1
|
Li Z, Yang M, Zhou C, Shi P, Hu P, Liang B, Jiang Q, Zhang L, Liu X, Lai C, Zhang T, Song H. Deciphering the molecular toolkit: regulatory elements governing shell biomineralization in marine molluscs. Integr Zool 2024. [PMID: 39030865 DOI: 10.1111/1749-4877.12876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2024]
Abstract
The intricate process of shell biomineralization in marine molluscs is governed by a complex interplay of regulatory elements, encompassing secretomes, transporters, and noncoding RNA. This review delves into recent advancements in understanding these regulatory mechanisms, emphasizing their significance in elucidating the functions and evolutionary dynamics of the molluscan shell biomineralization process. Central to this intricate orchestration are secretomes with diverse functional domains, selectively exported to the extrapallial space, which directly regulate crystal growth and morphology. Transporters are crucial for substrate transportation in the calcification and maintenance of cellular homeostasis. Beyond proteins and transporters, noncoding RNA molecules are integral components influencing shell biomineralization. This review underscores the nonnegligible roles played by these genetic elements at the molecular level. To comprehend the complexity of biomineralization in mollusc, we explore the origin and evolutionary history of regulatory elements, primarily secretomes. While some elements have recently evolved, others are ancient genes that have been co-opted into the biomineralization toolkit. These elements undergo structural and functional evolution through rapidly evolving repetitive low-complexity domains and domain gain/loss/rearrangements, ultimately shaping a distinctive set of secretomes characterized by both conserved features and evolutionary innovations. This comprehensive review enhances our understanding of molluscan biomineralization at the molecular and genetic levels.
Collapse
Affiliation(s)
- Zhuoqing Li
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Meijie Yang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Cong Zhou
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pu Shi
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pengpeng Hu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bin Liang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qingtian Jiang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Lili Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Key Laboratory of Evolution & Marine Biodiversity (Ministry of Education) and Institute of Evolution & Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Xiaoyan Liu
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Agricultural University, Qingdao, China
| | - Changping Lai
- Lianyungang Blue Carbon Marine Technology Co., Lianyungang, China
| | - Tao Zhang
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hao Song
- Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
2
|
Li Y, Liao Z, Fan X, Wang Y, Liu F, Zhang X, He J, Buttino I, Yan X, Tang C. The molecular response of Mytilus coruscus mantle to shell damage under acute acidified sea water revealed by iTRAQ based quantitative proteomic analysis. J Proteomics 2024; 294:105062. [PMID: 38158015 DOI: 10.1016/j.jprot.2023.105062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024]
Abstract
Mytilus coruscus is an economically important marine bivalve that lives in estuarine sea areas with seasonal coastal acidification and frequently suffers shell injury in the natural environment. However, the molecular responses and biochemical properties of Mytilus under these conditions are not fully understood. In the present study, we employed tandem mass spectrometry combined with isobaric tagging to identify differentially expressed proteins in the mantle tissue of M. coruscus under different short-term treatments, including shell-complete mussels raised in normal seawater (pH 8.1), shell-damaged mussels raised in normal seawater (pH 8.1), and acidified seawater (pH 7.4). A total of 2694 proteins were identified in the mantle, and analysis of their relative abundance from the three different treatments revealed alterations in the proteins involved in immune regulation, oxidation-reduction processes, protein folding and processing, energy provision, and cytoskeleton. The results obtained by quantitative proteomic analysis of the mantle allowed us to delineate the molecular strategies adopted by M. coruscus in the shell repair process in acidified environments, including an increase in proteins involved in oxidation-reduction processes, protein processing, and cell growth at the expense of proteins involved in immune capacity and energy metabolism. SIGNIFICANCE: The impact of global ocean acidification on calcifying organisms has become a major ecological and environmental problem in the world. Mytilus coruscus is an economically important marine bivalve living in estuary sea area with seasonal coastal acidification, and frequently suffering shell injury in natural environment. Molecular responses of M coruscus under the shell damage and acute acidification is still largely unknown. For this reason, iTRAQ based quantitative proteomic and histological analysis of the mantle from M. coruscus under shell damage and acute acidification were performed, for revealing the proteomic response and possible adaptation mechanism of Mytilus under combined shell damage and acidified sea water, and understanding how the mussel mantle implement a shell-repair process under acidified sea water. Our study provides important data for understanding the shell repair process and proteomic response of Mytilus under ocean acidification, and providing insights into potential adaptation of mussels to future global change.
Collapse
Affiliation(s)
- Yingao Li
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Zhi Liao
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China.
| | - Xiaojun Fan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Ying Wang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Fei Liu
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Xiaolin Zhang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Jianyu He
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Isabella Buttino
- Italian Institute for Environmental Protection and Research (ISPRA), Via Vitaliano Brancati 48, 00144 Rome, Italy
| | - Xiaojun Yan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China
| | - Changsheng Tang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University, Zhoushan City 316022, Zhejiang, China.
| |
Collapse
|
3
|
Jin C, Cheng K, Jiang R, Zhang Y, Luo W. A Novel Kunitz-Type Serine Protease Inhibitor (HcKuSPI) is Involved in Antibacterial Defense in Innate Immunity and Participates in Shell Formation of Hyriopsis cumingii. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2024; 26:37-49. [PMID: 38117374 DOI: 10.1007/s10126-023-10275-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 12/07/2023] [Indexed: 12/21/2023]
Abstract
Serine protease inhibitors (SPIs) are abundantly reported for its inhibition against specific proteases involved in the immune responses, but SPI data related to calcareous shells are scarce. Previously, our research group has reported the proteome analysis of non-nucleated pearl powder, and a candidate matrix protein containing two Kunitz domains in the acid soluble fraction caught our attention. In the present study, the full-length cDNA sequence of HcKuSPI was obtained from Hyriopsis cumingii. HcKuSPI was specifically expressed in the mantle, with hybridization signals mainly concentrated to dorsal epithelial cells at the mantle edge and weak signals at the mantle pallium, suggesting HcKuSPI was involved in shell formation. HcKuSPI expression in the mantle was upregulated after Aeromonas hydrophila and Staphylococcus aureus challenge to extrapallial fluids (EPFs). A glutathione S transferase (GST)-HcKuSPI recombinant protein showed strong inhibitory activity against the proteases, trypsin and chymotrypsin. Moreover, HcKuSPI expression in an experimental group was significantly higher when compared with a control group during pellicle growth and crystal deposition in shell regeneration processes, while the organic shell framework of newborn prisms and nacre tablets was completely destroyed after HcKuSPI RNA interference (RNAi). Therefore, HcKuSPI secreted by the mantle may effectively neutralize excess proteases and bacterial proteases in the EPF during bacterial infection and could prevent matrix protein extracellular degradation by suppressing protease proteolytic activity, thereby ensuring a smooth shell biomineralization. In addition, GST-HcKuSPI was also crucial for crystal morphology regulation. These results have important implications for our understanding of the potential roles of SPIs during shell biomineralization.
Collapse
Affiliation(s)
- Can Jin
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Kang Cheng
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Rui Jiang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Yihang Zhang
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, People's Republic of China
| | - Wen Luo
- School of Life and Environmental Sciences, Shaoxing University, Shaoxing, 312000, People's Republic of China.
| |
Collapse
|
4
|
Oudot M, Neige P, Shir IB, Schmidt A, Strugnell JM, Plasseraud L, Broussard C, Hoffmann R, Lukeneder A, Marin F. The shell matrix and microstructure of the Ram’s Horn squid: Molecular and structural characterization. J Struct Biol 2020; 211:107507. [DOI: 10.1016/j.jsb.2020.107507] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 12/11/2022]
|
5
|
Liao Z, Jiang YT, Sun Q, Fan MH, Wang JX, Liang HY. Microstructure and in-depth proteomic analysis of Perna viridis shell. PLoS One 2019; 14:e0219699. [PMID: 31323046 PMCID: PMC6641155 DOI: 10.1371/journal.pone.0219699] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022] Open
Abstract
For understanding the structural characteristics and the proteome of Perna shell, the microstructure, polymorph, and protein composition of the adult Perna viridis shell were investigated. The P. viridis shell have two distinct mineral layers, myostracum and nacre, with the same calcium carbonate polymorph of aragonite, determined by scanning electron microscope, Fourier transform infrared spectroscopy, and x-ray crystalline diffraction. Using Illumina sequencing, the mantle transcriptome of P. viridis was investigated and a total of 69,859 unigenes was generated. Using a combined proteomic/transcriptomic approach, a total of 378 shell proteins from P. viridis shell were identified, in which, 132 shell proteins identified with more than two matched unique peptides. Of the 132 shell proteins, 69 are exclusive to the nacre, 12 to the myostracum, and 51 are shared by both. The Myosin-tail domain containing proteins, Filament-like proteins, and Chitin-binding domain containing proteins represent the most abundant molecules. In addition, the shell matrix proteins (SMPs) containing biomineralization-related domains, such as Kunitz, A2M, WAP, EF-hand, PDZ, VWA, Collagen domain, and low complexity regions with abundant certain amino acids, were also identified from P. viridis shell. Collagenase and chitinase degradation can significantly change the morphology of the shell, indicating the important roles of collagen and chitin in the shell formation and the muscle-shell attachment. Our results present for the first time the proteome of P. viridis shell and increase the knowledge of SMPs in this genus.
Collapse
Affiliation(s)
- Zhi Liao
- Laboratory of Marine Biological Source and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, P.R. China
| | - Yu-ting Jiang
- Laboratory of Marine Biological Source and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, P.R. China
| | - Qi Sun
- Laboratory of Marine Biological Source and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, P.R. China
| | - Mei-hua Fan
- Laboratory of Marine Biological Source and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, P.R. China
| | - Jian-xin Wang
- Laboratory of Marine Biological Source and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, P.R. China
| | - Hai-ying Liang
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, P.R. China
- * E-mail:
| |
Collapse
|
6
|
Jin C, Liu XJ, Li JL. A Kunitz proteinase inhibitor (HcKuPI) participated in antimicrobial process during pearl sac formation and induced the overgrowth of calcium carbonate in Hyriopsis cumingii. FISH & SHELLFISH IMMUNOLOGY 2019; 89:437-447. [PMID: 30980916 DOI: 10.1016/j.fsi.2019.04.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 03/06/2019] [Accepted: 04/07/2019] [Indexed: 06/09/2023]
Abstract
Proteinase inhibitors with the ability to inhibit specific proteinases are usually closely connected with the immune system. Interestingly, proteinase inhibitors are also a common ingredient in the organic matrix of mollusk shells. However, the molecular mechanism that underlies the role of proteinase inhibitors in immune system and shell mineralization is poorly known. In this study, a Kunitz serine proteinase inhibitor (HcKuPI) was isolated from the mussel Hyriopsis cumingii. HcKuPI was specifically expressed in dorsal epithelial cells of the mantle pallium and HcKuPI dsRNA injection caused an irregular surface and disordered deposition on the aragonite tablets of the nacreous layer. These results indicated that HcKuPI plays a vital role in shell nacreous layer biomineralization. Moreover, the expression pattern of HcKuPI during LPS challenge and pearl formation indicated its involvement in the antimicrobial process during pearl sac formation and nacre tablets accumulation during pearl formation. In the in vitro calcium carbonate crystallization assay, the addition of GST-HcKuPI increased the precipitation rate of calcium carbonate and induced the crystal overgrowth of calcium carbonate. Taken together, these results indicate that HcKuPI is involved in antimicrobial process during pearl formation, and participates in calcium carbonate deposition acceleration and morphological regulation of the crystals during nacreous layer formation. These findings extend our knowledge of the role of proteinase inhibitors in immune system and shell biomineralization.
Collapse
Affiliation(s)
- Can Jin
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China
| | - Xiao-Jun Liu
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China; National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China.
| | - Jia-Le Li
- Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture, Shanghai, 201306, China; Shanghai Engineering Research Center of Aquaculture, Shanghai, 201306, China.
| |
Collapse
|
7
|
Montes A, Lorenzo-Abalde S, González-Fernández Á, Vázquez E, Olabarria C. Use of a monoclonal antibody-based assay for the early detection of an invasive bivalve in plankton samples. MARINE POLLUTION BULLETIN 2018; 133:320-327. [PMID: 30041321 DOI: 10.1016/j.marpolbul.2018.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Revised: 04/28/2018] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
The invasive mussel Xenostrobus securis was recorded for the first time in the Galician Rias Baixas (NW Spain) in 2007, within an area characterized by intense commercial culture of Mytilus galloprovincialis. The main aims of this study were to evaluate whether an immunological assay can be used to detect larvae of this species in field samples of plankton and to determine whether the distribution of larvae matched that of adults. The ability of two monoclonal antibodies to recognize the bivalve was tested by immunofluorescence. Only the M22.8 antibody recognized X. securis larvae. The staining pattern distinguished X. securis from M. galloprovincialis larvae in both laboratory cultures and field samples of plankton. The distribution of larvae did not match that of adults. This tool may prove very useful for monitoring the presence of this invasive species in the plankton, allowing rapid and specific recognition.
Collapse
Affiliation(s)
- Agar Montes
- Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, and Estación de Ciencias Mariñas de Toralla (ECIMAT), Universidade de Vigo, 36200 Vigo, Spain.
| | - Silvia Lorenzo-Abalde
- Immunology, Biomedical Research Center (CINBIO), Centro Singular de Investigación de Galicia, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Spain; Universidade de Vigo, Campus Universitario s/n, 36310 Vigo, Spain
| | - África González-Fernández
- Immunology, Biomedical Research Center (CINBIO), Centro Singular de Investigación de Galicia, Instituto de Investigación Sanitaria Galicia Sur (IISGS), Spain; Universidade de Vigo, Campus Universitario s/n, 36310 Vigo, Spain
| | - Elsa Vázquez
- Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, and Estación de Ciencias Mariñas de Toralla (ECIMAT), Universidade de Vigo, 36200 Vigo, Spain
| | - Celia Olabarria
- Departamento de Ecoloxía e Bioloxía Animal, Facultade de Ciencias do Mar, and Estación de Ciencias Mariñas de Toralla (ECIMAT), Universidade de Vigo, 36200 Vigo, Spain
| |
Collapse
|
8
|
Erratum. FEBS Open Bio 2017; 7:1826. [PMID: 29130458 PMCID: PMC5666395 DOI: 10.1002/2211-5463.12333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|