1
|
Wang J, Lu X, Zhang W, Liu GH. Endogenous retroviruses in development and health. Trends Microbiol 2024; 32:342-354. [PMID: 37802660 DOI: 10.1016/j.tim.2023.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/12/2023] [Accepted: 09/13/2023] [Indexed: 10/08/2023]
Abstract
Endogenous retroviruses (ERVs) are evolutionary remnants of retroviral infections in which the viral genome became embedded as a dormant regulatory element within the host germline. When ERVs become activated, they comprehensively rewire genomic regulatory networks of the host and facilitate critical developmental events, such as preimplantation development and placentation, in a manner specific to species, developmental stage, and tissues. However, accumulating evidence suggests that aberrant ERV transcription compromises genome stability and has been implicated in cellular senescence and various pathogenic processes, underscoring the significance of host genomic surveillance mechanisms. Here, we revisit the prominent functions of ERVs in early development and highlight their emerging roles in mammalian post-implantation development and organogenesis. We also discuss their implications for aging and pathological processes such as microbial infection, immune response. Furthermore, we discuss recent advances in stem-cell-based models, single-cell omics, and genome editing technologies, which serve as beacons illuminating the versatile nature of ERVs in mammalian development and health.
Collapse
Affiliation(s)
- Jichang Wang
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China; Key Laboratory for Stem Cells and Tissue Engineering (Sun Yat-sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Xinyi Lu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics and China National Center for Bioinformation, Chinese Academy of Sciences, Beijing 100101, China.
| | - Guang-Hui Liu
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; Beijing Institute for Stem Cell and Regenerative Medicine, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing 100053, China.
| |
Collapse
|
2
|
Singh M, Kondrashkina AM, Widmann TJ, Cortes JL, Bansal V, Wang J, Römer C, Garcia-Canadas M, Garcia-Perez JL, Hurst LD, Izsvák Z. A new human embryonic cell type associated with activity of young transposable elements allows definition of the inner cell mass. PLoS Biol 2023; 21:e3002162. [PMID: 37339119 DOI: 10.1371/journal.pbio.3002162] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 05/12/2023] [Indexed: 06/22/2023] Open
Abstract
There remains much that we do not understand about the earliest stages of human development. On a gross level, there is evidence for apoptosis, but the nature of the affected cell types is unknown. Perhaps most importantly, the inner cell mass (ICM), from which the foetus is derived and hence of interest in reproductive health and regenerative medicine, has proven hard to define. Here, we provide a multi-method analysis of the early human embryo to resolve these issues. Single-cell analysis (on multiple independent datasets), supported by embryo visualisation, uncovers a common previously uncharacterised class of cells lacking commitment markers that segregates after embryonic gene activation (EGA) and shortly after undergo apoptosis. The discovery of this cell type allows us to clearly define their viable ontogenetic sisters, these being the cells of the ICM. While ICM is characterised by the activity of an Old non-transposing endogenous retrovirus (HERVH) that acts to suppress Young transposable elements, the new cell type, by contrast, expresses transpositionally competent Young elements and DNA-damage response genes. As the Young elements are RetroElements and the cells are excluded from the developmental process, we dub these REject cells. With these and ICM being characterised by differential mobile element activities, the human embryo may be a "selection arena" in which one group of cells selectively die, while other less damaged cells persist.
Collapse
Affiliation(s)
- Manvendra Singh
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
- Max Planck Institute of Multidisciplinary Sciences, City Campus, Göttingen, Germany
| | | | - Thomas J Widmann
- GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Jose L Cortes
- GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Vikas Bansal
- German Center for Neurodegenerative Diseases, Tübingen, Germany
| | - Jichang Wang
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - Christine Römer
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| | - Marta Garcia-Canadas
- GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
| | - Jose L Garcia-Perez
- GENYO, Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government, PTS Granada, Granada, Spain
- Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Crewe Road, Edinburgh, United Kingdom
| | - Laurence D Hurst
- The Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, United Kingdom
| | - Zsuzsanna Izsvák
- Max-Delbrück-Center for Molecular Medicine in the Helmholtz Society, Berlin, Germany
| |
Collapse
|
3
|
Friedlová N, Zavadil Kokáš F, Hupp TR, Vojtěšek B, Nekulová M. IFITM protein regulation and functions: Far beyond the fight against viruses. Front Immunol 2022; 13:1042368. [PMID: 36466909 PMCID: PMC9716219 DOI: 10.3389/fimmu.2022.1042368] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/27/2022] [Indexed: 07/30/2023] Open
Abstract
Interferons (IFNs) are important cytokines that regulate immune responses through the activation of hundreds of genes, including interferon-induced transmembrane proteins (IFITMs). This evolutionarily conserved protein family includes five functionally active homologs in humans. Despite the high sequence homology, IFITMs vary in expression, subcellular localization and function. The initially described adhesive and antiproliferative or pro-oncogenic functions of IFITM proteins were diluted by the discovery of their antiviral properties. The large set of viruses that is inhibited by these proteins is constantly expanding, as are the possible mechanisms of action. In addition to their beneficial antiviral effects, IFITM proteins are often upregulated in a broad spectrum of cancers. IFITM proteins have been linked to most hallmarks of cancer, including tumor cell proliferation, therapeutic resistance, angiogenesis, invasion, and metastasis. Recent studies have described the involvement of IFITM proteins in antitumor immunity. This review summarizes various levels of IFITM protein regulation and the physiological and pathological functions of these proteins, with an emphasis on tumorigenesis and antitumor immunity.
Collapse
Affiliation(s)
- Nela Friedlová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Filip Zavadil Kokáš
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Ted R. Hupp
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
- Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Bořivoj Vojtěšek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| | - Marta Nekulová
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czechia
| |
Collapse
|
4
|
CD24 Expression Dampens the Basal Antiviral State in Human Neuroblastoma Cells and Enhances Permissivity to Zika Virus Infection. Viruses 2022; 14:v14081735. [PMID: 36016357 PMCID: PMC9416398 DOI: 10.3390/v14081735] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/17/2022] Open
Abstract
Zika virus (ZIKV) exhibits distinct selectivity for infection of various cells and tissues, but how host cellular factors modulate varying permissivity remains largely unknown. Previous studies showed that the neuroblastoma cell line SK-N-AS (expressing low levels of cellular protein CD24) was highly restricted for ZIKV infection, and that this restriction was relieved by ectopic expression of CD24. We tested the hypothesis that CD24 expression allowed ZIKV replication by suppression of the antiviral response. SK-N-AS cells expressing an empty vector (termed CD24-low cells) showed elevated basal levels of phosphorylated STAT1, IRF-1, IKKE, and NFκB. In response to exogenously added type I interferon (IFN-I), CD24-low cells had higher-level induction of antiviral genes and activity against two IFN-I-sensitive viruses (VSV and PIV5-P/V) compared to SK-N-AS cells with ectopic CD24 expression (termed CD24-high cells). Media-transfer experiments showed that the inherent antiviral state of CD24-low cells was not dependent on a secreted factor such as IFN-I. Transcriptomics analysis revealed that CD24 expression decreased expression of genes involved in intracellular antiviral pathways, including IFN-I, NFκB, and Ras. Our findings that CD24 expression in neuroblastoma cells represses intracellular antiviral pathways support the proposal that CD24 may represent a novel biomarker in cancer cells for susceptibility to oncolytic viruses.
Collapse
|
5
|
Novak G, Kyriakis D, Grzyb K, Bernini M, Rodius S, Dittmar G, Finkbeiner S, Skupin A. Single-cell transcriptomics of human iPSC differentiation dynamics reveal a core molecular network of Parkinson's disease. Commun Biol 2022; 5:49. [PMID: 35027645 PMCID: PMC8758783 DOI: 10.1038/s42003-021-02973-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 12/14/2021] [Indexed: 01/02/2023] Open
Abstract
Parkinson's disease (PD) is the second-most prevalent neurodegenerative disorder, characterized by the loss of dopaminergic neurons (mDA) in the midbrain. The underlying mechanisms are only partly understood and there is no treatment to reverse PD progression. Here, we investigated the disease mechanism using mDA neurons differentiated from human induced pluripotent stem cells (hiPSCs) carrying the ILE368ASN mutation within the PINK1 gene, which is strongly associated with PD. Single-cell RNA sequencing (RNAseq) and gene expression analysis of a PINK1-ILE368ASN and a control cell line identified genes differentially expressed during mDA neuron differentiation. Network analysis revealed that these genes form a core network, members of which interact with all known 19 protein-coding Parkinson's disease-associated genes. This core network encompasses key PD-associated pathways, including ubiquitination, mitochondrial function, protein processing, RNA metabolism, and vesicular transport. Proteomics analysis showed a consistent alteration in proteins of dopamine metabolism, indicating a defect of dopaminergic metabolism in PINK1-ILE368ASN neurons. Our findings suggest the existence of a network onto which pathways associated with PD pathology converge, and offers an inclusive interpretation of the phenotypic heterogeneity of PD.
Collapse
Affiliation(s)
- Gabriela Novak
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- Luxembourg Institute of Health (LIH), Esch-sur-Alzette, Luxembourg.
- Center for Systems and Therapeutics, the Gladstone Institutes and Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA.
| | - Dimitrios Kyriakis
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Kamil Grzyb
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Michela Bernini
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Sophie Rodius
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
| | - Gunnar Dittmar
- Department of Infection and Immunity, Luxembourg Institute of Health, Strassen, Luxembourg
- Department of Life Sciences and Medicine, University of Luxembourg, Belvaux, Luxembourg
| | - Steven Finkbeiner
- Center for Systems and Therapeutics, the Gladstone Institutes and Departments of Neurology and Physiology, University of California, San Francisco, San Francisco, CA, 94158, USA
| | - Alexander Skupin
- The Integrative Cell Signalling Group, Luxembourg Centre for Systems Biomedicine (LCSB), University of Luxembourg, Esch-sur-Alzette, Luxembourg.
- University of California San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
6
|
Gao J, Zhu X, Wu M, Jiang L, Wang F, He S. IFI27 may predict and evaluate the severity of respiratory syncytial virus infection in preterm infants. Hereditas 2021; 158:3. [PMID: 33388093 PMCID: PMC7778825 DOI: 10.1186/s41065-020-00167-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 12/06/2020] [Indexed: 02/06/2023] Open
Abstract
Background Preterm infants are a special population that vulnerable to respiratory syncytial virus (RSV) infection and the lower respiratory tract infections (LRTIs) caused by RSV could be severe and even life-threating. The purpose of the present study was to identify candidate genes of preterm infants who are susceptible to RSV infection and provide a new insight into the pathogenesis of RSV infection. Methods Three datasets (GSE77087, GSE69606 and GSE41374) containing 183 blood samples of RSV infected patients and 33 blood samples of healthy controls from Gene Expression Omnibus (GEO) database were downloaded and the differentially expressed genes (DEGs) were screened out. The function and pathway enrichments were analyzed through Database for Annotation, Visualization and Integrated Discovery (DAVID) website. The protein-protein interaction (PPI) network for DEGs was constructed through Search Tool for the Retrieval of Interacting Genes (STRING). The module analysis was performed by Cytoscape software and hub genes were identified. Clinical verification was employed to verify the expression level of top five hub genes among 72 infants including 50 RSV infected patients and 22 non-RSV-infected patients hospitalized in our center. Further, the RSV infected infants with high-expression IFI27 and those with low-expression IFI27 were compared (defined as higher or lower than the median mRNA level). Finally, the gene set enrichment analysis (GSEA) focusing on IFI27 was carried out. Results Totally, 4028 DEGs were screened out and among which, 131 most significant DEGs were selected. Subsequently, 13 hub genes were identified, and function and pathway enrichments of hub genes mainly were: response to virus, defense response to virus, regulation of viral genome replication and regulation of viral life cycle. Furthermore, IFI27 was confirmed to be the most significantly expressed in clinical verification. Gene sets associated with calcium signaling pathway, arachidonic acid metabolism, extracellular matrix receptor interaction and so on were significantly enriched when IFI27 was highly expressed. Moreover, high-expression IFI27 was associated with more severe cases (p = 0.041), more requirements of mechanical ventilation (p = 0.034), more frequent hospitalization (p < 0.001) and longer cumulative hospital stay (p = 0.012). Conclusion IFI27 might serve to predict RSV infection and evaluate the severity of RSV infection in preterm infants. Supplementary Information The online version contains supplementary material available at 10.1186/s41065-020-00167-5.
Collapse
Affiliation(s)
- Junyan Gao
- Department of Pediatrics, Affiliated Hospital of Yangzhou University, NO.368 Hanjiang Middle Road, Yangzhou, 225000, Jiangsu, China
| | - Xueping Zhu
- Department of Neonatology, Children's Hospital of Soochow University, NO.92 Zhongnan Street, Industrial Park, Suzhou, 215025, Jiangsu, China
| | - Mingfu Wu
- Department of Pediatrics, Affiliated Hospital of Yangzhou University, NO.368 Hanjiang Middle Road, Yangzhou, 225000, Jiangsu, China
| | - Lijun Jiang
- Department of Pediatrics, Affiliated Hospital of Yangzhou University, NO.368 Hanjiang Middle Road, Yangzhou, 225000, Jiangsu, China
| | - Fudong Wang
- Department of Pediatrics, Affiliated Hospital of Yangzhou University, NO.368 Hanjiang Middle Road, Yangzhou, 225000, Jiangsu, China
| | - Shan He
- Department of Neonatology, Children's Hospital of Soochow University, NO.92 Zhongnan Street, Industrial Park, Suzhou, 215025, Jiangsu, China. .,Department of Pediatrics, The First People's Hospital of Yunnan Province, NO.152 Jinbi Road, Kunming, 650031, Yunnan, China.
| |
Collapse
|
7
|
Resveratrol trimer enhances gene delivery to hematopoietic stem cells by reducing antiviral restriction at endosomes. Blood 2020; 134:1298-1311. [PMID: 31416800 DOI: 10.1182/blood.2019000040] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 07/19/2019] [Indexed: 12/21/2022] Open
Abstract
Therapeutic gene delivery to hematopoietic stem cells (HSCs) holds great potential as a life-saving treatment of monogenic, oncologic, and infectious diseases. However, clinical gene therapy is severely limited by intrinsic HSC resistance to modification with lentiviral vectors (LVs), thus requiring high doses or repeat LV administration to achieve therapeutic gene correction. Here we show that temporary coapplication of the cyclic resveratrol trimer caraphenol A enhances LV gene delivery efficiency to human and nonhuman primate hematopoietic stem and progenitor cells with integrating and nonintegrating LVs. Although significant ex vivo, this effect was most dramatically observed in human lineages derived from HSCs transplanted into immunodeficient mice. We further show that caraphenol A relieves restriction of LV transduction by altering the levels of interferon-induced transmembrane (IFITM) proteins IFITM2 and IFITM3 and their association with late endosomes, thus augmenting LV core endosomal escape. Caraphenol A-mediated IFITM downregulation did not alter the LV integration pattern or bias lineage differentiation. Taken together, these findings compellingly demonstrate that the pharmacologic modification of intrinsic immune restriction factors is a promising and nontoxic approach for improving LV-mediated gene therapy.
Collapse
|
8
|
Wu L, Tang Q, Yin X, Yan D, Tang M, Xin J, Pan Q, Ma C, Yan S. The Therapeutic Potential of Adipose Tissue-Derived Mesenchymal Stem Cells to Enhance Radiotherapy Effects on Hepatocellular Carcinoma. Front Cell Dev Biol 2019; 7:267. [PMID: 31781559 PMCID: PMC6861425 DOI: 10.3389/fcell.2019.00267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/18/2019] [Indexed: 12/17/2022] Open
Abstract
Several studies have investigated strategies to improve the clinical efficacy of radiotherapy (RT) against hepatocellular carcinoma (HCC), yet the prognosis remains poor. Human adipose tissue-derived mesenchymal stem cells (AT-MSCs), easily accessible and abundant in quantity, have represented as an attractive therapeutic tool for the stem cell-based treatment for cancer diseases. Through direct co-culture and indirect separate culture experiments, we showed that AT-MSCs could enhance inhibitory effect of RT on reducing HCC cell growth, migration and invasion in both in vitro and in vivo experiments. RNA-sequencing analysis revealed a noticeable interferon-induced transmembrane 1 (IFITM1)-induced tumor gene signature. Gain and loss of mechanistic studies indicated that mechanism was attributed to downregulated expression of signal transducer and activator of transcription 3 (STAT3) and matrix metallopeptidases (MMPs) and upregulated expression of P53 and caspases. Collectively, our findings suggest that AT-MSCs might enhance the therapeutic effects of RT on HCC, providing a rationale for AT-MSCs and RT combination therapy as a new remedy for HCC.
Collapse
Affiliation(s)
- Lingyun Wu
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiuying Tang
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Yin
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - DanFang Yan
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengmeng Tang
- Department of Pathology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiaojiao Xin
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiaoling Pan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chiyuan Ma
- Department of Orthopaedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Senxiang Yan
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
9
|
Bilz NC, Willscher E, Binder H, Böhnke J, Stanifer ML, Hübner D, Boulant S, Liebert UG, Claus C. Teratogenic Rubella Virus Alters the Endodermal Differentiation Capacity of Human Induced Pluripotent Stem Cells. Cells 2019; 8:cells8080870. [PMID: 31405163 PMCID: PMC6721684 DOI: 10.3390/cells8080870] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 12/31/2022] Open
Abstract
The study of congenital virus infections in humans requires suitable ex vivo platforms for the species-specific events during embryonal development. A prominent example for these infections is rubella virus (RV) which most commonly leads to defects in ear, heart, and eye development. We applied teratogenic RV to human induced pluripotent stem cells (iPSCs) followed by differentiation into cells of the three embryonic lineages (ecto-, meso-, and endoderm) as a cell culture model for blastocyst- and gastrulation-like stages. In the presence of RV, lineage-specific differentiation markers were expressed, indicating that lineage identity was maintained. However, portrait analysis of the transcriptomic expression signatures of all samples revealed that mock- and RV-infected endodermal cells were less related to each other than their ecto- and mesodermal counterparts. Markers for definitive endoderm were increased during RV infection. Profound alterations of the epigenetic landscape including the expression level of components of the chromatin remodeling complexes and an induction of type III interferons were found, especially after endodermal differentiation of RV-infected iPSCs. Moreover, the eye field transcription factors RAX and SIX3 and components of the gene set vasculogenesis were identified as dysregulated transcripts. Although iPSC morphology was maintained, the formation of embryoid bodies as three-dimensional cell aggregates and as such cellular adhesion capacity was impaired during RV infection. The correlation of the molecular alterations induced by RV during differentiation of iPSCs with the clinical signs of congenital rubella syndrome suggests mechanisms of viral impairment of human development.
Collapse
Affiliation(s)
- Nicole C Bilz
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany
| | - Edith Willscher
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Hans Binder
- Interdisciplinary Center for Bioinformatics, University of Leipzig, 04107 Leipzig, Germany
| | - Janik Böhnke
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany
| | - Megan L Stanifer
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
| | - Denise Hübner
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany
| | - Steeve Boulant
- Schaller Research Group at CellNetworks, Department of Infectious Diseases, Virology, Heidelberg University Hospital, 69120 Heidelberg, Germany
- Research Group "Cellular Polarity and Viral Infection" (F140), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Uwe G Liebert
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany
| | - Claudia Claus
- Institute of Virology, University of Leipzig, 04103 Leipzig, Germany.
| |
Collapse
|