1
|
Xia QD, Sun JX, Yao ZP, Lu JL, Liu CQ, Xu JZ, An Y, Xu MY, Zhang SH, Zhong XY, Zeng N, Ma SY, He HD, Hu HL, Hu J, Lu Y, Li B, Chen YB, Liu Z, Wang SG. The role of TERT C228T and KDM6A alterations and TME in NMIBC treated with BCG. NPJ Precis Oncol 2024; 8:216. [PMID: 39353991 PMCID: PMC11445404 DOI: 10.1038/s41698-024-00725-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 09/24/2024] [Indexed: 10/03/2024] Open
Abstract
We aimed to investigate the genomic and tumor microenvironmental (TME) profiles in non-muscle invasive bladder cancer (NMIBC) and explore potential predictive markers for Bacillus Calmette-Guérin (BCG) treatment response in high-risk NMIBC patients (according to European Association of Urology (EAU) risk stratification). 40 patients with high-risk NMIBC (cTis-T1N0M0) who underwent en bloc resection followed by BCG instillation were retrospectively enrolled. Surgical samples were subjected to Next Generation Sequencing (NGS) and multiplex immunofluorescence (mIF) assay. Genomic profiling revealed high prevalences of alterations in TERT (55%), KDM6A (32.5%), FGFR3(30%), PIK3CA (30%), TP53(27.5%) and ARID1A (20%). TME analysis showed different proportions of macrophages, NK cells, T cells subsets in tumoral and stromal compartment. Multivariate analysis identified TERT C228T and alteration in KDM6A as two independent factors associated with inferior RFS. The study comprehensively depicted the genomic and TME profiles in NMIBC and identified potential predictive biomarkers for BCG treatment.
Collapse
Affiliation(s)
- Qi-Dong Xia
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jian-Xuan Sun
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhi-Peng Yao
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jun-Lin Lu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Chen-Qian Liu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jin-Zhou Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye An
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Meng-Yao Xu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si-Han Zhang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Yu Zhong
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Na Zeng
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Si-Yang Ma
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hao-Dong He
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng-Long Hu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Hu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yi Lu
- Burning Rock Biotech, Guangzhou, China
| | - Bing Li
- Burning Rock Biotech, Guangzhou, China
| | - Yao-Bing Chen
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Zheng Liu
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shao-Gang Wang
- Department and Institute of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
2
|
Samara M, Thodou E, Apostolopoulou C, Vlachostergios PJ, Mitrakas L, Zachos I, Anagnostou M, Koukoulis G, Tzortzis V. Evaluation of a Cytology-Molecular Co-Test in Liquid-Based Cytology-Processed Urine for Defining Indeterminate Categories of the Paris System. Acta Cytol 2024:1-12. [PMID: 39312895 DOI: 10.1159/000541578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
INTRODUCTION Urine cytology using the Paris system (TPS) classification is useful for the detection and monitoring of bladder urothelial carcinoma (UC). However, the categories "atypical urothelial cells" (AUCs) and "suspicious for high-grade urothelial carcinoma" (SHGUC) do not establish a clear diagnosis. This pilot study aimed to investigate whether the presence of mutations in fibroblast growth factor receptor 3 (FGFR3) and telomerase reverse transcriptase (TERT) genes, in urine processed with liquid-based cytology (LBC) could enhance the diagnostic performance of cytology, particularly in defining the indeterminate categories of AUC and SHGUC. METHODS Urine samples from 82 UC patients with primary tumors or under surveillance and 10 healthy individuals were examined. The ThinPrep method was used for cytology followed by DNA isolation from urine sediments. Targeted molecular analysis was achieved in 70 cases (63 patients and 7 controls) for exons 7 and 10 of the FGFR3 gene and the TERT gene promoter (pTERT), using PCR and Sanger sequencing. Molecular results were correlated with TPS cytology categories and validated by histopathological findings following cystoscopy. RESULTS In healthy subjects, cytology was negative for high-grade urothelial carcinoma (NHGUC) and no mutations were found. No mutations were found in patients with NHGUC cytology, except for one case with equivocal cystoscopy that carried a pTERT mutation. In high-grade urothelial carcinoma cytology (HGUC) (15/20, 75%) of the cases with histologically confirmed UC, molecular analysis revealed the presence of pTERT without FGFR3 mutations. In SHGUC and AUC cytology, FGFR3 and/or pTERT mutations were detected in 3/4 (75%) and 4/4 (100%) histologically confirmed UC cases, respectively. Cytology sensitivity was 85.7% increasing to 100% with the combined cytology-molecular test, whereas specificity remained unchanged at 86.3%. CONCLUSIONS This pilot study suggests that the incorporation of FGFR3/pTERT molecular testing in urine LBC could enhance the diagnostic value of cytology by diagnosing bladder urothelial carcinoma in indeterminate cytology categories.
Collapse
Affiliation(s)
- Maria Samara
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Eleni Thodou
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Christina Apostolopoulou
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Panagiotis J Vlachostergios
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Thessaly, University Hospital of Larissa, Larissa, Greece
- Department of Medical Oncology, IASO Thessalias Hospital, Larissa, Greece
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, New York, USA
| | - Lampros Mitrakas
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Ioannis Zachos
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| | - Maria Anagnostou
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - George Koukoulis
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Thessaly, Larissa, Greece
| | - Vassilios Tzortzis
- Department of Urology, Faculty of Medicine, School of Health Sciences, University of Thessaly, University Hospital of Larissa, Larissa, Greece
| |
Collapse
|
3
|
Fu Q, Zheng H, Wang X, Tang F, Yu H, Wang H, Wan Z, Zheng Z, Yang Z, Liu T, Peng J. GINS1 promotes the initiation and progression of bladder cancer by activating the AKT/mTOR/c-Myc signaling pathway. Exp Cell Res 2024; 440:114125. [PMID: 38880324 DOI: 10.1016/j.yexcr.2024.114125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/21/2024] [Accepted: 06/07/2024] [Indexed: 06/18/2024]
Abstract
Bladder cancer(BC) is one of the most prevalent cancers in the urinary tract, with high recurrence and fatality rates. Research indicates that go-ichi-ni-san complex subunit 1 (GINS1) crucially influences cancer progression by regulating DNA replication through cell cycle modulation. Thus, suppressing the active proliferation of cells in tumor tissues may require silencing GINS1. However, the consequences of GINS1 in bladder cancer aren't to be determined. In this paper, we examine the role and mechanism of GINS1 in the development of bladder cancer. GINS1 expression levels and prognostic relevance in bladder cancer were validated using Western blotting, immunohistochemistry, and Kaplan-Meier survival analysis. The influence of GINS1 on bladder cancer was investigated using a variety of approaches, including cell transfection, cell counts, transwell migrations, colony formation, and flow cytometry. Immunohistochemistry studies demonstrate that GINS1 expression is increased in bladder cancer tissues. GINS1 silencing resulted in an arrest of the cell cycle at the phase of G0/G1, which inhibited BC cell growth both in vitro and in vivo. GINS1 knockdown also hindered the AKT/mTOR pathway. Furthermore, increased GINS1 expression affects the cell cycle and stimulates the AKT/mTOR pathway, allowing BC to develop more quickly. Consequently, GINS1 occurs as a latent therapeutic target, particularly for individuals with BC.
Collapse
Affiliation(s)
- Qiqi Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Hang Zheng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Xia Wang
- Department of Public Health, Wuhan University Hospital, Wuhan University, Wuhan, China.
| | - Feng Tang
- Department of Urology, Jingzhou Central Hospital, Jingzhou, China.
| | - Hua Yu
- Department of Plastic Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Hao Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Ziyu Wan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Zhangjie Zheng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Zhonghua Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Tao Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| | - Jianping Peng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
4
|
Abe M, Hiraki H, Tsuyukubo T, Ono S, Maekawa S, Tamura D, Yashima-Abo A, Kato R, Fujisawa H, Iwaya T, Park WY, Idogawa M, Tokino T, Obara W, Nishizuka SS. The Clinical Validity of Urinary Pellet DNA Monitoring for the Diagnosis of Recurrent Bladder Cancer. J Mol Diagn 2024; 26:278-291. [PMID: 38301868 DOI: 10.1016/j.jmoldx.2024.01.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 10/07/2023] [Accepted: 01/02/2024] [Indexed: 02/03/2024] Open
Abstract
The aim of this study was to evaluate the clinical validity of monitoring urine pellet DNA (upDNA) of bladder cancer (BC) by digital PCR (dPCR) as a biomarker for early recurrence prediction, treatment efficacy evaluation, and no-recurrence corroboration. Tumor panel sequencing was first performed to select patient-unique somatic mutations to monitor both upDNA and circulating tumor DNA (ctDNA) by dPCR. For longitudinal monitoring using upDNA as well as plasma ctDNA, an average of 7.2 (range, 2 to 12) time points per case were performed with the dPCR assay for 32 previously treated and untreated patients with BC. Clinical recurrence based on imaging and urine cytology was compared using upDNA variant allele frequency (VAF) dynamics. A continuous increasing trend of upDNA VAF ≥1% was considered to indicate molecular recurrence. Most (30/32; 93.8%) cases showed at least one traceable somatic mutation. In 5 of 7 cases (71.4%) with clinical recurrence, upDNA VAF >1% was detected 7 to 15 months earlier than the imaging diagnosis. The upDNA VAF remained high after initial treatment for locally recurrent cases. The clinical validity of upDNA monitoring was confirmed with the observation that 26 of 30 cases (86.7%) were traceable. Local recurrences were not indicated by ctDNA alone. The results support the clinical validity of upDNA monitoring in the management of recurrent BC.
Collapse
Affiliation(s)
- Masakazu Abe
- Division of Biomedical Research and Development, Iwate Medical University Institute for Biomedical Sciences, Yahaba, Japan; Department of Urology, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Hayato Hiraki
- Division of Biomedical Research and Development, Iwate Medical University Institute for Biomedical Sciences, Yahaba, Japan
| | - Takashi Tsuyukubo
- Department of Urology, Iwate Prefectural Central Hospital, Morioka, Japan
| | - Sadahide Ono
- Department of Diagnostic Pathology, Iwate Prefectural Central Hospital, Morioka, Japan
| | - Shigekatsu Maekawa
- Department of Urology, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Daichi Tamura
- Department of Urology, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Akiko Yashima-Abo
- Division of Biomedical Research and Development, Iwate Medical University Institute for Biomedical Sciences, Yahaba, Japan
| | - Renpei Kato
- Department of Urology, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Hiromitsu Fujisawa
- Department of Urology, Iwate Prefectural Central Hospital, Morioka, Japan
| | - Takeshi Iwaya
- Department of Clinical Oncology, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Woong-Yang Park
- Geninus Inc., Seoul, Republic of Korea; Samsung Genome Institute, Samsung Medical Center, Seoul, Republic of Korea
| | - Masashi Idogawa
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Tokino
- Department of Medical Genome Sciences, Cancer Research Institute, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Wataru Obara
- Department of Urology, Iwate Medical University School of Medicine, Yahaba, Japan
| | - Satoshi S Nishizuka
- Division of Biomedical Research and Development, Iwate Medical University Institute for Biomedical Sciences, Yahaba, Japan.
| |
Collapse
|
5
|
Tomiyama E, Fujita K, Hashimoto M, Uemura H, Nonomura N. Urinary markers for bladder cancer diagnosis: A review of current status and future challenges. Int J Urol 2024; 31:208-219. [PMID: 37968825 DOI: 10.1111/iju.15338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 10/26/2023] [Indexed: 11/17/2023]
Abstract
Bladder cancer is a common urological cancer with a high recurrence rate that requires long-term follow-up, and early detection positively affects prognosis. To date, the initial diagnosis and follow-up for bladder cancer rely on cystoscopy, which is an invasive and expensive procedure. Therefore, urinary markers for the detection of bladder cancer have attracted research attention for decades to reduce unnecessary cystoscopies. Urine, which is in continuous contact with bladder cancer, is considered a suitable fluid for providing tumor information. Urinary cytology is the only widely used urinary marker in clinical practice; however, it has poor sensitivity for low-grade tumors; indicating the need for novel urinary markers. Considerable research has been conducted on this topic over the years, resulting in a complex landscape with a wide range of urinary markers, including protein-, exfoliated cell-, RNA-, DNA-, and extracellular vesicle-based markers. Although some of these markers have been approved by the U.S. Food and Drug Administration and are commercially available, their use in clinical practice is limited. To facilitate clinical application, potential urinary markers must withstand prospective clinical trials and be easy for patients and clinicians to understand and utilize in a clinical context. This review provides a comprehensive overview of currently available and recently reported promising urinary markers for bladder cancer. Additionally, the challenges and the prospects of these urinary markers for clinical implementation in bladder cancer treatment were discussed.
Collapse
Affiliation(s)
- Eisuke Tomiyama
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
- Department of Urology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Mamoru Hashimoto
- Department of Urology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Hirotsugu Uemura
- Department of Urology, Kindai University Faculty of Medicine, Osaka, Japan
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
6
|
Pei L, Yan D, He Q, Kong J, Yang M, Ruan H, Lin Q, Huang L, Huang J, Lin T, Qin H. LncRNA MIR4435-2HG drives cancer progression by modulating cell cycle regulators and mTOR signaling in stroma-enriched subtypes of urothelial carcinoma of the bladder. Cell Oncol (Dordr) 2023; 46:1509-1527. [PMID: 37355516 PMCID: PMC10618329 DOI: 10.1007/s13402-023-00826-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 06/26/2023] Open
Abstract
BACKGROUND The risk for recurrence and metastasis after treatment for urothelial carcinoma of the bladder (UCB) is high. Therefore, identifying efficient prognostic markers and novel therapeutic targets is urgently needed. Several long noncoding RNAs (lncRNAs) have been reported to be correlated with UCB progression. In this study, we found that the subtype-specific lncRNA MIR4435-2 host gene (MIR4435-2HG) plays a novel oncogenic role in UCB. METHODS RNA-Seq data of TCGA/BLCA were analyzed. The expression of MIR4435-2HG was measured by qRT-PCR in 16 pairs of bladder cancer tissues and adjacent normal tissues. The clinical relecance of MIR4435-2HG was validated via in situ hybridization performed on an in-house cohort of 116 UCB patient samples. RNA pull-down followed by mass spectrometry was performed to identify MIR4435-2HG-binding proteins. To identify signaling pathways involved in MIR4435-2HG activity, comprehensive in vitro and in vivo studies and RNA-Seq assays were performed using UCB cells in which MIR4435-2HG expression was knocked down or exogenously overexpressed. In addition, we performed RNA immunoprecipitation and Western blot analyses to validate the identified MIR4435-2HG-binding proteins and to determine the molecular mechanisms by which MIR4435-2HG promotes UCB progression. RESULTS We found that MIR4435-2HG was significantly upregulated in the stromal-enriched subtype of UCB. Increased MIR4435-2HG expression was positively correlated with a high histological grade, advanced T stages, larger tumors, lymph node metastasis and a poor prognosis. In vitro experiments revealed that MIR4435-2HG expression silencing suppressed cell proliferation and induced apoptosis. Inhibition of MIR4434-2HG delayed xenograft tumor growth, while MIR4435-2HG overexpression reversed the MIR4435-2HG silencing-induced inhibition of UCB tumor phenotype acquisition. Mechanistically, we found that MIR4435-2HG positively regulated the expression of a variety of cell cycle regulators, including BRCA2 and CCND1. Knocking down MIR4435-2HG increased the sensitivity of tumor cells to the VEGFR inhibitor cediranib. Furthermore, we found that MIR4435-2HG regulated mTOR signaling and epithelial-mesenchymal transition (EMT) signaling pathways by modulating the phosphorylation of mTOR, 70S6K and 4EBP1. Finally, we confirmed that MIR4435-2HG enhances tumor metastasis through regulation of the EMT pathway. CONCLUSIONS Our data indicate that upregulated MIR4435-2HG expression levels are significantly correlated with a poor prognosis of UCB patients. MIR4435-2HG promotes bladder cancer progression, mediates cell cycle (de)regulation and modulates mTOR signaling. MIR4435-2HG is an oncogenic lncRNA in UCB that may serve as a diagnostic and therapeutic target.
Collapse
Affiliation(s)
- Lu Pei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Dong Yan
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qingqing He
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jianqiu Kong
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Meihua Yang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
- Department of Urology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Honglian Ruan
- School of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Qiongqiong Lin
- Department of Pathology, The Second Affiliated Hospital & Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Lifang Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jian Huang
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Haide Qin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
- Department of Urology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| |
Collapse
|
7
|
Taylor AS, Acosta AM, Al-Ahmadie HA, Mehra R. Precursors of urinary bladder cancer: molecular alterations and biomarkers. Hum Pathol 2023; 133:5-21. [PMID: 35716731 DOI: 10.1016/j.humpath.2022.06.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 01/04/2023]
Abstract
Clinical surveillance and follow-up of patients diagnosed with or at risk for urinary bladder cancers represent long-term, invasive, and costly processes for which supplemental biomarker information could help provide objective, personalized risk assessment. In particular, there are several precursors and possible precursors to urinary bladder cancer for which clinical behavior is heterogenous and interobserver variability in histopathologic diagnosis make it difficult to standardize management. This review seeks to highlight these precursor lesions from a diagnostic perspective (including flat urothelial lesions, papillary urothelial lesions, squamous lesions, and glandular lesions) and qualify known multiomic biomarkers that may help explain their behavior, predict patient risk, and acknowledge the nuance inherent to the question of whether these lesions are "benign" or "preneoplastic."
Collapse
Affiliation(s)
- Alexander S Taylor
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Andres M Acosta
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Hikmat A Al-Ahmadie
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Rohit Mehra
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Rogel Cancer Center, Michigan Medicine, Ann Arbor, MI 48109, USA; Michigan Center for Translational Pathology, Ann Arbor, MI 48109, USA.
| |
Collapse
|
8
|
Cheng L, Zhang S, Wang M, Lopez-Beltran A. Biological and clinical perspectives of TERT promoter mutation detection on bladder cancer diagnosis and management. Hum Pathol 2023; 133:56-75. [PMID: 35700749 DOI: 10.1016/j.humpath.2022.06.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/05/2022] [Indexed: 02/08/2023]
Abstract
The telomerase reverse transcriptase (TERT) promoter mutations are associated with increased TERT mRNA and TERT protein levels, telomerase activity, and shorter but stable telomere length. TERT promoter mutation is the most common mutation that occurs in approximately 60-80% of patients with bladder cancer. The TERT promoter mutations occur in a wide spectrum of urothelial lesions, including benign urothelial proliferation and tumor-like conditions, benign urothelial tumors, premalignant and putative precursor lesions, urothelial carcinoma and its variants, and nonurothelial malignancies. The prevalence and incidence of TERT promoter mutations in a total of 7259 cases from the urinary tract were systematically reviewed. Different platforms of TERT promoter mutation detection were presented. In this review, we also discussed the significance and clinical implications of TERT promoter mutation detection in urothelial tumorigenesis, surveillance and early detection, diagnosis, differential diagnosis, prognosis, prediction of treatment responses, and clinical outcome. Identification of TERT promoter mutations from urine or plasma cell-free DNA (liquid biopsy) will facilitate bladder cancer screening program and optimal clinical management. A better understanding of TERT promoter mutation and its pathway would open new therapeutic avenues for patients with bladder cancer.
Collapse
Affiliation(s)
- Liang Cheng
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA; Department of Pathology and Laboratory Medicine, Warren Alpert Medical School of Brown University and Lifespan Academic Medical Center, Providence, RI, 02903, USA.
| | - Shaobo Zhang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Mingsheng Wang
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Antonio Lopez-Beltran
- Department of Morphological Sciences, University of Cordoba Medical School, Cordoba, E-14004, Spain
| |
Collapse
|
9
|
Zhang J, Xu R, Lu Q, Xu Z, Liu J, Li P, Zhang Y, Zhou C, Luo L, Tang W, Wang Z, Cao M, Cao J, Xu G, Wang L. A Novel Methylation Marker NRN1 plus TERT and FGFR3 Mutation Using Urine Sediment Enables the Detection of Urothelial Bladder Carcinoma. Cancers (Basel) 2023; 15:cancers15030615. [PMID: 36765573 PMCID: PMC9913436 DOI: 10.3390/cancers15030615] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/12/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Aberrant DNA methylation is an early event during tumorigenesis. In the present study, we aimed to construct a methylation diagnostic tool using urine sediment for the detection of urothelial bladder carcinoma, and improved the diagnostic performance of the model by incorporating single-nucleotide polymorphism (SNP) sites. METHODS A three-stage analysis was carried out to construct the model and evaluate the diagnostic performance. In stage I, two small cohorts from Xiangya hospital were recruited to validate and identify the detailed regions of collected methylation biomarkers. In stage II, proof-of-concept study cohorts from the Hunan multicenter were recruited to construct a diagnostic tool. In stage III, a blinded cohort comprising suspicious UBC patients was recruited from Beijing single center to further test the robustness of the model. RESULTS In stage I, single NRN1 exhibited the highest AUC compared with six other biomarkers and the Random Forest model. At the best cutoff value of 5.16, a single NRN1 biomarker gave a diagnosis with a sensitivity of 0.93 and a specificity of 0.97. In stage II, the Random Forest algorithm was applied to construct a diagnostic tool, consisting of NRN1, TERT C228T and FGFR3 p.S249C. The tool exhibited AUC values of 0.953, 0.946 and 0.951 in training, test and all cohorts. At the best cutoff value, the model resulted in a sensitivity of 0.871 and a specificity of 0.947. In stage III, the diagnostic tool achieved a good discrimination in the external validation cohort, with an overall AUC of 0.935, sensitivity of 0.864 and specificity of 0.895. Additionally, the model exhibited a superior sensitivity and comparable specificity compared with conventional cytology and FISH. CONCLUSIONS The diagnostic tool exhibited a highly specific and robust performance. It may be used as a replaceable approach for the detection of UBC.
Collapse
Affiliation(s)
- Junjie Zhang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410028, China
| | - Qiang Lu
- Department of Urology, Hunan Provincial People’s Hospital, First Affiliated Hospital of Hunan Normal University, Changsha 410002, China
| | - Zhenzhou Xu
- Department of Urology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medical, Central South University, Changsha 410013, China
| | - Jianye Liu
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Pei Li
- Hunan Yearth Biotechnology Co., Ltd., Changsha 410205, China
| | - Yaqun Zhang
- Department of Urology, Beijing Hospital, National Center of Gerontology, National Health Commission, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing 100006, China
| | - Chuanchi Zhou
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Lufeng Luo
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
| | - Wei Tang
- Hunan Yearth Biotechnology Co., Ltd., Changsha 410205, China
| | - Zhenting Wang
- Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Changsha 410017, China
| | - Manman Cao
- Hunan Yearth Biotechnology Co., Ltd., Changsha 410205, China
| | - Jian Cao
- Department of Urology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medical, Central South University, Changsha 410013, China
| | - Genming Xu
- Hunan Yearth Biotechnology Co., Ltd., Changsha 410205, China
- Correspondence: (G.X.); (L.W.)
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha 410013, China
- Correspondence: (G.X.); (L.W.)
| |
Collapse
|
10
|
Liu T, Li S, Xia C, Xu D. TERT promoter mutations and methylation for telomerase activation in urothelial carcinomas: New mechanistic insights and clinical significance. Front Immunol 2023; 13:1071390. [PMID: 36713366 PMCID: PMC9877314 DOI: 10.3389/fimmu.2022.1071390] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 12/28/2022] [Indexed: 01/15/2023] Open
Abstract
Telomerase, an RNA-dependent DNA polymerase synthesizing telomeric TTAGGG sequences, is primarily silent in normal human urothelial cells (NHUCs), but widely activated in urothelial cell-derived carcinomas or urothelial carcinomas (UCs) including UC of the bladder (UCB) and upper track UC (UTUC). Telomerase activation for telomere maintenance is required for the UC development and progression, and the key underlying mechanism is the transcriptional de-repression of the telomerase reverse transcriptase (TERT), a gene encoding the rate-limiting, telomerase catalytic component. Recent mechanistic explorations have revealed important roles for TERT promoter mutations and aberrant methylation in activation of TERT transcription and telomerase in UCs. Moreover, these TERT-featured genomic and epigenetic alterations have been evaluated for their usefulness in non-invasive UC diagnostics, recurrence monitoring, outcome prediction and response to treatments such as immunotherapy. Importantly, the detection of the mutated TERT promoter and TERT mRNA as urinary biomarkers holds great promise for urine-based UC liquid biopsy. In the present article, we review recent mechanistic insights into altered TERT promoter-mediated telomerase activation in UCs and discuss potential clinical implications. Specifically, we compare differences in senescence and transformation between NHUCs and other types of epithelial cells, address the interaction between TERT promoter mutations and other factors to affect UC progression and outcomes, evaluate the impact of TERT promoter mutations and TERT-mediated activation of human endogenous retrovirus genes on UC immunotherapy including Bacillus Calmette-Guérin therapy and immune checkpoint inhibitors. Finally, we suggest the standardization of a TERT assay and evaluation system for UC clinical practice.
Collapse
Affiliation(s)
- Tiantian Liu
- Department of Pathology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Shihong Li
- Department of Pathology, Maternal and Child Health Hospital of Liaocheng, Liaocheng, China
| | - Chuanyou Xia
- Department of Urology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China,*Correspondence: Chuanyou Xia, ; Dawei Xu,
| | - Dawei Xu
- Department of Medicine, Bioclinicum and Center for Molecular Medicine (CMM), Karolinska Institutet and Karolinska University Hospital Solna, Stockholm, Sweden,*Correspondence: Chuanyou Xia, ; Dawei Xu,
| |
Collapse
|
11
|
Bacon JVW, Müller DC, Ritch E, Annala M, Dugas SG, Herberts C, Vandekerkhove G, Seifert H, Zellweger T, Black PC, Bubendorf L, Wyatt AW, Rentsch CA. Somatic Features of Response and Relapse in Non-muscle-invasive Bladder Cancer Treated with Bacillus Calmette-Guérin Immunotherapy. Eur Urol Oncol 2022; 5:677-686. [PMID: 34895867 DOI: 10.1016/j.euo.2021.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 10/13/2021] [Accepted: 11/13/2021] [Indexed: 01/26/2023]
Abstract
BACKGROUND High-risk non-muscle-invasive bladder cancer (NMIBC) is treated with bacillus Calmette-Guérin (BCG), but relapse is common. Improvement of patient outcomes requires better understanding of links between BCG resistance and genomic driver alterations. OBJECTIVE To validate the prognostic impact of common genomic alterations in NMIBC pretreatment and define somatic changes present in post-BCG relapses. DESIGN, SETTING, AND PARTICIPANTS We retrieved tumour tissues and outcomes for 90 patients with BCG-naive NMIBC initiating BCG monotherapy. Post-BCG tissue was available from 34 patients. All tissues underwent targeted sequencing of tumour and matched normal. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Associations between clinical outcomes and genomics were determined using Cox proportional hazard models. RESULTS AND LIMITATIONS Of the patients, 58% were relapse free at data cut-off, 24% had NMIBC recurrence, and 18% experienced muscle-invasive progression. The risk of relapse was associated with ARID1A mutation (hazard ratio [HR] = 2.00; p = 0.04) and CCNE1 amplification (HR = 2.61; p = 0.02). Pre- and post-BCG tumours shared truncal driver alterations, with mutations in TERT and chromatin remodelling genes particularly conserved. However, shifts in somatic profiles were common and clinically relevant alterations in FGFR3, PIK3CA, TSC1, and TP53 were temporally variable, despite apparent clonal prevalence at one time point. Limitations include the difficulty of resolving the relative impact of BCG therapy versus surgery on genomics at relapse and biopsy bias. CONCLUSIONS Somatic hypermutation and alterations in CCNE1 and ARID1A should be incorporated into future models predicting NMIBC BCG outcomes. Changes in tumour genomics over time highlight the importance of recent biopsy when considering targeted therapies, and suggest that relapse after BCG is due to persisting and evolving precursor populations. PATIENT SUMMARY Changes in key cancer genes can predict bladder cancer relapse after treatment with bacillus Calmette-Guérin. Relapses after treatment can be driven by large-scale genetic changes within the cancer. These genetic changes help us understand how superficial bladder cancer can progress to be treatment resistant.
Collapse
Affiliation(s)
- Jack V W Bacon
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - David C Müller
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Elie Ritch
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Matti Annala
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada; Prostate Cancer Research Center, Faculty of Medicine and Life Sciences and BioMediTech Institute, University of Tampere, Tampere, Finland
| | - Sarah G Dugas
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland; Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Cameron Herberts
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Gillian Vandekerkhove
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Helge Seifert
- Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Peter C Black
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada
| | - Lukas Bubendorf
- Institute of Medical Genetics and Pathology, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Alexander W Wyatt
- Department of Urologic Sciences, Vancouver Prostate Centre, University of British Columbia, Vancouver, British Columbia, Canada; Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, British Columbia, Canada.
| | - Cyrill A Rentsch
- Department of Urology, University Hospital Basel, University of Basel, Basel, Switzerland.
| |
Collapse
|
12
|
Targeted-sequence of normal urothelium and tumor of patients with non-muscle invasive bladder cancer. Sci Rep 2022; 12:16642. [PMID: 36198773 PMCID: PMC9535027 DOI: 10.1038/s41598-022-21158-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 09/23/2022] [Indexed: 11/14/2022] Open
Abstract
During tumorigenesis, certain tissues are colonized by mutant clones with oncogenic driver mutations as precancer lesions. These mutations can facilitate clonal expansion and may contribute to malignant transformation. The molecular features of low-grade non-muscle invasive bladder cancer (NMIBC) and high-grade bladder cancer are so distinct that they are thought to follow different evolutionary tumorigenesis pathways. Although NMIBC accounts for most bladder tumors, the somatic mutation patterns in “precancer” urothelium of patients with NMIBC remain unclear. Here, we analyzed specimens of normal urothelium and bladder tumors from patients with low-grade and high-grade NMIBC and investigated the genomic evolution of the cancer. Somatic mutations were analyzed using 50 oncogene-targeted sequences and droplet digital polymerase chain reaction for TERT promoter mutations. Somatic mutations in TERT promoter, FGFR3, and CDKN2A were characteristically identified in the normal urothelium of patients with NMIBC. These mutations, consistently identified in both tumor and normal specimens, likely affect clonal expansion during the malignant transformation of NMIBC. Though larger samples and comprehensive study are warranted to confirm our results, the difference in mutational landscape of the precancerous urothelium of patients with bladder cancer could offer deeper understandings of genomic evolution in bladder tumorigenesis.
Collapse
|
13
|
Xiang Y, Chen Q, Li Q, Liang C, Cao W. The expression level of chicken telomerase reverse transcriptase in tumors induced by ALV-J is positively correlated with methylation and mutation of its promoter region. Vet Res 2022; 53:49. [PMID: 35739589 PMCID: PMC9229480 DOI: 10.1186/s13567-022-01069-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/30/2022] [Indexed: 11/10/2022] Open
Abstract
Avian leukosis virus subgroup J (ALV-J) can cause neoplastic diseases in poultry and is still widely prevalent in China. Chicken telomerase reverse transcriptase (chTERT) is the core component of telomerase, which is closely related to the occurrence and development of tumors. Our previous studies showed that chTERT is overexpressed in ALV-J tumors, but the mechanism is still not completely clear. Therefore, this study aims to analyze the possible molecular mechanism of chTERT overexpression in ALV-J tumors from the perspective of DNA methylation and promoter mutation. Methylation sequencing of the chTERT amplicon showed that ALV-J replication promoted the methylation level of the chTERT promoter. And the methylation level of the chTERT promoter in ALV-J tumors was significantly higher than that in tumor-adjacent and normal tissues. Compared with the tumor-adjacent and normal tissues, the chTERT promoter in each ALV-J tumors tested had a mutation of -183 bp C > T, and 36.0% (9/25) of the tumors also had mutations of -184 bp T > C, -73 bp::GGCCC and -56 bp A > T in the chTERT promoter, which formed the binding sites for the transcription factors NFAT5, TFAP2A and ZEB1, respectively. The results of RT-qPCR and Western blotting showed that the occurrence of these mutations significantly increased the expression level of chTERT. In conclusion, this study demonstrated that the high expression of chTERT in ALV-J tumors is positively correlated with the level of hypermethylation and mutation in its promoter, which provides a new perspective for further research on the molecular mechanism of chTERT in ALV-J tumorigenesis.
Collapse
Affiliation(s)
- Yong Xiang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qinxi Chen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Qingbo Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Canxin Liang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China
| | - Weisheng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, China. .,Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, South China Agricultural University, Guangzhou, 510642, China. .,National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou, 510642, China. .,Key Laboratory of Zoonosis of the Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China. .,Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture and Rural Affairs, Guangzhou, 510642, China.
| |
Collapse
|
14
|
Prognostic implication of TERT promoter mutation and circulating tumor cells in muscle-invasive bladder cancer. World J Urol 2022; 40:2033-2039. [PMID: 35713686 PMCID: PMC9203260 DOI: 10.1007/s00345-022-04061-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/17/2022] [Indexed: 10/24/2022] Open
Abstract
PURPOSE Current clinical prognostic factors are not accurate enough to identify and monitor those muscle-invasive bladder cancer (MIBC) patients at high risk of progression after radical cystectomy (RC). Here, we determined genetic alterations in the tumor and circulating tumor cell (CTC) enumeration to find biomarkers useful for the management of MIBC after RC. METHODS Thirty-nine MIBC patients undergoing RC were included. Tumoral tissue DNA was analyzed by next generation sequencing. CTCs were isolated from blood collected before RC and one, four and 12 months later. RESULTS Sixteen (41%) patients progressed in a median time of 8.5 months and 11 (69%) of these patients harbored the TERT c.-124C > T mutation. All progressive patients harboring the TERT c.-124C > T mutation presented a significant increase in CTC number 12 months after RC compared to those without the mutation. Additionally, CTC number at 12 months was identified as an independent prognostic biomarker for tumor progression and cancer specific survival (CSS). Ten (63%) progressive patients showed an increment of CTC number with a median anticipation period of four months compared with imaging techniques. CONCLUSIONS The TERT c.-124C > T mutation could be considered a biomarker of aggressivity. CTC enumeration is a useful tool for identifying MIBC patients at high risk of progression and CSS after RC and for detecting tumor progression earlier than imaging techniques.
Collapse
|
15
|
Wan S, Liu X, Hua W, Xi M, Zhou Y, Wan Y. The role of telomerase reverse transcriptase (TERT) promoter mutations in prognosis in bladder cancer. Bioengineered 2021; 12:1495-1504. [PMID: 33938397 PMCID: PMC8806350 DOI: 10.1080/21655979.2021.1915725] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/07/2021] [Accepted: 04/07/2021] [Indexed: 01/12/2023] Open
Abstract
Telomerase reverse transcriptase (TERT) promoter mutations have been recognized as a common genetic event in bladder cancer (BC). Many studies have found the high TERT promoter mutations' prevalence in BC recurrence patients which may make the TERT promoter mutations become a potential prognosis prediction of BC. We performed a systematic search in Embase, PubMed, and Web of Science in January 2021. The aspects of evaluation, methods, validation, and results were used to evaluate the included studies' quality. We reviewed two of the most common mutations in types of TC, C288T and C250T and their relationship with prognosis of BC. Eight studies contained 1382 cases were enrolled in our study. The percentage of TERT promoter mutations in these cases was 62.5%. A statistically significant association was detected between TERT promoter mutation and recurrence (HR: 2.03, 95% CI: 1.53-2.68, p < 0.001). However, TERT promoter mutation was not significant associated with overall survival (HR: 1.077, 95% CI: 0.674-1.718, p = 0.757). No significant heterogeneities were observed (I2 = 47.5%, P = 0.064; I2 = 58.7%, p = 0.120, respectively). Bladder cancer patients with TERT promoter mutations take a higher risk of recurrence. TERT promoter mutations may become a potential prediction factor for bladder cancer recurrence.
Collapse
Affiliation(s)
- Song Wan
- Department of Urology, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Xuan Liu
- Department of Urology, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Wei Hua
- Department of Urology, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Ming Xi
- Department of Urology, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Yulin Zhou
- Department of Urology, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| | - Yueping Wan
- Department of Urology, Huadu District People’s Hospital of Guangzhou, Guangzhou, China
| |
Collapse
|
16
|
Hayashi Y, Fujita K, Netto GJ, Nonomura N. Clinical Application of TERT Promoter Mutations in Urothelial Carcinoma. Front Oncol 2021; 11:705440. [PMID: 34395278 PMCID: PMC8358429 DOI: 10.3389/fonc.2021.705440] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 07/02/2021] [Indexed: 12/03/2022] Open
Abstract
Urothelial carcinoma (UC) is a common urological malignancy with a high rate of disease recurrence. Telomerase activity, a hallmark of cancer characterized by overcoming the replicative senescence, is upregulated in over 90% of patients with UC. Somatic mutations in the promoter region of telomerase reverse transcriptase (TERT) are frequently detected in UC, and drive telomerase activity. Recent studies have demonstrated a strong association between TERT promoter mutation and tumorigenesis of UC. Also, TERT promoter mutation has great potential for diagnosis, as well as prognosis in UC treatment, and this is also applicable for the liquid biopsy techniques. In this review, we discuss the progress in these areas and highlight the challenges, clinical potential, and future direction for developing UC treatment methods.
Collapse
Affiliation(s)
- Yujiro Hayashi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
- Department of Urology, Osaka General Medical Center, Osaka, Japan
| | - Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| | - George J. Netto
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| |
Collapse
|
17
|
Kurobe M. Editorial Comment from Dr Kurobe to Telomerase reverse transcriptase promoter mutation in tumorigenesis of bladder cancer: Evolutionary trajectory by algorithmic inference from cross-sectional data. Int J Urol 2021; 28:777. [PMID: 33942390 DOI: 10.1111/iju.14594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Masahiro Kurobe
- Department of Urology, School of Medicine, International University of Health and Welfare, Nasushiobara, Tochigi, Japan
| |
Collapse
|
18
|
Hayashi Y, Fujita K, Banno E, Eich ML, Netto GJ, Nonomura N. Telomerase reverse transcriptase promoter mutation in tumorigenesis of bladder cancer: Evolutionary trajectory by algorithmic inference from cross-sectional data. Int J Urol 2021; 28:774-776. [PMID: 33858033 DOI: 10.1111/iju.14574] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yujiro Hayashi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| | - Kazutoshi Fujita
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan.,Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Eri Banno
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Osaka, Japan
| | - Marie-Lisa Eich
- Department of Pathology, University Hospital Cologne, Cologne, Germany
| | - George J Netto
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Norio Nonomura
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Osaka, Japan
| |
Collapse
|
19
|
Hayashi Y, Fujita K. Toward urinary cell-free DNA-based treatment of urothelial carcinoma: a narrative review. Transl Androl Urol 2021; 10:1865-1877. [PMID: 33968675 PMCID: PMC8100839 DOI: 10.21037/tau-20-1259] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Liquid biopsy technique targeting urinary cell-free DNA (cfDNA) is getting a lot of attention to overcome limitations of the present treatment strategy for urothelial carcinoma, including urothelial bladder carcinoma (UBC) and upper tract urothelial carcinoma (UTUC). Analysis of tumor-derived DNA in urine focusing either on genomic or epigenomic alterations, holds great potential as a noninvasive method for the detection of urothelial carcinoma with high accuracy. It is also predictive of prognosis and response to drugs, and reveals the underlying characteristics of different stages of urothelial carcinoma. Although cfDNA methylation analyses based on a combination of several methylation profiles have demonstrated high sensitivity for UBC diagnosis, there have been few reports involving epigenomic studies of urinary cfDNA. In mutational analyses, frequent gene mutations (TERT promoter, TP53, FGFR3, PIK3CA, RAS, etc.) have been detected in urine supernatant by using remarkable technological innovations such as next-generation sequencing and droplet digital PCR. These methods allow highly sensitive detection of rare mutation alleles while minimizing artifacts. In this review, we summarize the current insights into the clinical applications of urinary cfDNA from patients with urothelial carcinoma. Although it is necessary to conduct prospective multi-institutional clinical trials, noninvasive urine biopsy is expected to play an important role in the realization of precision medicine in patients with urothelial carcinoma in the near future.
Collapse
Affiliation(s)
- Yujiro Hayashi
- Department of Urology, Osaka University Graduate School of Medicine, Suita, Japan
| | - Kazutoshi Fujita
- Department of Urology, Kindai University Faculty of Medicine, Osakasayama, Japan
| |
Collapse
|
20
|
TERT Promoter Mutation Analysis of Whole-Organ Mapping Bladder Cancers. Genes (Basel) 2021; 12:genes12020230. [PMID: 33562516 PMCID: PMC7915609 DOI: 10.3390/genes12020230] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/27/2021] [Accepted: 02/02/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Multifocal occurrence is a main characteristic of urothelial bladder cancer (UBC). Whether urothelial transformation is caused by monoclonal events within the urothelium, or by polyclonal unrelated events resulting in several tumor clones is still under debate. TERT promoter mutations are the most common somatic alteration identified in UBC. In this study, we analyzed different histological tissues from whole-organ mapping bladder cancer specimens to reveal TERT mutational status, as well as to discern how tumors develop. Methods: Up to 23 tissues from nine whole-organ mapping bladder tumor specimens, were tested for TERT promoter mutations including tumor associated normal urothelium, non-invasive urothelial lesions (hyperplasia, dysplasia, metaplasia), carcinoma in situ (CIS) and different areas of muscle invasive bladder cancers (MIBC). The mutational DNA hotspot region within the TERT promoter was analyzed by SNaPshot analysis including three hot spot regions (−57, −124 or −146). Telomere length was measured by the Relative Human Telomere Length Quantification qPCR Assay Kit. Results: TERT promoter mutations were identified in tumor associated normal urothelium as well as non-invasive urothelial lesions, CIS and MIBC. Analysis of separate regions of the MIBC showed 100% concordance of TERT promoter mutations within a respective whole-organ bladder specimen. Polyclonal events were observed in five out of nine whole-organ mapping bladder cancers housing tumor associated normal urothelium, non-invasive urothelial lesions and CIS where different TERT promoter mutations were found compared to MIBC. The remaining four whole-organ mapping bladders were monoclonal for TERT mutations. No significant differences of telomere length were observed. Conclusions: Examining multiple whole-organ mapping bladders we conclude that TERT promoter mutations may be an early step in bladder cancer carcinogenesis as supported by TERT mutations detected in tumor associated normal urothelium as well as non-invasive urothelial lesions. Since mutated TERT promoter regions within non-invasive urothelial lesions are not sufficient alone for the establishment of cancerous growth, this points to the contribution of other gene mutations as a requirement for tumor development.
Collapse
|
21
|
Assessment of prognostic implication of a panel of oncogenes in bladder cancer and identification of a 3-gene signature associated with recurrence and progression risk in non-muscle-invasive bladder cancer. Sci Rep 2020; 10:16641. [PMID: 33024200 PMCID: PMC7538919 DOI: 10.1038/s41598-020-73642-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
This study evaluated the prognostic value of a panel of 29 oncogenes derived from the analysis of The Cancer Genome Atlas (TCGA data) or from the recent literature on bladder tumors on a well-characterized series of muscle-invasive bladder cancer (MIBC) and non-MIBC (NMIBC) samples and tried to identify molecular prognostic markers. Mutations of HRAS, FGFR3, PIK3CA and TERT were found in 2.9%, 27.2%, 14.9% and 76.7% of tumor samples, respectively. Concerning NMIBC, on multivariate analysis, RXRA and FGFR3 levels were associated with recurrence-free survival (RFS) (p = 0.0022 and p = 0.0069) and RXRA level was associated with progression to muscle-invasive disease (p = 0.0068). We identified a 3-gene molecular signature associated with NMIBC prognosis. FGFR3 overexpression was associated with reduced response to Bacillus Calmette–Guerin treatment (p = 0.037). As regards MIBC, on multivariate analysis, ERCC2 overexpression was associated with RFS (p = 0.0011) and E2F3 and EGFR overexpression were associated with overall survival (p = 0.014 and p = 0.035). RT-PCR findings were confirmed by IHC for FGFR3. Genomic alterations in MIBC revealed in TCGA data also concern NMIBC and seem to be associated with prognosis in terms of recurrence and progression. Correcting these alterations by targeted therapies seems a promising pharmacological approach.
Collapse
|
22
|
Hayashi T, Fujita K, Hayashi Y, Hatano K, Kawashima A, McConkey DJ, Nonomura N. Mutational Landscape and Environmental Effects in Bladder Cancer. Int J Mol Sci 2020; 21:ijms21176072. [PMID: 32842545 PMCID: PMC7503658 DOI: 10.3390/ijms21176072] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/23/2022] Open
Abstract
Bladder cancer is the most common cancer of the urinary tract. Although nonmuscle-invasive bladder cancers have a good prognosis, muscle-invasive bladder cancers promote metastases and have a poor prognosis. Comprehensive analyses using RNA sequence of clinical tumor samples in bladder cancer have been reported. These reports implicated the candidate genes and pathways that play important roles in carcinogenesis and/or progression of bladder cancer. Further investigations for the function of each mutation are warranted. There is suggestive evidence for several environmental factors as risk factors of bladder cancer. Environmental factors such as cigarette smoking, exposure to chemicals and gases, bladder inflammation due to microbial and parasitic infections, diet, and nutrition could induce several genetic mutations and alter the tumor microenvironment, such as immune cells and fibroblasts. The detailed mechanism of how these environmental factors induce carcinogenesis and/or progression of bladder cancer remains unclear. To identify the relationship between the mutations and the lifestyle could be useful for prevention and treatment of bladder cancer.
Collapse
Affiliation(s)
- Takuji Hayashi
- Department of Urology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan; (T.H.); (Y.H.); (K.H.); (A.K.); (N.N.)
- Greenberg Bladder Cancer Institute, Johns Hopkins University School of Medicine, Baltimore, MA 21287-2101, USA;
| | - Kazutoshi Fujita
- Department of Urology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan; (T.H.); (Y.H.); (K.H.); (A.K.); (N.N.)
- Department of Urology, Faculty of Medicine, Kindai University, Ohno-higashi, Osakasayama, Osaka 589-8511, Japan
- Correspondence: ; Tel.: +81-6-6879-3531; Fax: +81-6-6879-3539
| | - Yujiro Hayashi
- Department of Urology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan; (T.H.); (Y.H.); (K.H.); (A.K.); (N.N.)
| | - Koji Hatano
- Department of Urology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan; (T.H.); (Y.H.); (K.H.); (A.K.); (N.N.)
| | - Atsunari Kawashima
- Department of Urology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan; (T.H.); (Y.H.); (K.H.); (A.K.); (N.N.)
| | - David J. McConkey
- Greenberg Bladder Cancer Institute, Johns Hopkins University School of Medicine, Baltimore, MA 21287-2101, USA;
| | - Norio Nonomura
- Department of Urology, Graduate School of Medicine, Osaka University, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan; (T.H.); (Y.H.); (K.H.); (A.K.); (N.N.)
| |
Collapse
|