1
|
Jahankhani K, Ahangari F, Adcock IM, Mortaz E. Possible cancer-causing capacity of COVID-19: Is SARS-CoV-2 an oncogenic agent? Biochimie 2023; 213:130-138. [PMID: 37230238 PMCID: PMC10202899 DOI: 10.1016/j.biochi.2023.05.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 04/24/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has shown diverse life-threatening effects, most of which are considered short-term. In addition to its short-term effects, which has claimed many millions of lives since 2019, the long-term complications of this virus are still under investigation. Similar to many oncogenic viruses, it has been hypothesized that SARS-CoV-2 employs various strategies to cause cancer in different organs. These include leveraging the renin angiotensin system, altering tumor suppressing pathways by means of its nonstructural proteins, and triggering inflammatory cascades by enhancing cytokine production in the form of a "cytokine storm" paving the way for the emergence of cancer stem cells in target organs. Since infection with SARS-CoV-2 occurs in several organs either directly or indirectly, it is expected that cancer stem cells may develop in multiple organs. Thus, we have reviewed the impact of coronavirus disease 2019 (COVID-19) on the vulnerability and susceptibility of specific organs to cancer development. It is important to note that the cancer-related effects of SARS-CoV-2 proposed in this article are based on the ability of the virus and its proteins to cause cancer but that the long-term consequences of this infection will only be illustrated in the long run.
Collapse
Affiliation(s)
- Kasra Jahankhani
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ahangari
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ian M Adcock
- Airways Disease, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Immune Health Program at Hunter Medical Research Institute and the College of Health and Medicine at the University of Newcastle, Australia
| | - Esmaeil Mortaz
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Halasa M, Adamczuk K, Adamczuk G, Afshan S, Stepulak A, Cybulski M, Wawruszak A. Deacetylation of Transcription Factors in Carcinogenesis. Int J Mol Sci 2021; 22:11810. [PMID: 34769241 PMCID: PMC8583941 DOI: 10.3390/ijms222111810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 02/07/2023] Open
Abstract
Reversible Nε-lysine acetylation/deacetylation is one of the most common post-translational modifications (PTM) of histones and non-histone proteins that is regulated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). This epigenetic process is highly involved in carcinogenesis, affecting histone and non-histone proteins' properties and their biological functions. Some of the transcription factors, including tumor suppressors and oncoproteins, undergo this modification altering different cell signaling pathways. HDACs deacetylate their targets, which leads to either the upregulation or downregulation of proteins involved in the regulation of cell cycle and apoptosis, ultimately influencing tumor growth, invasion, and drug resistance. Therefore, epigenetic modifications are of great clinical importance and may constitute a new therapeutic target in cancer treatment. This review is aimed to present the significance of HDACs in carcinogenesis through their influence on functions of transcription factors, and therefore regulation of different signaling pathways, cancer progression, and metastasis.
Collapse
Affiliation(s)
- Marta Halasa
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, Witolda Chodźki 1 St., 20-093 Lublin, Poland; (M.H.); (K.A.); (A.S.); (M.C.)
| | - Kamila Adamczuk
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, Witolda Chodźki 1 St., 20-093 Lublin, Poland; (M.H.); (K.A.); (A.S.); (M.C.)
| | - Grzegorz Adamczuk
- Independent Medical Biology Unit, Medical University of Lublin, Kazimierza Jaczewskiego 8b St., 20-090 Lublin, Poland;
| | - Syeda Afshan
- Institute of Biomedicine and FICAN West Cancer Centre, University of Turku and Turku University Hospital, 20520 Turku, Finland;
| | - Andrzej Stepulak
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, Witolda Chodźki 1 St., 20-093 Lublin, Poland; (M.H.); (K.A.); (A.S.); (M.C.)
| | - Marek Cybulski
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, Witolda Chodźki 1 St., 20-093 Lublin, Poland; (M.H.); (K.A.); (A.S.); (M.C.)
| | - Anna Wawruszak
- Chair and Department of Biochemistry and Molecular Biology, Medical University of Lublin, Witolda Chodźki 1 St., 20-093 Lublin, Poland; (M.H.); (K.A.); (A.S.); (M.C.)
| |
Collapse
|
3
|
Predictive Study of the Active Ingredients and Potential Targets of Codonopsis pilosula for the Treatment of Osteosarcoma via Network Pharmacology. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2021; 2021:1480925. [PMID: 34194515 PMCID: PMC8203350 DOI: 10.1155/2021/1480925] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 10/29/2020] [Accepted: 05/25/2021] [Indexed: 12/20/2022]
Abstract
Osteosarcoma (OS) is the most common type of primary bone tumor in children and adults. Dangshen (Codonopsis pilosula) is a traditional Chinese medicine commonly used in the treatment of OS worldwide. However, the molecular mechanisms of Dangshen in OS remain unclear. Hence, in this study, we aimed to systematically explore the underlying mechanisms of Dangshen in the treatment of OS. Our study adopted a network pharmacology approach, focusing on the identification of active ingredients, drug target prediction, gene collection, gene ontology (GO) enrichment, Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment, and other network tools. The network analysis identified 15 active compounds in Dangshen that were linked to 48 possible therapeutic targets related to OS. The results of the gene enrichment analysis show that Dangshen produces a therapeutic effect in OS likely by regulating multiple pathways associated with DNA damage, cell proliferation, apoptosis, invasion, and migration. Based on the network pharmacology approach, we successfully predicted the active compounds and their respective targets. In addition, we illustrated the molecular mechanisms that mediate the therapeutic effect of Dangshen in OS. These findings may aid in the development of novel targeted therapies for OS in the future.
Collapse
|
4
|
Shetty MG, Pai P, Deaver RE, Satyamoorthy K, Babitha KS. Histone deacetylase 2 selective inhibitors: A versatile therapeutic strategy as next generation drug target in cancer therapy. Pharmacol Res 2021; 170:105695. [PMID: 34082029 DOI: 10.1016/j.phrs.2021.105695] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 05/04/2021] [Accepted: 05/25/2021] [Indexed: 02/06/2023]
Abstract
Acetylation and deacetylation of histone and several non-histone proteins are the two important processes amongst the different modes of epigenetic modulation that are involved in regulating cancer initiation and development. Abnormal expression of histone deacetylases (HDACs) is often reported in various types of cancers. Few pan HDAC inhibitors have been approved for use as therapeutic interventions for cancer treatment including vorinostat, belinostat and panobinostat. However, not all the HDAC isoforms are abnormally expressed in certain cancers, such as in the case of, ovarian cancer where overexpression of HDAC1-3, lung cancer where overexpression of HDAC 1 and 3 and gastric cancer where overexpression of HDAC2 is seen. Therefore, pan-inhibition of HDAC is not an efficient way to combat cancer via HDAC inhibition. Hence, isoform-selective HDAC inhibition can be one of the best therapeutic strategies in the treatment of cancer. In this context since aberrant expression of HDAC2 largely contributes to cancer progression by silencing pro-apoptotic protein expressions such as NOXA and APAF1 (caspase 9-activating proteins) and inactivation of tumor suppressor p53, HDAC2 specific inhibitors may help to develop not only the direct targets but also indirect targets that are crucial for tumor development. However, to develop a HDAC2 specific and potent inhibitor, extensive knowledge of its structure and specific functions is essential. The present review updates details on the structural features, physiological functions, and roles of HDAC2 in different types of cancer, emphasizing the challenges and status of the development of HDAC2 selective inhibitors against various types of cancer.
Collapse
Affiliation(s)
| | - Padmini Pai
- Department of Biophysics, Manipal School of Life Sciences, MAHE, Manipal, India
| | - Renita Esther Deaver
- Department of Biotechnology, Manipal School of Life Sciences, MAHE, Manipal, India
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, MAHE, Manipal, India
| | | |
Collapse
|
5
|
Xie L, Zhou Q, Chen X, Du X, Liu Z, Fei B, Hou J, Dai Y, She W. Elucidation of the Hdac2/Sp1/ miR-204-5p/ Bcl-2 axis as a modulator of cochlear apoptosis via in vivo/ in vitro models of acute hearing loss. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 23:1093-1109. [PMID: 33614251 PMCID: PMC7875768 DOI: 10.1016/j.omtn.2021.01.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 01/14/2021] [Indexed: 11/21/2022]
Abstract
We previously reported that dysregulation of histone deacetylase 2 (Hdac2) was associated with the prognosis of sudden sensorineural hearing loss. However, the underlying molecular mechanisms are poorly understood. In the present study, we developed an acute hearing loss animal model in guinea pigs by infusing lipopolysaccharides (LPS) into the cochlea and measured the expression of Hdac2 in the sensory epithelium. We observed that the level of Hdac2 was significantly decreased in the LPS-infused cochleae. The levels of apoptosis-inhibition genes Bcl-2 and Bcl-xl were also decreased in the cochlea and correlated positively with the levels of Hdac2. Caspase3 or TUNEL-positive spiral ganglion neurons, hair cells, and supporting cells were observed in the LPS-infused cochleae. These in vivo observations were recapitulated in cell culture experiments. Based on bioinformatics analysis, we found miR-204-5p was engaged in the regulation of Hdac2 on Bcl-2. Molecular mechanism experiments displayed that miR-204-5p could be regulated by Hdac2 through interacting with transcription factor Sp1. Taken together, these results indicated that the Hdac2/Sp1/miR-204-5p/Bcl-2 regulatory axis mediated apoptosis in the cochlea, providing potential insights into the progression of acute hearing loss. To our knowledge, the study describes a miRNA-related mechanism for Hdac2-mediated regulation in the cochlea for the first time.
Collapse
Affiliation(s)
- Lisheng Xie
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
- Department of Otolaryngology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Qiongqiong Zhou
- Department of Otolaryngology, Children’s Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Xiaorui Chen
- Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China
| | - Xiaoping Du
- Hough Ear Institute, Oklahoma City, OK 73112, USA
| | - Zhibiao Liu
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Bing Fei
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Jie Hou
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
| | - Yanhong Dai
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
- Correspondence: Yanhong Dai, Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University: 321 Zhongshan Road, Nanjing 210008, China.
| | - Wandong She
- Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, Nanjing 210008, China
- Nanjing Drum Tower Hospital, Nanjing University of Chinese Medicine, Nanjing 210008, China
- Corresponding author Wandong She, Department of Otolaryngology-Head and Neck Surgery, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical University, 321 Zhongshan Road, Nanjing 210008, China.
| |
Collapse
|
6
|
Wang P, Wang C, Liu C. Antitumor effects of dioscin in A431 cells via adjusting ATM/p53-mediated cell apoptosis, DNA damage and migration. Oncol Lett 2020; 21:59. [PMID: 33281970 PMCID: PMC7709553 DOI: 10.3892/ol.2020.12321] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 10/26/2020] [Indexed: 11/27/2022] Open
Abstract
Skin cancer is the deadliest type of malignant disease and causes primary mortality worldwide. Dioscin, which exists in medicinal plants, has potent anticancer effects. However, its effects on skin cancer remain unknown. In the present study, the activity and mechanism of dioscin on the human skin cancer A431 cell line were investigated, MTT, colony formation, Transwell, wound-healing, TUNEL, Comet, immunofluorescence and western blot assays were used to assess the effects of dioscin on A431 cells. The results of MTT, colony formation, Transwell and wound-healing assays revealed that dioscin suppressed proliferation, colony formation and invasion of the cancer cells. TUNEL and comet assays demonstrated that dioscin exhibited significant effects on cell apoptosis and DNA damage. Investigations into the mechanism revealed that the expression levels of phosphorylated Ataxia telangiectasia-mutated (ATM) were considerably activated by dioscin, which significantly upregulated the expression levels of p53 to activate mitochondrial apoptosis signaling. Furthermore, the expression levels of BAX, cleaved caspase-3/9 and cleaved poly (ADP-ribose) polymerase were upregulated, and the expression levels of BCL-2 were downregulated by dioscin. Additionally, dioscin markedly downregulated the expression levels of matrix metalloproteinase 2 (MMP2), MMP9, RHO and cdc42, which are all associated with tumor invasion. In addition, p53-small interfering RNA transfection experiments indicated that dioscin exhibited excellent activity against skin cancer in vitro by decreasing p53 expression. Overall, the present results suggested that dioscin inhibited skin cancer cell proliferation via adjusting ATM/p53-mediated cell apoptosis, migration and DNA damage, which should be considered as a potential option for future treatments of skin cancer.
Collapse
Affiliation(s)
- Peng Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, P.R. China
| | - Chun Wang
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, P.R. China
| | - Chunying Liu
- College of Pharmacy, Liaoning University of Traditional Chinese Medicine, Shenyang, Liaoning 110847, P.R. China
| |
Collapse
|
7
|
Iannelli F, Zotti AI, Roca MS, Grumetti L, Lombardi R, Moccia T, Vitagliano C, Milone MR, Ciardiello C, Bruzzese F, Leone A, Cavalcanti E, De Cecio R, Iachetta G, Valiante S, Ionna F, Caponigro F, Di Gennaro E, Budillon A. Valproic Acid Synergizes With Cisplatin and Cetuximab in vitro and in vivo in Head and Neck Cancer by Targeting the Mechanisms of Resistance. Front Cell Dev Biol 2020; 8:732. [PMID: 33015030 PMCID: PMC7461984 DOI: 10.3389/fcell.2020.00732] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 07/15/2020] [Indexed: 12/12/2022] Open
Abstract
Recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC) is a devastating malignancy with a poor prognosis. The combination of cisplatin (CDDP) plus cetuximab (CX) is one of the standard first-line treatments in this disease. However, this therapeutic regimen is often associated with high toxicity and resistance, suggesting that new combinatorial strategies are needed to improve its therapeutic index. In our study, we evaluated the antitumor effects of valproic acid (VPA), a well-known antiepileptic agent with histone deacetylase inhibitory activity, in combination with CDDP/CX doublet in head and neck squamous cell carcinoma (HNSCC) models. We demonstrated, in HNSCC cell lines, but not in normal human fibroblasts, that simultaneous exposure to equitoxic doses of VPA plus CDDP/CX resulted in a clear synergistic antiproliferative and pro-apoptotic effects. The synergistic antitumor effect was confirmed in four different 3D-self-assembled spheroid models, suggesting the ability of the combined approach to affect also the cancer stem cells compartment. Mechanistically, VPA enhanced DNA damage in combination treatment by reducing the mRNA expression of ERCC Excision Repair 1, a critical player in DNA repair, and by increasing CDDP intracellular concentration via upregulation at transcriptional level of CDDP influx channel copper transporter 1 and downregulation of the ATPAse ATP7B involved in CDDP-export. Valproic acid also induced a dose-dependent downregulation of epidermal growth factor receptor (EGFR) expression and of MAPK and AKT downstream signaling pathways and prevent CDDP- and/or CX-induced EGFR nuclear translocation, a well-known mechanism of resistance to chemotherapy. Indeed, VPA impaired the transcription of genes induced by non-canonical activity of nuclear EGFR, such as cyclin D1 and thymidylate synthase. Finally, we confirmed the synergistic antitumor effect also in vivo in both heterotopic and orthotopic models, demonstrating that the combined treatment completely blocked HNSCC xenograft tumors growth in nude mice. Overall, the introduction of a safe and generic drug such as VPA into the conventional treatment for R/M HNSCC represents an innovative and feasible antitumor strategy that warrants further clinical evaluation. A phase II clinical trial exploring the combination of VPA and CDDP/CX in R/M HNSCC patients is currently ongoing in our institute.
Collapse
Affiliation(s)
- Federica Iannelli
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Andrea Ilaria Zotti
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Maria Serena Roca
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Laura Grumetti
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Rita Lombardi
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Tania Moccia
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Carlo Vitagliano
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Maria Rita Milone
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Chiara Ciardiello
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Francesca Bruzzese
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Alessandra Leone
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Ernesta Cavalcanti
- Laboratory Medicine Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Rossella De Cecio
- Pathology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | | | | | - Franco Ionna
- Maxillo-facial & ENT Surgery Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Francesco Caponigro
- Head and Neck Medical Oncology Unit, Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Elena Di Gennaro
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| | - Alfredo Budillon
- Experimental Pharmacology Unit-Laboratory of Naples and Mercogliano (AV), Istituto Nazionale Tumori IRCCS "Fondazione G. Pascale", Naples, Italy
| |
Collapse
|
8
|
Sun D, Li T, Xin H, An J, Yang J, Lin J, Meng X, Wang B, Ozaki T, Yu M, Zhu Y. miR-489-3p inhibits proliferation and migration of bladder cancer cells through downregulation of histone deacetylase 2. Oncol Lett 2020; 20:8. [PMID: 32774482 PMCID: PMC7405606 DOI: 10.3892/ol.2020.11869] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 06/18/2020] [Indexed: 12/24/2022] Open
Abstract
Since human bladder cancer (BC) is a common malignancy of the urinary system with poor prognosis, it is crucial to clarify the molecular mechanisms of BC development and progression. To the best of our knowledge, the current study demonstrated for the first time that miR-489-3p suppressed BC cell-derived tumor growth in vivo via the downregulation of histone deacetylase 2 (HDAC2). According to the results, expression levels of miR-489-3p were lower in BC tissues compared with corresponding normal tissues. Expression of miR-489-3p mimics in BC-derived T24 and 5637 cells resulted in a significant reduction in proliferation and migration rates. Furthermore, bioinformatics analyses indicated that HDAC2 may be a potential downstream target of miR-489-3p. In contrast to miR-489-3p, HDAC2 was expressed at higher levels in BC tissues compared with corresponding normal tissues. Additionally, small interfering RNA-mediated knockdown of HDAC2 caused a marked decrease in the proliferation and migration rates of T24 and 5637 cells. Consistent with these observations, expression of miR-489-3p mimics attenuated the growth of xenograft tumors arising from T24 cells and resulted in HDAC2 downregulation. In conclusion, the results of the current study indicated that the miR-489-3p/HDAC2 axis serves a role in the development and/or the progression of BC and may be a potential molecular target for the development of a novel strategy to treat patients with BC.
Collapse
Affiliation(s)
- Dan Sun
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tianren Li
- Department of Gynecology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Haotian Xin
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jun An
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jieping Yang
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Jiaxing Lin
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Xin Meng
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Toshinori Ozaki
- Department of DNA Damage Signaling, Research Center, The 5th Hospital of Xiamen, Xiamen, Fujian 361101, P.R. China
| | - Meng Yu
- Key Laboratory of Transgenetic Animal Research, Department of Laboratory Animal Science, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yuyan Zhu
- Department of Urology, The First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
9
|
Tutuncuoglu B, Cakir M, Batra J, Bouhaddou M, Eckhardt M, Gordon DE, Krogan NJ. The Landscape of Human Cancer Proteins Targeted by SARS-CoV-2. Cancer Discov 2020; 10:916-921. [PMID: 32444466 PMCID: PMC7357668 DOI: 10.1158/2159-8290.cd-20-0559] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The mapping of SARS-CoV-2 human protein–protein interactions by Gordon and colleagues revealed druggable targets that are hijacked by the virus. Here, we highlight several oncogenic pathways identified at the host–virus interface of SARS-CoV-2 to enable cancer biologists to apply their knowledge for rapid drug repurposing to treat COVID-19, and help inform the response to potential long-term complications of the disease.
Collapse
Affiliation(s)
- Beril Tutuncuoglu
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California.,The J. David Gladstone Institutes, San Francisco, California.,Quantitative Biosciences Institute, University of California, San Francisco, California.,QBI COVID-19 Research Group (QCRG), San Francisco, California.,The Cancer Cell Map Initiative (CCMI), University of California, San Francisco, California, and University of California, San Diego, La Jolla, California
| | - Merve Cakir
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California.,The J. David Gladstone Institutes, San Francisco, California.,Quantitative Biosciences Institute, University of California, San Francisco, California.,QBI COVID-19 Research Group (QCRG), San Francisco, California.,The Cancer Cell Map Initiative (CCMI), University of California, San Francisco, California, and University of California, San Diego, La Jolla, California
| | - Jyoti Batra
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California.,The J. David Gladstone Institutes, San Francisco, California.,Quantitative Biosciences Institute, University of California, San Francisco, California.,QBI COVID-19 Research Group (QCRG), San Francisco, California
| | - Mehdi Bouhaddou
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California.,The J. David Gladstone Institutes, San Francisco, California.,Quantitative Biosciences Institute, University of California, San Francisco, California.,QBI COVID-19 Research Group (QCRG), San Francisco, California.,The Cancer Cell Map Initiative (CCMI), University of California, San Francisco, California, and University of California, San Diego, La Jolla, California
| | - Manon Eckhardt
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California.,The J. David Gladstone Institutes, San Francisco, California.,Quantitative Biosciences Institute, University of California, San Francisco, California.,QBI COVID-19 Research Group (QCRG), San Francisco, California
| | - David E Gordon
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California.,The J. David Gladstone Institutes, San Francisco, California.,Quantitative Biosciences Institute, University of California, San Francisco, California.,QBI COVID-19 Research Group (QCRG), San Francisco, California
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, California. .,The J. David Gladstone Institutes, San Francisco, California.,Quantitative Biosciences Institute, University of California, San Francisco, California.,QBI COVID-19 Research Group (QCRG), San Francisco, California.,The Cancer Cell Map Initiative (CCMI), University of California, San Francisco, California, and University of California, San Diego, La Jolla, California
| |
Collapse
|
10
|
Yang D, Liu K, Fan L, Liang W, Xu T, Jiang W, Lu H, Jiang J, Wang C, Li G, Zhang X. LncRNA RP11-361F15.2 promotes osteosarcoma tumorigenesis by inhibiting M2-Like polarization of tumor-associated macrophages of CPEB4. Cancer Lett 2020; 473:33-49. [PMID: 31904478 DOI: 10.1016/j.canlet.2019.12.041] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 11/21/2019] [Accepted: 12/20/2019] [Indexed: 01/09/2023]
Abstract
Long non-coding RNAs (lncRNAs) regulates the initiation and progression of osteosarcoma (OS), specifically lncRNA RP11-361F15.2 has been shown to play prominent roles in tumorigenesis. Previously, M2-Like polarization of tumor-associated macrophages (TAMs) has been identified to play a key role in cancer migration/invasion. Hence, it is essential to understand the role of RP11-361F15.2 in tumorigenesis and its association with M2-Like polarization of TAMs. The results indicate that RP11-361F15.2 is significantly increased in OS tissues, and its expression is positively correlated with cytoplasmic polyadenylation element binding protein 4 (CPEB4) expression and negatively associated with miR-30c-5p expression. Further, overexpression of RP11-361F15.2 increased OS cell migration/invasion and M2-Like polarization of TAMs in vitro, as well as promoted xenograft tumor growth in vivo. Mechanistically, luciferase reporter assays indicated that RP11-361F15.2 upregulated CPEB4 expression by competitively binding to miR-30c-5p. Further, we have identified that RP11-361F15.2 promotes CPEB4-mediated tumorigenesis and M2-Like polarization of TAMs through miR-30c-5p in OS. We also identified that RP11-361F15.2 acts as competitive endogenous RNA (ceRNA) against miR-30c-5p thereby binding and activating CPEB4. This RP11-361F15.2/miR-30c-5p/CPEB4 loop could be used as a potential therapeutic strategy for the treatment of OS.
Collapse
Affiliation(s)
- Dong Yang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai, PR China.
| | - Kaiyuan Liu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai, PR China.
| | - Lin Fan
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai, PR China.
| | - Wenqing Liang
- Department of Orthopaedics, Shaoxing People's Hospital, Shaoxing Hospital, Zhejiang University School of Medicine, Shaoxing, PR China.
| | - Tianyang Xu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai, PR China.
| | - Wenwei Jiang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai, PR China.
| | - Hengli Lu
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai, PR China.
| | - Junjie Jiang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai, PR China.
| | - Chi Wang
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai, PR China.
| | - Guodong Li
- Department of Orthopedics, Shanghai Tenth People's Hospital, Shanghai, PR China.
| | - Xiaoping Zhang
- The Institute of Intervention Vessel, Shanghai Tenth People's Hospital, Shanghai, PR China.
| |
Collapse
|