1
|
Chen B, Zhou G, Chen A, Peng Q, Huang L, Liu S, Huang Y, Liu X, Wei S, Hou ZY, Li L, Qi L, Ma NF. The synchronous upregulation of a specific protein cluster in the blood predicts both colorectal cancer risk and patient immune status. Gene 2024; 930:148842. [PMID: 39134100 DOI: 10.1016/j.gene.2024.148842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/22/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Early detection and treatment of colorectal cancer (CRC) is crucial for improving patient survival rates. This study aims to identify signature molecules associated with CRC, which can serve as valuable indicators for clinical hematological screening. METHOD We have systematically searched the Human Protein Atlas database and the relevant literature for blood protein-coding genes. The CRC dataset from TCGA was used to compare the acquired genes and identify differentially expressed molecules (DEMs). Weighted Gene Co-expression Network Analysis (WGCNA) was employed to identify modules of co-expressed molecules and key molecules within the DEMs. Signature molecules of CRC were then identified from the key molecules using machine learning. These findings were further validated in clinical samples. Finally, Logistic regression was used to create a predictive model that calculated the likelihood of CRC in both healthy individuals and CRC patients. We evaluated the model's sensitivity and specificity using the ROC curve. RESULT By utilizing the CRC dataset, WGCNA analysis, and machine learning, we successfully identified seven signature molecules associated with CRC from 1478 blood protein-coding genes. These markers include S100A11, INHBA, QSOX2, MET, TGFBI, VEGFA and CD44. Analyzing the CRC dataset showed its potential to effectively discriminate between CRC and normal individuals. The up-regulated expression of these markers suggests the existence of an immune evasion mechanism in CRC patients and is strongly correlated with poor prognosis. CONCLUSION The combined detection of the seven signature molecules in CRC can significantly enhance diagnostic efficiency and serve as a novel index for hematological screening of CRC.
Collapse
Affiliation(s)
- Bingkun Chen
- Division of Gastroenterology, Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China; Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guiqing Zhou
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Anming Chen
- Division of Gastroenterology, Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Qian Peng
- Division of Gastroenterology, Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Li Huang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shanshan Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yue Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xueyun Liu
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Shi Wei
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Zhi-Yao Hou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Linhai Li
- Division of Gastroenterology, Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China
| | - Ling Qi
- Division of Gastroenterology, Institute of Digestive Diseases, the Affiliated Qingyuan Hospital (Qingyuan People's Hospital), Guangzhou Medical University, Qingyuan 511518, Guang Dong, China.
| | - Ning-Fang Ma
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Grancher A, Cuissy S, Girot H, Gillibert A, Di Fiore F, Guittet L. Where do we stand with screening for colorectal cancer and advanced adenoma based on serum protein biomarkers? A systematic review. Mol Oncol 2024; 18:2629-2648. [PMID: 39344882 PMCID: PMC11547240 DOI: 10.1002/1878-0261.13734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 10/01/2024] Open
Abstract
Colorectal cancer (CRC) screening has been proven to reduce both mortality and the incidence of this disease. Most CRC screening programs are based on fecal immunochemical tests (FITs), which have a low participation rate. Searching for blood protein biomarkers can lead to the development of a more accepted screening test. The aim of this systematic review was to compare the diagnostic potential of the most promising serum protein biomarkers. A systematic review based on PRISMA guidelines was conducted in the PubMed and Web of Science databases between January 2010 and December 2023. Studies assessing blood protein biomarkers for CRC screening were included. The sensitivity, specificity, and area under the ROC curve of each biomarker were collected. Among 4685 screened studies, 94 were considered for analysis. Most of them were case-control studies, leading to an overestimation of the performance of candidate biomarkers. The performance of no protein biomarker or combination of biomarkers appears to match that of the FIT. Studies with a suitable design and population, testing new assay techniques, or based on algorithms combining FIT with serum tests are needed.
Collapse
Affiliation(s)
- Adrien Grancher
- U1086 “ANTICIPE” INSERM‐University of Caen Normandy, Centre François BaclesseCaenFrance
- Department of Hepato‐Gastroenterology and Digestive OncologyRouen University HospitalFrance
| | - Steven Cuissy
- Department of Hepato‐Gastroenterology and Digestive OncologyRouen University HospitalFrance
| | - Hélène Girot
- Department of Medical BiochemistryRouen University HospitalFrance
| | | | - Frédéric Di Fiore
- Department of Hepato‐Gastroenterology and Digestive OncologyRouen University HospitalFrance
| | - Lydia Guittet
- U1086 “ANTICIPE” INSERM‐University of Caen Normandy, Centre François BaclesseCaenFrance
- Public Health DepartmentCaen University HospitalFrance
| |
Collapse
|
3
|
Magowan D, Abdulshafea M, Thompson D, Rajamoorthy SI, Owen R, Harris D, Prosser S. Blood-based biomarkers and novel technologies for the diagnosis of colorectal cancer and adenomas: a narrative review. Biomark Med 2024; 18:493-506. [PMID: 38900496 DOI: 10.1080/17520363.2024.2345583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Accepted: 03/12/2024] [Indexed: 06/21/2024] Open
Abstract
Aim: Blood-based biomarkers have shown promise for diagnosing colorectal cancer (CRC) and adenomas (CRA). This review summarizes recent studies in this area. Methods: A literature search was undertaken for 01/01/2017-01/03/2023. Criteria included CRC, CRA, liquid-biopsy, blood-based tests and diagnosis. Results: 12,378 studies were reduced to 178 for data extraction. Sixty focused on proteomics, 53 on RNA species, 30 on cfDNA methylation, seven on antigens and autoantibodies and 28 on novel techniques. 169 case control and nine cohort studies. Number of participants ranged 100-54,297, mean age 58.26. CRC sensitivity and specificity ranged 9.10-100% and 20.40-100%, respectively. CRA sensitivity and specificity ranged 8.00-95.70% and 4.00-97.00%, respectively. Conclusion: Sensitive and specific blood-based tests exist for CRC and CRA. However, studies demonstrate heterogenous techniques and reporting quality. Further work should concentrate on validation and meta-analyzes.
Collapse
Affiliation(s)
- Drew Magowan
- Swansea University, Singleton Park, SA2 8PP, Swansea, UK
- Swansea Bay University Health Board, Department of General Surgery, Morriston Hospital, SA6 6NL, Swansea, UK
| | - Mansour Abdulshafea
- Swansea Bay University Health Board, Department of General Surgery, Morriston Hospital, SA6 6NL, Swansea, UK
| | - Dominic Thompson
- Swansea Bay University Health Board, Department of General Surgery, Morriston Hospital, SA6 6NL, Swansea, UK
| | - Shri-Ishvarya Rajamoorthy
- Swansea Bay University Health Board, Department of General Surgery, Morriston Hospital, SA6 6NL, Swansea, UK
| | - Rhiannon Owen
- Swansea University, Singleton Park, SA2 8PP, Swansea, UK
| | - Dean Harris
- Swansea University, Singleton Park, SA2 8PP, Swansea, UK
- Swansea Bay University Health Board, Department of General Surgery, Morriston Hospital, SA6 6NL, Swansea, UK
| | - Susan Prosser
- Swansea Bay University Health Board, Department of General Surgery, Morriston Hospital, SA6 6NL, Swansea, UK
| |
Collapse
|
4
|
Hoseini SH, Enayati P, Nazari M, Babakhanzadeh E, Rastgoo M, Sohrabi NB. Biomarker Profile of Colorectal Cancer: Current Findings and Future Perspective. J Gastrointest Cancer 2024; 55:497-510. [PMID: 38168859 DOI: 10.1007/s12029-023-00990-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2023] [Indexed: 01/05/2024]
Abstract
OBJECTIVE Breakthroughs in omics technology have led to a deeper understanding of the fundamental molecular changes that play a critical role in the development and progression of cancer. This review delves into the hidden molecular drivers of colorectal cancer (CRC), offering potential for clinical translation through novel biomarkers and personalized therapies. METHODS We summarizes recent studies utilizing various omics approaches, including genomics, transcriptomics, proteomics, epigenomics, metabolomics and data integration with computational algorithms, to investigate CRC. RESULTS Integrating multi-omics data in colorectal cancer research unlocks hidden biological insights, revealing new pathways and mechanisms. This powerful approach not only identifies potential biomarkers for personalized prognosis, diagnosis, and treatment, but also predicts patient response to specific therapies, while computational tools illuminate the landscape by deciphering complex datasets. CONCLUSIONS Future research should prioritize validating promising biomarkers and seamlessly translating them into clinical practice, ultimately propelling personalized CRC management to new heights.
Collapse
Affiliation(s)
| | - Parisa Enayati
- Biological Sciences Department, Northern Illinois University, DeKalb, IL, USA
| | - Majid Nazari
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
- , P.O. Box, Tehran, 64155-65117, Iran.
| | - Emad Babakhanzadeh
- Department of Medical Genetics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Maryam Rastgoo
- Department of Microbiology, Shiraz Islamic Azad University, Shiraz, Iran
| | | |
Collapse
|
5
|
Tonini V, Zanni M. Why is early detection of colon cancer still not possible in 2023? World J Gastroenterol 2024; 30:211-224. [PMID: 38314134 PMCID: PMC10835528 DOI: 10.3748/wjg.v30.i3.211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/30/2023] [Accepted: 12/14/2023] [Indexed: 01/18/2024] Open
Abstract
Colorectal cancer (CRC) screening is a fundamental tool in the prevention and early detection of one of the most prevalent and lethal cancers. Over the years, screening, particularly in those settings where it is well organized, has succeeded in reducing the incidence of colon and rectal cancer and improving the prognosis related to them. Despite considerable advancements in screening technologies and strategies, the effectiveness of CRC screening programs remains less than optimal. This paper examined the multifaceted reasons behind the persistent lack of effectiveness in CRC screening initiatives. Through a critical analysis of current methodologies, technological limitations, patient-related factors, and systemic challenges, we elucidated the complex interplay that hampers the successful reduction of CRC morbidity and mortality rates. While acknowledging the advancements that have improved aspects of screening, we emphasized the necessity of addressing the identified barriers comprehensively. This study aimed to raise awareness of how important CRC screening is in reducing costs for this disease. Screening and early diagnosis are not only important in improving the prognosis of patients with CRC but can lead to an important reduction in the cost of treating a disease that is often diagnosed at an advanced stage. Spending more sooner can mean saving money later.
Collapse
Affiliation(s)
- Valeria Tonini
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| | - Manuel Zanni
- Department of Medical and Surgical Sciences, University of Bologna, Bologna 40138, Italy
| |
Collapse
|
6
|
Jiang S, Wang T, Zhang KH. Data-driven decision-making for precision diagnosis of digestive diseases. Biomed Eng Online 2023; 22:87. [PMID: 37658345 PMCID: PMC10472739 DOI: 10.1186/s12938-023-01148-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 08/15/2023] [Indexed: 09/03/2023] Open
Abstract
Modern omics technologies can generate massive amounts of biomedical data, providing unprecedented opportunities for individualized precision medicine. However, traditional statistical methods cannot effectively process and utilize such big data. To meet this new challenge, machine learning algorithms have been developed and applied rapidly in recent years, which are capable of reducing dimensionality, extracting features, organizing data and forming automatable data-driven clinical decision systems. Data-driven clinical decision-making have promising applications in precision medicine and has been studied in digestive diseases, including early diagnosis and screening, molecular typing, staging and stratification of digestive malignancies, as well as precise diagnosis of Crohn's disease, auxiliary diagnosis of imaging and endoscopy, differential diagnosis of cystic lesions, etiology discrimination of acute abdominal pain, stratification of upper gastrointestinal bleeding (UGIB), and real-time diagnosis of esophageal motility function, showing good application prospects. Herein, we reviewed the recent progress of data-driven clinical decision making in precision diagnosis of digestive diseases and discussed the limitations of data-driven decision making after a brief introduction of methods for data-driven decision making.
Collapse
Affiliation(s)
- Song Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, 330006 China
- Jiangxi Institute of Gastroenterology and Hepatology, Nanchang, 330006 China
| | - Ting Wang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, 330006 China
- Jiangxi Institute of Gastroenterology and Hepatology, Nanchang, 330006 China
| | - Kun-He Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanchang University, No. 17, Yongwai Zheng Street, Nanchang, 330006 China
- Jiangxi Institute of Gastroenterology and Hepatology, Nanchang, 330006 China
| |
Collapse
|
7
|
Urbiola-Salvador V, Jabłońska A, Miroszewska D, Huang Q, Duzowska K, Drężek-Chyła K, Zdrenka M, Śrutek E, Szylberg Ł, Jankowski M, Bała D, Zegarski W, Nowikiewicz T, Makarewicz W, Adamczyk A, Ambicka A, Przewoźnik M, Harazin-Lechowicz A, Ryś J, Filipowicz N, Piotrowski A, Dumanski JP, Li B, Chen Z. Plasma protein changes reflect colorectal cancer development and associated inflammation. Front Oncol 2023; 13:1158261. [PMID: 37228491 PMCID: PMC10203952 DOI: 10.3389/fonc.2023.1158261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 04/05/2023] [Indexed: 05/27/2023] Open
Abstract
Introduction Colorectal cancer (CRC) is the third most common malignancy and the second leading cause of death worldwide. Efficient non-invasive blood-based biomarkers for CRC early detection and prognosis are urgently needed. Methods To identify novel potential plasma biomarkers, we applied a proximity extension assay (PEA), an antibody-based proteomics strategy to quantify the abundance of plasma proteins in CRC development and cancer-associated inflammation from few μL of plasma sample. Results Among the 690 quantified proteins, levels of 202 plasma proteins were significantly changed in CRC patients compared to age-and-sex-matched healthy subjects. We identified novel protein changes involved in Th17 activity, oncogenic pathways, and cancer-related inflammation with potential implications in the CRC diagnosis. Moreover, the interferon γ (IFNG), interleukin (IL) 32, and IL17C were identified as associated with the early stages of CRC, whereas lysophosphatidic acid phosphatase type 6 (ACP6), Fms-related tyrosine kinase 4 (FLT4), and MANSC domain-containing protein 1 (MANSC1) were correlated with the late-stages of CRC. Discussion Further study to characterize the newly identified plasma protein changes from larger cohorts will facilitate the identification of potential novel diagnostic, prognostic biomarkers for CRC.
Collapse
Affiliation(s)
- Víctor Urbiola-Salvador
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Agnieszka Jabłońska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Dominika Miroszewska
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
| | - Qianru Huang
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | | | | | - Marek Zdrenka
- Department of Tumor Pathology and Pathomorphology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Ewa Śrutek
- Department of Tumor Pathology and Pathomorphology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Łukasz Szylberg
- Department of Tumor Pathology and Pathomorphology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
- Department of Obstetrics, Gynaecology and Oncology, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Torun, Bydgoszcz, Poland
| | - Michał Jankowski
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in ToruńSurgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Department of Surgical Oncology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Dariusz Bała
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in ToruńSurgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Department of Surgical Oncology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Wojciech Zegarski
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in ToruńSurgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Department of Surgical Oncology, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Tomasz Nowikiewicz
- Surgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in ToruńSurgical Oncology, Ludwik Rydygier’s Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Toruń, Poland
- Department of Breast Cancer and Reconstructive Surgery, Oncology Center−Prof. Franciszek Łukaszczyk Memorial Hospital, Bydgoszcz, Poland
| | - Wojciech Makarewicz
- Clinic of General and Oncological Surgery, Specialist Hospital of Kościerzyna, Kościerzyna, Poland
| | - Agnieszka Adamczyk
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Aleksandra Ambicka
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Marcin Przewoźnik
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Agnieszka Harazin-Lechowicz
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | - Janusz Ryś
- Department of Tumor Pathology, Maria Skłodowska-Curie National Research Institute of Oncology, Kraków, Poland
| | | | | | - Jan P. Dumanski
- 3P-Medicine Laboratory, Medical University of Gdańsk, Gdańsk, Poland
- Department of Immunology, Genetics and Pathology and Science for Life Laboratory, Uppsala University, Uppsala, Sweden
- Department of Biology and Pharmaceutical Botany, Medical University of Gdańsk, Gdańsk, Poland
| | - Bin Li
- Center for Immune-Related Diseases at Shanghai Institute of Immunology, Department of Respiratory and Critical Care Medicine of Ruijin Hospital, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhi Chen
- Intercollegiate Faculty of Biotechnology of University of Gdańsk and Medical University of Gdańsk, University of Gdańsk, Gdańsk, Poland
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, Oulu, Finland
| |
Collapse
|
8
|
Ye X, Cui X, Zhang L, Wu Q, Sui X, He A, Zhang X, Xu R, Tian R. Combination of automated sample preparation and micro-flow LC-MS for high-throughput plasma proteomics. Clin Proteomics 2023; 20:3. [PMID: 36611134 PMCID: PMC9824974 DOI: 10.1186/s12014-022-09390-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 12/27/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Non-invasive detection of blood-based markers is a critical clinical need. Plasma has become the main sample type for clinical proteomics research because it is easy to obtain and contains measurable protein biomarkers that can reveal disease-related physiological and pathological changes. Many efforts have been made to improve the depth of its identification, while there is an increasing need to improve the throughput and reproducibility of plasma proteomics analysis in order to adapt to the clinical large-scale sample analysis. METHODS We have developed and optimized a robust plasma analysis workflow that combines an automated sample preparation platform with a micro-flow LC-MS-based detection method. The stability and reproducibility of the workflow were systematically evaluated and the workflow was applied to a proof-of-concept plasma proteome study of 30 colon cancer patients from three age groups. RESULTS This workflow can analyze dozens of samples simultaneously with high reproducibility. Without protein depletion and prefractionation, more than 300 protein groups can be identified in a single analysis with micro-flow LC-MS system on a Orbitrap Exploris 240 mass spectrometer, including quantification of 35 FDA approved disease markers. The quantitative precision of the entire workflow was acceptable with median CV of 9%. The preliminary proteomic analysis of colon cancer plasma from different age groups could be well separated with identification of potential colon cancer-related biomarkers. CONCLUSIONS This workflow is suitable for the analysis of large-scale clinical plasma samples with its simple and time-saving operation, and the results demonstrate the feasibility of discovering significantly changed plasma proteins and distinguishing different patient groups.
Collapse
Affiliation(s)
- Xueting Ye
- grid.440218.b0000 0004 1759 7210The Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, 518020 China ,grid.258164.c0000 0004 1790 3548The First Affiliated Hospital, Jinan University, Guangzhou, 510632 China ,grid.263817.90000 0004 1773 1790Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Xiaozhen Cui
- grid.263817.90000 0004 1773 1790Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Luobin Zhang
- grid.440218.b0000 0004 1759 7210The Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, 518020 China
| | - Qiong Wu
- grid.263817.90000 0004 1773 1790Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Xintong Sui
- grid.263817.90000 0004 1773 1790Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, 518055 China
| | - An He
- grid.263817.90000 0004 1773 1790Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, 518055 China
| | - Xinyou Zhang
- grid.440218.b0000 0004 1759 7210The Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, 518020 China
| | - Ruilian Xu
- grid.440218.b0000 0004 1759 7210The Second Clinical Medical College of Jinan University, the First Affiliated Hospital of Southern University of Science and Technology, Shenzhen People’s Hospital, Shenzhen, 518020 China
| | - Ruijun Tian
- grid.263817.90000 0004 1773 1790Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, School of Science, Southern University of Science and Technology, Shenzhen, 518055 China
| |
Collapse
|
9
|
Roles of Keratins in Intestine. Int J Mol Sci 2022; 23:ijms23148051. [PMID: 35887395 PMCID: PMC9317181 DOI: 10.3390/ijms23148051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/19/2022] [Accepted: 07/19/2022] [Indexed: 12/02/2022] Open
Abstract
Keratins make up a major portion of epithelial intermediate filament proteins. The widely diverse keratins are found in both the small and large intestines. The human intestine mainly expresses keratins 8, 18, 19, and 20. Many of the common roles of keratins are for the integrity and stability of the epithelial cells. The keratins also protect the cells and tissue from stress and are biomarkers for some diseases in the organs. Although an increasing number of studies have been performed regarding keratins, the roles of keratin in the intestine have not yet been fully understood. This review focuses on discussing the roles of keratins in the intestine. Diverse studies utilizing mouse models and samples from patients with intestinal diseases in the search for the association of keratin in intestinal diseases have been summarized.
Collapse
|
10
|
Jain S, Maque J, Galoosian A, Osuna-Garcia A, May FP. Optimal Strategies for Colorectal Cancer Screening. Curr Treat Options Oncol 2022; 23:474-493. [PMID: 35316477 PMCID: PMC8989803 DOI: 10.1007/s11864-022-00962-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/31/2022] [Indexed: 12/12/2022]
Abstract
OPINION STATEMENT Colorectal cancer (CRC) imposes significant morbidity and mortality, yet it is also largely preventable with evidence-based screening strategies. In May 2021, the US Preventive Services Task Force updated guidance, recommending screening begin at age 45 for average-risk individuals to reduce CRC incidence and mortality in the United States (US). The Task Force recommends screening with one of several screening strategies: high-sensitivity guaiac fecal occult blood test (HSgFOBT), fecal immunochemical test (FIT), multi-target stool DNA (mt-sDNA) test, computed tomographic (CT) colonography (virtual colonoscopy), flexible sigmoidoscopy, flexible sigmoidoscopy with FIT, or traditional colonoscopy. In addition to these recommended options, there are several emerging and novel CRC screening modalities that are not yet approved for first-line screening in average-risk individuals. These include blood-based screening or "liquid biopsy," colon capsule endoscopy, urinary metabolomics, and stool-based microbiome testing for the detection of colorectal polyps and/or CRC. In order to maximize CRC screening uptake in the US, patients and providers should engage in informed decision-making about the benefits and limitations of recommended screening options to determine the most appropriate screening test. Factors to consider include the invasiveness of the test, test performance, screening interval, accessibility, and cost. In addition, health systems should have a programmatic approach to CRC screening, which may include evidence-based strategies such as patient education, provider education, mailed screening outreach, and/or patient navigation, to maximize screening participation.
Collapse
Affiliation(s)
- Shailavi Jain
- Department of Medicine, David Geffen School of Medicine, UCLA Ronald Reagan Medical Center, University of California Los Angeles, 757 Westwood Plaza, Los Angeles, CA 90095 USA
| | - Jetrina Maque
- Department of Medicine, David Geffen School of Medicine, UCLA Ronald Reagan Medical Center, University of California Los Angeles, 757 Westwood Plaza, Los Angeles, CA 90095 USA
| | - Artin Galoosian
- Department of Medicine, David Geffen School of Medicine, UCLA Ronald Reagan Medical Center, University of California Los Angeles, 757 Westwood Plaza, Los Angeles, CA 90095 USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 650 S. Charles E Young Drive, Center for Health Sciences, Suite A2-125, Los Angeles, CA 90095-6900 USA
| | - Antonia Osuna-Garcia
- Louise M. Darling Biomedical Library, University of California, Los Angeles, Center for Health Sciences, 12-077, Los Angeles, CA 90095-1798 USA
| | - Folasade P. May
- Department of Medicine, David Geffen School of Medicine, UCLA Ronald Reagan Medical Center, University of California Los Angeles, 757 Westwood Plaza, Los Angeles, CA 90095 USA
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, 650 S. Charles E Young Drive, Center for Health Sciences, Suite A2-125, Los Angeles, CA 90095-6900 USA
- Greater Los Angeles Veterans Affairs Healthcare System, Los Angeles, CA USA
- UCLA Kaiser Permanente Center for Health Equity, Jonsson Comprehensive Cancer Center, 650 S. Charles E Young Drive, Center for Health Sciences, Suite A2-125, Los Angeles, CA 90095-6900 USA
| |
Collapse
|
11
|
Correlation of Repeat Measurements of 27 Candidate Protein Markers for Colorectal Cancer Screening Taken Three Years and Multiple Freeze-Thaw Cycles Apart. Life (Basel) 2022; 12:life12030359. [PMID: 35330110 PMCID: PMC8949042 DOI: 10.3390/life12030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022] Open
Abstract
In recent years the blood proteome has been increasingly researched for biomarkers for early detection of colorectal cancer (CRC). Blood samples from screening studies are often subject to preanalytical variability and repeated freeze−thaw cycles. We aimed to assess the correlation of repeat measurements of 27 candidate protein markers for CRC screening taken three years and multiple freeze−thaw cycles apart. The concentrations of 27 protein markers were measured in plasma samples of 39 newly detected CRC cases from a cohort of 9245 participants of screening colonoscopies. The proteins were measured using proximity extension assays (PEA) carried out on the same set of samples twice, three years apart, with an average of three freeze−thaw cycles in between the two measurements. Pearson’s product moment correlation coefficients were calculated. Correlation coefficients ranged from +0.43 to +0.97, with a median of 0.67 and an interquartile range of +0.58 to +0.84, with all p-values of correlation being <0.01 (<0.0005 for 22 proteins, <0.001 for 4 proteins). Repeat measurements of the 27 protein biomarkers for CRC screening performed three years later, and on average three freeze−thaw cycles apart, showed moderate to high levels of correlation. Apart from the effects of freeze−thaw cycles, slightly different preprocessing performed on the data may have contributed to recorded differences between measurements.
Collapse
|
12
|
Alorda-Clara M, Torrens-Mas M, Morla-Barcelo PM, Martinez-Bernabe T, Sastre-Serra J, Roca P, Pons DG, Oliver J, Reyes J. Use of Omics Technologies for the Detection of Colorectal Cancer Biomarkers. Cancers (Basel) 2022; 14:817. [PMID: 35159084 PMCID: PMC8834235 DOI: 10.3390/cancers14030817] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/31/2022] [Accepted: 02/04/2022] [Indexed: 12/14/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most frequently diagnosed cancers with high mortality rates, especially when detected at later stages. Early detection of CRC can substantially raise the 5-year survival rate of patients, and different efforts are being put into developing enhanced CRC screening programs. Currently, the faecal immunochemical test with a follow-up colonoscopy is being implemented for CRC screening. However, there is still a medical need to describe biomarkers that help with CRC detection and monitor CRC patients. The use of omics techniques holds promise to detect new biomarkers for CRC. In this review, we discuss the use of omics in different types of samples, including breath, urine, stool, blood, bowel lavage fluid, or tumour tissue, and highlight some of the biomarkers that have been recently described with omics data. Finally, we also review the use of extracellular vesicles as an improved and promising instrument for biomarker detection.
Collapse
Affiliation(s)
- Marina Alorda-Clara
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
| | - Margalida Torrens-Mas
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Translational Research in Aging and Longevity (TRIAL) Group, Instituto de Investigación Sanitaria Illes Balears (IdISBa), E-07120 Palma de Mallorca, Illes Balears, Spain
| | - Pere Miquel Morla-Barcelo
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
| | - Toni Martinez-Bernabe
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
| | - Jorge Sastre-Serra
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto Salud Carlos III, E-28029 Madrid, Madrid, Spain
| | - Pilar Roca
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto Salud Carlos III, E-28029 Madrid, Madrid, Spain
| | - Daniel Gabriel Pons
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
| | - Jordi Oliver
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Ciber Fisiopatología Obesidad y Nutrición (CB06/03) Instituto Salud Carlos III, E-28029 Madrid, Madrid, Spain
| | - Jose Reyes
- Grupo Multidisciplinar de Oncología Traslacional, Institut Universitari d’Investigació en Ciències de la Salut (IUNICS), Universitat de les Illes Balears, E-07122 Palma de Mallorca, Illes Balears, Spain; (M.A.-C.); (M.T.-M.); (P.M.M.-B.); (T.M.-B.); (J.S.-S.); (P.R.); (D.G.P.)
- Instituto de Investigación Sanitaria Illes Balears (IdISBa), Hospital Universitario Son Espases, Edificio S, E-07120 Palma de Mallorca, Illes Balears, Spain
- Servicio Aparato Digestivo, Hospital Comarcal de Inca, E-07300 Inca, Illes Balears, Spain
| |
Collapse
|
13
|
Rasmussen L, Nielsen HJ, Christensen IJ. Evaluation of a 92 multiplex protein panel in detection of colorectal cancer and high-risk adenoma in 784 symptomatic individuals. Cancer Biomark 2021; 32:73-84. [PMID: 34092616 DOI: 10.3233/cbm-203211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Blood-based protein biomarkers for detection of colorectal cancer (CRC) have been submitted to intense research to improve the full potential in screening for CRC. OBJECTIVE The aim was to explore the diagnostic performance of 92 proteins related to inflammation and carcinogenesis in detection of CRC or precancerous lesions. METHODS Blood-samples were collected from 4,698 individuals undergoing colonoscopy. An explorative unmatched case-control study was designed with 294 cases (individuals with CRC or high-risk colorectal adenoma) and 490 controls (individuals with low-risk colorectal adenoma, non-malignant findings or clean colorectum at colonoscopy). Protein profiling was performed by multiplex proximity extension assay. Statistical analyses were performed as univariate and multivariate logistic regression analyses. RESULTS Univariably, CSF-1, MMP12 and IL8 demonstrated superior performance in discrimination of individuals with CRC. Recurrently, IL8 was included as contributor in majority of multivariate models discriminating individuals with CRC. The multivariate evaluation in discrimination of individuals with CRC demonstrated AUC=ROC 0.82, sensitivity = 0.39 at specificity = 0.80. Discrimination of individuals with late stage CRC from individuals with clean colorectum demonstrated AUC=ROC 0.90, sensitivity = 0.58 at specificity = 0.80. CONCLUSIONS A subset of biomarker candidates, specifically IL8, investigated in the present study suggest a potential as blood-based biomarkers in screening of CRC.
Collapse
|
14
|
Mazouji O, Ouhajjou A, Incitti R, Mansour H. Updates on Clinical Use of Liquid Biopsy in Colorectal Cancer Screening, Diagnosis, Follow-Up, and Treatment Guidance. Front Cell Dev Biol 2021; 9:660924. [PMID: 34150757 PMCID: PMC8213391 DOI: 10.3389/fcell.2021.660924] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common cancers worldwide, being the third most diagnosed in the world and the second deadliest. Solid biopsy provides an essential guide for the clinical management of patients with colorectal cancer; however, this method presents several limitations, in particular invasiveness, and cannot be used repeatedly. Recently, clinical research directed toward the use of liquid biopsy, as an alternative tool to solid biopsy, showed significant promise in several CRC clinical applications, as (1) detect CRC patients at early stage, (2) make treatment decision, (3) monitor treatment response, (4) predict relapses and metastases, (5) unravel tumor heterogeneity, and (6) detect minimal residual disease. The purpose of this short review is to describe the concept, the characteristics, the genetic components, and the technologies used in liquid biopsy in the context of the management of colorectal cancer, and finally we reviewed gene alterations, recently described in the literature, as promising potential biomarkers that may be specifically used in liquid biopsy tests.
Collapse
Affiliation(s)
- Omayma Mazouji
- GES-LCM2E, FPN, Mohamed First University, Oujda, Morocco
| | | | - Roberto Incitti
- Computational Bioscience Research Center (CBRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Hicham Mansour
- GES-LCM2E, FPN, Mohamed First University, Oujda, Morocco
| |
Collapse
|
15
|
Calu V, Ionescu A, Stanca L, Geicu OI, Iordache F, Pisoschi AM, Serban AI, Bilteanu L. Key biomarkers within the colorectal cancer related inflammatory microenvironment. Sci Rep 2021; 11:7940. [PMID: 33846436 PMCID: PMC8041790 DOI: 10.1038/s41598-021-86941-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 03/22/2021] [Indexed: 11/21/2022] Open
Abstract
Therapeutic approaches focused on the inflammatory microenvironment are currently gaining more support, as biomolecules involved in the inflammatory colorectal cancer (CRC) tumor microenvironment are being explored. We analyzed tumor and paired normal tissue samples from CRC patients (n = 22) whom underwent tumor resection surgery. We assessed 39 inflammation-involved biomolecules (multiplex magnetic bead-based immunoassay), CEA and CA19-9 (ELISA assay) and the tissue expression levels of occludin and also pErk, STAT1 and STAT3 transcriptional factors (western blot). Tumor staging has been established by histopathological evaluation of HE stained tumor tissue sections. We report 32 biomarkers displaying statistically significant differences in tumor vs. control. Additionally, positive statistical biomarker correlations were found between MMP2–IL8 and BAFF–IL8 (Pearson correlation coefficients > 0.751), while APRIL–MMP2, APRIL–BAFF and APRIL–IL8 were negatively correlated (correlation coefficients < − 0.650). While APRIL, BAFF, IL8 and MMP2 did not modulate with tumor stage, they were inversely related to the immune infiltrate level and CD163 tissue expression. We conclude that the significantly decreased APRIL and increased BAFF, IL8 and MMP2 expression were tumor-specific and deserve consideration in the development of new treatments. Also, the positive correlation between Chitinase 3-like 1 and IL8 (0.57) or MMP2 (0.50) suggest a role in tumor growth and metastasis pathways.
Collapse
Affiliation(s)
- Valentin Calu
- Department of General Surgery, University of Medicine and Pharmacy "Carol Davila" Bucharest, 8 Blvd., Eroii Sanitari, 050474, Bucharest, Romania.,Department of Surgery, "Elias" Emergency University Hospital, 17 Marasti Blvd., 01146, Bucharest, Romania
| | - Adriana Ionescu
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Blvd. Splaiul Independentei, 050095, Bucharest, Romania
| | - Loredana Stanca
- Department of Preclinic Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097, Bucharest, Romania
| | - Ovidiu Ionut Geicu
- Department of Preclinic Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097, Bucharest, Romania.,Taxon Solutions SRL, 7 Semilunei Str, 020797, Bucharest, Romania
| | - Florin Iordache
- Department of Preclinic Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097, Bucharest, Romania
| | - Aurelia Magdalena Pisoschi
- Department of Preclinic Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097, Bucharest, Romania
| | - Andreea Iren Serban
- Department of Biochemistry and Molecular Biology, Faculty of Biology, University of Bucharest, 91-95 Blvd. Splaiul Independentei, 050095, Bucharest, Romania. .,Department of Preclinic Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097, Bucharest, Romania.
| | - Liviu Bilteanu
- Department of Preclinic Sciences, Faculty of Veterinary Medicine, University of Agronomic Sciences and Veterinary Medicine of Bucharest, 105 Blvd. Splaiul Independentei, 050097, Bucharest, Romania.,National Institute for Research and Development in Microtechnologies, 126A Erou Iancu Nicolae Street, 077190, Bucharest, Romania
| |
Collapse
|
16
|
Ferrari A, Neefs I, Hoeck S, Peeters M, Van Hal G. Towards Novel Non-Invasive Colorectal Cancer Screening Methods: A Comprehensive Review. Cancers (Basel) 2021; 13:1820. [PMID: 33920293 PMCID: PMC8070308 DOI: 10.3390/cancers13081820] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 02/07/2023] Open
Abstract
Colorectal cancer (CRC) is one of the leading cancer-related causes of death in the world. Since the 70s, many countries have adopted different CRC screening programs, which has resulted in a decrease in mortality. However, current screening test options still present downsides. The commercialized stool-based tests present high false-positive rates and low sensitivity, which negatively affects the detection of early stage carcinogenesis. The gold standard colonoscopy has low uptake due to its invasiveness and the perception of discomfort and embarrassment that the procedure may bring. In this review, we collected and described the latest data about alternative CRC screening techniques that can overcome these disadvantages. Web of Science and PubMed were employed as search engines for studies reporting on CRC screening tests and future perspectives. The searches generated 555 articles, of which 93 titles were selected. Finally, a total of 50 studies, describing 14 different CRC alternative tests, were included. Among the investigated techniques, the main feature that could have an impact on CRC screening perception and uptake was the ease of sample collection. Urine, exhaled breath, and blood-based tests promise to achieve good diagnostic performance (sensitivity of 63-100%, 90-95%, and 47-97%, respectively) while minimizing stress and discomfort for the patient.
Collapse
Affiliation(s)
- Allegra Ferrari
- Social Epidemiology and Health Policy, University of Antwerp, 2610 Antwerpen, Belgium; (S.H.); (G.V.H.)
| | - Isabelle Neefs
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, 2610 Antwerpen, Belgium; (I.N.); (M.P.)
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, 2610 Antwerpen, Belgium
| | - Sarah Hoeck
- Social Epidemiology and Health Policy, University of Antwerp, 2610 Antwerpen, Belgium; (S.H.); (G.V.H.)
- Center for Cancer Detection, 8000 Bruges, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), University of Antwerp and Antwerp University Hospital, 2610 Antwerpen, Belgium; (I.N.); (M.P.)
- Department of Oncology, Antwerp University Hospital (UZA), 2650 Edegem, Belgium
| | - Guido Van Hal
- Social Epidemiology and Health Policy, University of Antwerp, 2610 Antwerpen, Belgium; (S.H.); (G.V.H.)
- Center for Cancer Detection, 8000 Bruges, Belgium
| |
Collapse
|
17
|
Integrated approaches for precision oncology in colorectal cancer: The more you know, the better. Semin Cancer Biol 2021; 84:199-213. [PMID: 33848627 DOI: 10.1016/j.semcancer.2021.04.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 03/30/2021] [Accepted: 04/07/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer (CRC) is one of the most common human malignancies accounting for approximately 10 % of worldwide cancer incidence and mortality. While early-stage CRC is mainly a preventable and curable disease, metastatic colorectal cancer (mCRC) remains an unmet clinical need. Moreover, about 25 % of CRC cases are diagnosed only at the metastatic stage. Despite the extensive molecular and functional knowledge on this disease, systemic therapy for mCRC still relies on traditional 5-fluorouracil (5-FU)-based chemotherapy regimens. On the other hand, targeted therapies and immunotherapy have shown effectiveness only in a limited subset of patients. For these reasons, there is a growing need to define the molecular and biological landscape of individual patients to implement novel, rationally driven, tailored therapies. In this review, we explore current and emerging approaches for CRC management such as genomic, transcriptomic and metabolomic analysis, the use of liquid biopsies and the implementation of patients' preclinical avatars. In particular, we discuss the contribution of each of these tools in elucidating patient specific features, with the aim of improving our ability in advancing the diagnosis and treatment of colorectal tumors.
Collapse
|
18
|
Fan F, Huang Z, Chen Y. Integrated analysis of immune-related long noncoding RNAs as diagnostic biomarkers in psoriasis. PeerJ 2021; 9:e11018. [PMID: 33732554 PMCID: PMC7950217 DOI: 10.7717/peerj.11018] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 02/06/2021] [Indexed: 12/16/2022] Open
Abstract
Background Psoriasis is a chronic immune-mediated inflammatory dermatosis. Long noncoding RNAs (lncRNAs) play an important role in immune-related diseases. This study aimed to identify potential immune-related lncRNA biomarkers for psoriasis. Methods We screened differentially expressed immune-related lncRNAs biomarkers using GSE13355 (skin biopsy samples of 180 cases) from Gene Expression Omnibus (GEO). Moreover, Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, and Gene Set Enrichment Analysis (GSEA) were performed to explore biological mechanisms in psoriasis. In addition, we performed LASSO logistic regression to identify potential diagnostic lncRNAs and further verify the diagnostic value and relationship with drug response using two validation sets: GSE30999 (skin biopsy samples of 170 cases) and GSE106992 (skin biopsy samples of 192 cases). Furthermore, we estimated the degree of infiltrated immune cells and investigated the correlation between infiltrated immune cells and diagnostic lncRNA biomarkers. Results A total of 394 differentially expressed genes (DEGs) were extracted from gene expression profile. GO and KEGG analysis of target genes found that immune-related lncRNAs were primarily associated with epidermis development, skin development, collagen-containing extracellular matrix, and glycosaminoglycan binding and mainly enriched in cytokine-cytokine receptor interaction and influenza A and chemokine signaling pathway. We found that LINC01137, LINC01215, MAPKAPK5-AS1, TPT1-AS1, CARMN, CCDC18-AS1, EPB41L4A-AS, and LINC01214 exhibited well diagnostic efficacy. The ROC and ROC CI were 0.944 (0.907–0.982), 0.953 (0.919–0.987), 0.822 (0.758–0.887), 0.854 (0.797–0.911), 0.957(0.929–0.985), 0.894 (0.846–0.942), and 0.964 (0.937–0.991) for LINC01137, LINC01215, MAPKAPK5-AS1, TPT1-AS1,CARMN, CCDC18-AS1, EPB41L4A-AS1, and LINC01214. LINC01137, LINC01215, and LINC01214 were correlated with drug response. LINC01137, CCDC18-AS1, and CARMN were positively correlated with activated memory CD4 T cell, activated myeloid dendritic cell (DC), neutrophils, macrophage M1, and T follicular helper (Tfh) cells, while negatively correlated with T regulatory cell (Treg). LINC01215, MAPKAPK5-AS1, TPT1-AS1, EPB41L4A-AS, and LINC01214 were negatively correlated with activated memory CD4 T cell, activated myeloid DC, neutrophils, macrophage M1, and Tfh, while positively correlated with Treg. Conclusions These findings indicated that these immune-related lncRNAs may be used as potential diagnostic and predictive biomarkers for psoriasis.
Collapse
Affiliation(s)
- Feixiang Fan
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China.,Department of Dermatology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Zhen Huang
- Department of Dermatology, Shenzhen Longhua District Central Hospital, Shenzhen, Guangdong, China
| | - Yongfeng Chen
- Department of Dermatology, Dermatology Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
19
|
Harlid S, Harbs J, Myte R, Brunius C, Gunter MJ, Palmqvist R, Liu X, Van Guelpen B. A two-tiered targeted proteomics approach to identify pre-diagnostic biomarkers of colorectal cancer risk. Sci Rep 2021; 11:5151. [PMID: 33664295 PMCID: PMC7933352 DOI: 10.1038/s41598-021-83968-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 02/10/2021] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer prognosis is dependent on stage, and measures to improve early detection are urgently needed. Using prospectively collected plasma samples from the population-based Northern Sweden Health and Disease Study, we evaluated protein biomarkers in relation to colorectal cancer risk. Applying a two-tiered approach, we analyzed 160 proteins in matched sequential samples from 58 incident colorectal cancer case-control pairs. Twenty-one proteins selected from both this discovery phase and the literature were then analyzed in a validation set of 450 case-control pairs. Odds ratios were estimated by conditional logistic regression. LASSO regression and ROC analysis were used for multi-marker analyses. In the main validation analysis, no proteins retained statistical significance. However, exploratory subgroup analyses showed associations between FGF-21 and colon cancer risk (multivariable OR per 1 SD: 1.23 95% CI 1.03-1.47) as well as between PPY and rectal cancer risk (multivariable OR per 1 SD: 1.47 95% CI 1.12-1.92). Adding protein markers to basic risk predictive models increased performance modestly. Our results highlight the challenge of developing biomarkers that are effective in the asymptomatic, prediagnostic window of opportunity for early detection of colorectal cancer. Distinguishing between cancer subtypes may improve prediction accuracy. However, single biomarkers or small panels may not be sufficient for effective precision screening.
Collapse
Affiliation(s)
- Sophia Harlid
- Department of Radiation Sciences, Oncology, Umeå University, 901 87, Umeå, Sweden.
| | - Justin Harbs
- Department of Radiation Sciences, Oncology, Umeå University, 901 87, Umeå, Sweden
| | - Robin Myte
- Department of Radiation Sciences, Oncology, Umeå University, 901 87, Umeå, Sweden
| | - Carl Brunius
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Chalmers Mass Spectrometry Infrastructure, Chalmers University of Technology, Gothenburg, Sweden
| | - Marc J Gunter
- Section of Nutrition and Metabolism, International Agency for Research On Cancer, World Health Organization, Lyon, France
| | - Richard Palmqvist
- Department of Medical Biosciences, Pathology, Umeå University, Umeå, Sweden
| | - Xijia Liu
- Department of Mathematics and Mathematical Statistics, Umeå University, Umeå, Sweden
| | - Bethany Van Guelpen
- Department of Radiation Sciences, Oncology, Umeå University, 901 87, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| |
Collapse
|
20
|
Xu S, Liu M, Feng J, Yan G, Bai Y, Liu H. One-step hexaplex immunoassays by on-line paper substrate-based electrospray ionization mass spectrometry for combined cancer biomarker screening. Chem Sci 2021; 12:4916-4924. [PMID: 34163739 PMCID: PMC8179536 DOI: 10.1039/d0sc06784a] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 02/13/2021] [Indexed: 12/30/2022] Open
Abstract
Mass spectrometry (MS) is attractive as a multiplexed immunoassay readout benefiting from its high sensitivity, speed and mass resolution. Here, a simple paper-based hexaplex immunoassay with an on-line MS readout was proposed, using functionalized paper as the immune substrates, along with rhodamine-based mass tags assembled on gold nanoparticles prepared as the mass probes (MPs). Simultaneous immune capture and labeling were conducted in one step on paper substrates in 96-well plates with a high throughput within 30 minutes, and the on-line efficient dissociation of the mass tags highly facilitated the hexaplex readout of the immune signals by a newly established on-line paper substrate-based electrospray ionization-MS setup. Six MPs were synthesized for the simultaneous quantification of six important cancer protein markers (cancer antigen 15-3, cancer antigen 19-9, carcinoma embryonic antigen, cancer antigen 125, human epididymis protein 4, and alpha fetoprotein) using only 10 μL serum, presenting satisfactory sensitivity, accuracy and specificity. This platform was further tested in screening for the six biomarkers in serum samples of patients with breast, liver and gastric cancers, showing its high potential for sensitive and specific early cancer diagnosis.
Collapse
Affiliation(s)
- Shuting Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China +86 10 6275 8198
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University Wuxi 214122 P. R. China
| | - Mingxia Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China +86 10 6275 8198
| | - Jie Feng
- Department of Clinical Laboratory Center, The First Medical Center of the Chinese People's Liberation Army General Hospital Beijing 100853 P. R. China
| | - Guangtao Yan
- Department of Clinical Laboratory Center, The First Medical Center of the Chinese People's Liberation Army General Hospital Beijing 100853 P. R. China
| | - Yu Bai
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China +86 10 6275 8198
| | - Huwei Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University Beijing 100871 P. R. China +86 10 6275 8198
| |
Collapse
|
21
|
Yang X, Suo C, Zhang T, Yin X, Man J, Yuan Z, Yu J, Jin L, Chen X, Lu M, Ye W. Targeted proteomics-derived biomarker profile develops a multi-protein classifier in liquid biopsies for early detection of esophageal squamous cell carcinoma from a population-based case-control study. Biomark Res 2021; 9:12. [PMID: 33597040 PMCID: PMC7890600 DOI: 10.1186/s40364-021-00266-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/04/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Early diagnosis of esophageal squamous cell carcinoma (ESCC) remains a challenge due to the lack of specific blood biomarkers. We aimed to develop a serum multi-protein signature for the early detection of ESCC. METHODS We selected 70 healthy controls, 30 precancerous patients, 60 stage I patients, 70 stage II patients and 70 stage III/IV ESCC patients from a completed ESCC case-control study in a high-risk area of China. Olink Multiplex Oncology II targeted proteomics panel was used to simultaneously detect the levels of 92 cancer-related proteins in serum using proximity extension assay. RESULTS We found that 10 upregulated and 13 downregulated protein biomarkers in serum could distinguish the early-stage ESCC from healthy controls, which were validated by the significant dose-response relationships with ESCC pathological progression. Applying least absolute shrinkage and selection operator (LASSO) regression and backward elimination algorithm, ANXA1 (annexin A1), hK8 (kallikrein-8), hK14 (kallikrein-14), VIM (vimentin), and RSPO3 (R-spondin-3) were kept in the final model to discriminate early ESCC cases from healthy controls with an area under curve (AUC) of 0.936 (95% confidence interval: 0.899 ~ 0.973). The average accuracy rates of the five-protein classifier were 0.861 and 0.825 in training and test data by five-fold cross-validation. CONCLUSIONS Our study suggested that a combination of ANXA1, hK8, hK14, VIM and RSPO3 serum proteins could be considered as a potential tool for screening and early diagnosis of ESCC, especially with the establishment of a three-level hierarchical screening strategy for ESCC control.
Collapse
Affiliation(s)
- Xiaorong Yang
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China.,Clinical Research Center of Shandong University, Qilu Hospital of Shandong University, Jinan, China
| | - Chen Suo
- Department of Epidemiology and Health Statistics, School of Public Health, Fudan University, Shanghai, China
| | - Tongchao Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan, China
| | - Xiaolin Yin
- Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan, China
| | - Jinyu Man
- Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan, China
| | - Ziyu Yuan
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China
| | - Jingru Yu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Li Jin
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China
| | - Xingdong Chen
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China. .,State Key Laboratory of Genetic Engineering, Human Phenome Institute, and School of Life Sciences, Fudan University, Songhu Road 2005, Shanghai, 200438, China.
| | - Ming Lu
- Clinical Epidemiology Unit, Qilu Hospital of Shandong University, 107 Wenhuaxi Road, Jinan, 250012, Shandong, China. .,Clinical Research Center of Shandong University, Qilu Hospital of Shandong University, Jinan, China. .,Fudan University Taizhou Institute of Health Sciences, Taizhou, China.
| | - Weimin Ye
- Fudan University Taizhou Institute of Health Sciences, Taizhou, China.,Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.,Department of Epidemiology and Health Statistics & Key Laboratory of Ministry of Education for Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
| |
Collapse
|
22
|
Gallardo-Gómez M, De Chiara L, Álvarez-Chaver P, Cubiella J. Colorectal cancer screening and diagnosis: omics-based technologies for development of a non-invasive blood-based method. Expert Rev Anticancer Ther 2021; 21:723-738. [PMID: 33507120 DOI: 10.1080/14737140.2021.1882858] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Colorectal cancer (CRC) is one of the most important health problems in the Western world. In order to reduce the burden of the disease, two strategies are proposed: screening and prompt detection in symptomatic patients. Although diagnosis and prevention are mainly based on colonoscopy, fecal hemoglobin detection has been widely implemented as a noninvasive strategy. Various studies aiming to discover blood-based biomarkers have recently emerged.Areas covered: The burgeoning omics field provides diverse high-throughput approaches for CRC blood-based biomarker discovery. In this review, we appraise the most robust and commonly used technologies within the fields of genomics, transcriptomics, epigenomics, proteomics, and metabolomics, together with their targeted validation approaches. We summarize the transference process from the discovery phase until clinical translation. Finally, we review the best candidate biomarkers and their potential clinical applicability.Expert opinion: Some available biomarkers are promising, especially in the field of epigenomics: DNA methylation and microRNA. Transference requires the joint collaboration of basic researchers, intellectual property experts, technology transfer officers and clinicians. Blood-based biomarkers will be selected not only based on their diagnostic accuracy and cost but also on their reliability, applicability to clinical analysis laboratories and their acceptance by the population.
Collapse
Affiliation(s)
- María Gallardo-Gómez
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain.,Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Loretta De Chiara
- Department of Biochemistry, Genetics and Immunology, University of Vigo, Vigo, Spain.,Biomedical Research Center (CINBIO), University of Vigo, Vigo, Spain
| | - Paula Álvarez-Chaver
- Proteomics Unit, Service of Structural Determination, Proteomics and Genomics, Center for Scientific and Technological Research Support (CACTI), University of Vigo, Vigo, Spain
| | - Joaquin Cubiella
- Department of Gastroenterology, Hospital Universitario De Ourense, Ourense, Spain.,Instituto De Investigación Sanitaria Galicia Sur, Ourense, Spain.,Centro De Investigación Biomédica En Red Enfermedades Hepáticas Y Digestivas, Ourense, Spain
| |
Collapse
|
23
|
Comparison of Proteomic Technologies for Blood-Based Detection of Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22031189. [PMID: 33530402 PMCID: PMC7865621 DOI: 10.3390/ijms22031189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/24/2022] Open
Abstract
Blood-based protein biomarkers are increasingly being explored as supplementary or efficient alternatives for population-based screening of colorectal cancer (CRC). The objective of the current study was to compare the diagnostic potential of proteins measured with different proteomic technologies. The concentrations of protein biomarkers were measured using proximity extension assays (PEAs), liquid chromatography/multiple reaction monitoring-mass spectrometry (LC/MRM-MS) and quantibody microarrays (QMAs) in plasma samples of 56 CRC patients and 99 participants free of neoplasms. In another approach, proteins were measured in serum samples of 30 CRC cases and 30 participants free of neoplasm using immunome full-length functional protein arrays (IpAs). From all the measurements, 9, 6, 35 and 14 protein biomarkers overlapped for comparative evaluation of (a) PEA and LC/MRM-MS, (b) PEA and QMA, (c) PEA and IpA, and (d) LC/MRM-MS and IpA measurements, respectively. Correlation analysis was performed, along with calculation of the area under the curve (AUC) for assessing the diagnostic potential of each biomarker. DeLong's test was performed to assess the differences in AUC. Evaluation of the nine biomarkers measured with PEA and LC/MRM-MS displayed correlation coefficients >+0.6, similar AUCs and DeLong's p-values indicating no differences in AUCs for biomarkers like insulin-like growth factor binding protein 2 (IGFBP2), matrix metalloproteinase 9 (MMP9) and serum paraoxonase lactonase 3 (PON3). Comparing six proteins measured with PEA and QMA showed good correlation and similar diagnostic performance for only one protein, growth differentiation factor 15 (GDF15). The comparison of 35 proteins measured with IpA and PEA and 14 proteins analyzed with IpA and LC/MRM-MS revealed poor concordance and comparatively better AUCs when measured with PEA and LC/MRM-MS. The comparison of different proteomic technologies suggests the superior performance of novel technologies like PEA and LC/MRM-MS over the assessed array-based technologies in blood-protein-based early detection of CRC.
Collapse
|
24
|
Bernotiene E, Bagdonas E, Kirdaite G, Bernotas P, Kalvaityte U, Uzieliene I, Thudium CS, Hannula H, Lorite GS, Dvir-Ginzberg M, Guermazi A, Mobasheri A. Emerging Technologies and Platforms for the Immunodetection of Multiple Biochemical Markers in Osteoarthritis Research and Therapy. Front Med (Lausanne) 2020; 7:572977. [PMID: 33195320 PMCID: PMC7609858 DOI: 10.3389/fmed.2020.572977] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022] Open
Abstract
Biomarkers, especially biochemical markers, are important in osteoarthritis (OA) research, clinical trials, and drug development and have potential for more extensive use in therapeutic monitoring. However, they have not yet had any significant impact on disease diagnosis and follow-up in a clinical context. Nevertheless, the development of immunoassays for the detection and measurement of biochemical markers in OA research and therapy is an active area of research and development. The evaluation of biochemical markers representing low-grade inflammation or extracellular matrix turnover may permit OA prognosis and expedite the development of personalized treatment tailored to fit particular disease severities. However, currently detection methods have failed to overcome specific hurdles such as low biochemical marker concentrations, patient-specific variation, and limited utility of single biochemical markers for definitive characterization of disease status. These challenges require new and innovative approaches for development of detection and quantification systems that incorporate clinically relevant biochemical marker panels. Emerging platforms and technologies that are already on the way to implementation in routine diagnostics and monitoring of other diseases could potentially serve as good technological and strategic examples for better assessment of OA. State-of-the-art technologies such as advanced multiplex assays, enhanced immunoassays, and biosensors ensure simultaneous screening of a range of biochemical marker targets, the expansion of detection limits, low costs, and rapid analysis. This paper explores the implementation of such technologies in OA research and therapy. Application of novel immunoassay-based technologies may shed light on poorly understood mechanisms in disease pathogenesis and lead to the development of clinically relevant biochemical marker panels. More sensitive and specific biochemical marker immunodetection will complement imaging biomarkers and ensure evidence-based comparisons of intervention efficacy. We discuss the challenges hindering the development, testing, and implementation of new OA biochemical marker assays utilizing emerging multiplexing technologies and biosensors.
Collapse
Affiliation(s)
- Eiva Bernotiene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Edvardas Bagdonas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Gailute Kirdaite
- Department of Experimental, Preventive and Clinical Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Paulius Bernotas
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ursule Kalvaityte
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | - Ilona Uzieliene
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
| | | | - Heidi Hannula
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
| | - Gabriela S. Lorite
- Microelectronics Research Unit, Faculty of Information Technology and Electrical Engineering, University of Oulu, Oulu, Finland
| | - Mona Dvir-Ginzberg
- Laboratory of Cartilage Biology, Institute of Dental Sciences, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ali Guermazi
- Department of Radiology, Veterans Affairs Boston Healthcare System, Boston University School of Medicine, Boston, MA, United States
| | - Ali Mobasheri
- Department of Regenerative Medicine, State Research Institute Centre for Innovative Medicine, Vilnius, Lithuania
- Research Unit of Medical Imaging, Physics and Technology, Faculty of Medicine, University of Oulu, Oulu, Finland
- Departments of Orthopedics, Rheumatology and Clinical Immunology, University Medical Center Utrecht, Utrecht, Netherlands
- Centre for Sport, Exercise and Osteoarthritis Versus Arthritis, Queen's Medical Centre, Nottingham, United Kingdom
| |
Collapse
|
25
|
Raut JR, Guan Z, Schrotz-King P, Brenner H. Fecal DNA methylation markers for detecting stages of colorectal cancer and its precursors: a systematic review. Clin Epigenetics 2020; 12:122. [PMID: 32778176 PMCID: PMC7418412 DOI: 10.1186/s13148-020-00904-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
Background DNA methylation biomarkers in stool may have applications in early colorectal cancer (CRC) detection; however, their association with stages of CRC carcinogenesis or their performance in detecting various stages is unclear. We aimed to systematically review the evidence for DNA methylation markers in stool for risk stratification or detection of specific CRC stages, as well as precursors of CRC. Methods We conducted a systematic search in line with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. We searched PubMed and ISI Web of Knowledge to identify relevant studies published until 14th January 2020. Two reviewers independently extracted data on study population characteristics, candidate genes, methylation measurement methods, odds ratios (ORs), overall and stage-specific sensitivities, specificities, areas under the receiver operating characteristics curve, and p-values for statistical significance for OR and for association of methylation levels with stage. Results Twenty-seven studies that reported stage-specific associations or performances of fecal DNA methylation markers for detecting colorectal neoplasms were identified. All studies used methylation-specific polymerase chain reaction for assessing methylation levels in the promoter or exon 1 regions of targeted genes. However, most studies were underpowered and limited by their case-control design. Furthermore, the stage-specific associations or sensitivities were validated for two markers (hypermethylation of GATA4 and VIM) only. Conclusion Methylation markers in stool may be useful for detection of CRC precursors or CRC staging, but promising candidate markers need to be validated in longitudinal studies on large screening populations, performing epigenome-wide analyses. Identification of stage-specific DNA methylation biomarkers in stool could boost current strategies towards early detection and enable different approaches to precision medicine for CRC.
Collapse
Affiliation(s)
- Janhavi R Raut
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany.,Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany
| | - Zhong Guan
- Medical Faculty Heidelberg, University of Heidelberg, Heidelberg, Germany.,Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Petra Schrotz-King
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany
| | - Hermann Brenner
- Division of Preventive Oncology, German Cancer Research Center (DKFZ) and National Center for Tumor Diseases (NCT), Heidelberg, Germany. .,Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Heidelberg, Germany. .,German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|