical relevance of lncRNAs in different cancers. In this review, we summarise the lncRNAs in the 8q24.21 region with respect to their role in cancer and discuss the potential impact of cancer-associated genetic polymorphisms on the function of lncRNAs in initiation and progression of cancer.
Collapse
Affiliation(s)
| | - Aditi Kanhere
- Department of Molecular Physiology and Cell Signalling, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Crown Street, Liverpool L69 3BX, UK;
| |
Collapse
|
46
|
Wang F, Chen X, Sun B, Ma Y, Niu W, Zhai J, Sun Y. Hypermethylation-mediated downregulation of lncRNA PVT1 promotes granulosa cell apoptosis in premature ovarian insufficiency via interacting with Foxo3a. J Cell Physiol 2021; 236:5162-5175. [PMID: 33393111 DOI: 10.1002/jcp.30222] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023]
Abstract
Long noncoding RNA PVT1 is involved in the progression of female gynecological cancers. However, the role of PVT1 in ovarian granulosa cell apoptosis-mediated premature ovarian insufficiency (POI) remains unclear. This study aims to elucidate the role of PVT1 in ovarian granulosa cell apoptosis-mediated POI. The expression of PVT1 was compared between ovarian tissues from POI patients and normal controls. The methylation level in the PVT1 promoter region was detected by methylation-specific polymerase chain reaction. The interaction between PVT1 and forkhead box class O3A (Foxo3a) was confirmed by RNA pull-down and RNA immunoprecipitation assays. Granulosa cell apoptosis was detected using flow cytometry. The effect of PVT1 on transcription activity of Foxo3a was detected by luciferase reporter assay. The expression of PVT1 was low in the POI ovarian tissues compared with the controls, and such a low expression was related to the hypermethylation of the PVT1 promoter. PVT1 was localized in both the cytoplasm and the nucleus of granulosa cells. We determined that PVT1 could bind with Foxo3a and that downregulating PVT1 by small interfering RNAs inhibited Foxo3a phosphorylation by promoting SCP4-mediated Foxo3a dephosphorylation, resulting in an increase in Foxo3a transcription activity. Moreover, downregulating PVT1 promoted granulosa cell apoptosis by increasing the Foxo3a protein levels. An in vivo experiment showed that the injection of PVT1 overexpressing vectors restored the ovarian function in POI mice. Hypermethylation-induced downregulation of PVT1 promotes granulosa cell apoptosis in POI by inhibiting Foxo3a phosphorylation and increases the Foxo3a transcription activity.
Collapse
Affiliation(s)
- Fang Wang
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuemei Chen
- Department of Human Anatomy, College of Basic Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Bo Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yujia Ma
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenbin Niu
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jun Zhai
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yingpu Sun
- Reproductive Medical Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
47
|
Xue C, Lv L, Jiang J, Li L. Promising long noncoding RNA DLX6-AS1 in malignant tumors. Am J Transl Res 2020; 12:7682-7692. [PMID: 33437353 PMCID: PMC7791511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/11/2020] [Indexed: 06/12/2023]
Abstract
Although its diagnosis and treatment have greatly improved in recent decades, cancer remains the major cause of death worldwide. Thus, there is an urgent need to find novel biomarkers and therapeutic targets to improve efficiency of diagnosis and treatment of patients with cancer. Long noncoding RNAs (lncRNAs), a new class of noncoding RNAs (ncRNAs), have been found to play a salient role in human tumorigenesis and progression. Distal-less homeobox 6 antisense RNA 1 (DLX6-AS1) is a novel lncRNA with aberrant expression in various cancers tissues and cell lines compared with nontumor tissues and normal cell lines. Importantly, DLX6-AS1 is closely associated with tumor cell proliferation, apoptosis, invasion, and migration. Patients with high DLX6-AS1 expression often had poorer prognosis than those with low expression. The oncogenicity of DLX6-AS1 mainly (indirectly or indirectly) interacts with targeting genes, and then regulates downstream genes and signaling pathways. Together with the findings of animal model studies, these data suggest that DLX6-AS1 may serve as a feasible predictor or therapeutic target in different cancers. Herein, we summarize the main findings concerning the function and molecular mechanisms of DLX6-AS1 to identify a molecular basis for future clinical application.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003, China
| | - Longxian Lv
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003, China
| | - Jiangwen Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003, China
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou 310003, China
| |
Collapse
|
48
|
Zhang Y, Yao Y, Wang Z, Lu D, Zhang Y, Adetula AA, Liu S, Zhu M, Yang Y, Fan X, Chen M, Tang Y, Chen Y, Liu Y, Yi G, Tang Z. MiR-743a-5p regulates differentiation of myoblast by targeting Mob1b in skeletal muscle development and regeneration. Genes Dis 2020; 9:1038-1048. [PMID: 35685465 PMCID: PMC9170581 DOI: 10.1016/j.gendis.2020.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/26/2020] [Indexed: 01/21/2023] Open
Abstract
The microRNAs (miRNAs) play an important role in regulating myogenesis by targeting mRNA. However, the understanding of miRNAs in skeletal muscle development and diseases is unclear. In this study, we firstly performed the transcriptome profiling in differentiating C2C12 myoblast cells. Totally, we identified 187 miRNAs and 4260 mRNAs significantly differentially expressed that were involved in myoblast differentiation. We carried out validation of microarray data based on 5 mRNAs and 5 miRNAs differentially expressed and got a consistent result. Then we constructed and validated the significantly up- and down-regulated mRNA-miRNA interaction networks. Four interaction pairs (miR-145a-5p-Fscn1, miR-200c-5p-Tmigd1, miR-27a-5p-Sln and miR-743a-5p-Mob1b) with targeted relationships in differentiated myoblast cells were demonstrated. They are all closely related to myoblast development. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis indicated cell cycle signals important for exploring skeletal muscle development and disease. Functionally, we discovered that miR-743a targeting gene Mps One Binder Kinase Activator-Like 1B (Mob1b) gene in differentiated C2C12. The up-regulated miR-743a can promote the differentiation of C2C12 myoblast. While the down-regulated Mob1b plays a negative role in differentiation. In addition, the expression profile of miR-743a and Mob1b are consistent with skeletal muscle recovery after Cardiotoxin (CTX) injury. Our study revealed that miR-743a-5p regulates myoblast differentiation by targeting Mob1b involved in skeletal muscle development and regeneration. Our findings made a further exploration for mechanisms in myogenesis and might provide potential possible miRNA-based target therapies for skeletal muscle regeneration and disease in the near future.
Collapse
Affiliation(s)
- YongSheng Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
| | - YiLong Yao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
| | - ZiShuai Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
| | - Dan Lu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
| | - YuanYuan Zhang
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Adeyinka Abiola Adetula
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
| | - SiYuan Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
| | - Min Zhu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
| | - YaLan Yang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
| | - XinHao Fan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
| | - MuYa Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
| | - YiJie Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
| | - Yun Chen
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
| | - YuWen Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
| | - GuoQiang Yi
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
| | - ZhongLin Tang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
- Corresponding author. Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518124, PR China.
| |
Collapse
|
49
|
Oncul S, Amero P, Rodriguez-Aguayo C, Calin GA, Sood AK, Lopez-Berestein G. Long non-coding RNAs in ovarian cancer: expression profile and functional spectrum. RNA Biol 2020; 17:1523-1534. [PMID: 31847695 PMCID: PMC7567512 DOI: 10.1080/15476286.2019.1702283] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/31/2019] [Accepted: 11/04/2019] [Indexed: 12/16/2022] Open
Abstract
Long non-coding RNAs (lncRNAs), initially recognized as byproducts of the transcription process, have been proven to play crucial modulatory roles in preserving overall homoeostasis of cells and tissues. Furthermore, aberrant levels of these transcripts have been shown to contribute many diseases, including cancer. Among these, many aspects of ovarian cancer biology have been found to be regulated by lncRNAs, including cancer initiation, progression and dissemination. In this review, we summarize recent studies to highlight the various roles of lncRNAs in ovary in normal and pathological conditions, immune system, diagnosis, prognosis, and therapy. We address lncRNAs that have been extensively studied in ovarian cancer and their contribution to cellular dynamics.
Collapse
Affiliation(s)
- Selin Oncul
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Biochemistry, Faculty of Pharmacy, The University of Hacettepe, Ankara, Turkey
| | - Paola Amero
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George A. Calin
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
50
|
Fu SW, Zhang Y, Li S, Shi ZY, Zhao J, He QL. LncRNA TTN-AS1 promotes the progression of oral squamous cell carcinoma via miR-411-3p/NFAT5 axis. Cancer Cell Int 2020; 20:415. [PMID: 32863773 PMCID: PMC7453543 DOI: 10.1186/s12935-020-01378-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 06/24/2020] [Indexed: 12/15/2022] Open
Abstract
Background Oral squamous cell carcinoma (OSCC) is a common kind of squamous cell carcinoma of the head and neck, which is a threat to public health. Long noncoding RNAs (lncRNAs) are associated with the development of various diseases, including cancers. LncRNA titin antisense RNA 1 (TTN-AS1) is known as a crucial regulatory factor in several cancers. Nevertheless, the specific functions of TTN-AS1 in OSCC remains obscure. Methods The expression of TTN-AS1 in OSCC samples or cells was analyzed through qRT-PCR. Colony formation assay, EdU assay, flow cytometry assay, TUNEL assay and wound healing assay were conducted to estimate the functions of TTN-AS1 in OSCC cells. RIP and luciferase reporter assays were utilized to detect the interaction between TTN-AS1 and miR-411-3p as well as between miR-411-3p and NFAT5. Results TTN-AS1 expression was stronger in OSCC cells. Knockdown of TTN-AS1 effectively restrained cell proliferation and migration but had inductive role in apoptosis. Moreover, TTN-AS1 could function as the miR-411-3p sponge in OSCC and miR-411-3p exerted the inhibitory functions on OSCC cell growth. In addition, NFAT5 was proven as the target of miR-411-3p. Rescue assay indicated that overexpressing NFAT5 could reverse the inhibitory function of TTN-AS1 depletion on cell growth. Conclusion lncRNA TTN-AS1 contributed to the progression of OSCC via miR-411-3p/NFAT5 axis.
Collapse
Affiliation(s)
- Su-Wei Fu
- Department of Stomatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7 Weiwu Road, Zhengzhou, 450003 Henan China
| | - Yan Zhang
- Department of Stomatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7 Weiwu Road, Zhengzhou, 450003 Henan China
| | - Shen Li
- Department of Stomatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7 Weiwu Road, Zhengzhou, 450003 Henan China
| | - Zhi-Yan Shi
- Department of Stomatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7 Weiwu Road, Zhengzhou, 450003 Henan China
| | - Juan Zhao
- Department of Stomatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7 Weiwu Road, Zhengzhou, 450003 Henan China
| | - Qing-Li He
- Department of Stomatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, No.7 Weiwu Road, Zhengzhou, 450003 Henan China
| |
Collapse
|