1
|
Stathopoulou KM, Georgakopoulos S, Tasoulis S, Plagianakos VP. Investigating the overlap of machine learning algorithms in the final results of RNA-seq analysis on gene expression estimation. Health Inf Sci Syst 2024; 12:14. [PMID: 38435719 PMCID: PMC10904690 DOI: 10.1007/s13755-023-00265-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 12/05/2023] [Indexed: 03/05/2024] Open
Abstract
Advances in computer science in combination with the next-generation sequencing have introduced a new era in biology, enabling advanced state-of-the-art analysis of complex biological data. Bioinformatics is evolving as a union field between computer Science and biology, enabling the representation, storage, management, analysis and exploration of many types of data with a plethora of machine learning algorithms and computing tools. In this study, we used machine learning algorithms to detect differentially expressed genes between different types of cancer and showing the existence overlap to final results from RNA-sequencing analysis. The datasets were obtained from the National Center for Biotechnology Information resource. Specifically, dataset GSE68086 which corresponds to PMID:200,068,086. This dataset consists of 171 blood platelet samples collected from patients with six different tumors and healthy individuals. All steps for RNA-sequencing analysis (preprocessing, read alignment, transcriptome reconstruction, expression quantification and differential expression analysis) were followed. Machine Learning- based Random Forest and Gradient Boosting algorithms were applied to predict significant genes. The Rstudio statistical tool was used for the analysis.
Collapse
Affiliation(s)
- Kalliopi-Maria Stathopoulou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Papasiopoulou 2-4, 35100 Lamia, Greece
| | | | - Sotiris Tasoulis
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Papasiopoulou 2-4, 35100 Lamia, Greece
| | - Vassilis P. Plagianakos
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Papasiopoulou 2-4, 35100 Lamia, Greece
| |
Collapse
|
2
|
Lu N, Guo Y, Ren L, Zhao H, Yan L, Han H, Zhang S. CORO1C Regulates the Malignant Biological Behavior of Ovarian Cancer Cells and Modulates the mRNA Expression Profile through the PI3K/AKT Signaling Pathway. Cell Biochem Biophys 2024:10.1007/s12013-024-01591-4. [PMID: 39433598 DOI: 10.1007/s12013-024-01591-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/03/2024] [Indexed: 10/23/2024]
Abstract
Ovarian cancer (OC) is a frequently occurring gynecological tumor, and its global incidence has recently increased. Coronin-like actin-binding protein 1C (CORO1C) is known to activate the phosphoinositide 3-kinase (PI3K)-protein kinase B (AKT) pathway and promote tumor progression. However, its role in OC remains unclear. This study investigated the role of CORO1C in OC malignancy. In this study, quantitative real-time polymerase chain reaction (qRT-PCR) was used to examine AKT and CORO1C mRNA expression in clinical OC tissues and cells. Immunohistochemical analysis and western blotting were used to examine protein expression in OC tissues and cells, respectively. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), scratch wound-healing, and Transwell assays were performed to examine cell proliferation and migration. RNA-Seq was used to validate the relationship between AKT and CORO1C expression. The results showed that CORO1C was highly expressed in clinical OC tissues and SKOV3 cells, correlating with the International Federation of Gynecology and Obstetrics (FIGO) stage. Furthermore, CORO1C knockout inhibited the proliferation, migration, and invasion of SKOV3 cells; altered the gene expression patterns in these cells; and was closely associated with the PI3K/AKT pathway. Western blotting confirmed that CORO1C knockout reduced the levels of phosphorylated PI3K and AKT. Additionally, CORO1C knockout increased phosphatase and tensin homologs deleted on chromosome 10 (PTEN) protein expression, whereas CORO1C overexpression decreased it. In conclusion, this study demonstrated that high CORO1C levels in OC are associated with greater metastasis and worse prognosis. CORO1C negatively regulates PTEN expression, activates the PI3K/AKT pathway, and promotes OC cell malignancy In patients with OC, CORO1C may function as an effective therapeutic and predictive biomarker.
Collapse
Affiliation(s)
- Na Lu
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Yongfeng Guo
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Lixin Ren
- General surgery department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Hongwei Zhao
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Lijun Yan
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Haiqiong Han
- Gynecology and oncology department, Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, 030013, China
| | - Sanyuan Zhang
- Department of gynecology and obstetrics, The First Clinical Medical College of Shanxi Medical University, Taiyuan, 030000, China.
| |
Collapse
|
3
|
Wang L, Hong Z. Circular RNA circ-SLC7A5 Functions as a Competing Endogenous RNA to Impact Cell Biological Behaviors in Esophageal Squamous Cell Carcinoma (ESCC). Cell Biochem Biophys 2024; 82:139-151. [PMID: 37814151 DOI: 10.1007/s12013-023-01183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 09/17/2023] [Indexed: 10/11/2023]
Abstract
BACKGROUND Circular RNAs (circRNAs) have profound effects on establishment and pathogenesis of esophageal squamous cell carcinoma (ESCC). Here, we defined whether circRNA solute carrier family 7 member 5 (circ-SLC7A5, also called hsa_circ_0040796) is causally involved in the pathogenesis of ESCC. METHODS Circ-SLC7A5, microRNA (miR)-874-3p and coronin-1C (CORO1C) expression levels were gauged by qRT-PCR or immunoblotting. Cell functional phenotypes were tested by colony formation, EdU, flow cytometry, transwell and wound-healing assays. RNA immunoprecipitation (RIP) and dual-luciferase reporter assays were applied to ascertained circ-SLC7A5/miR-874-3p and miR-874-3p/CORO1C relationships. RESULTS Circ-SLC7A5 was highly expressed in human ESCC. Circ-SLC7A5 depletion impaired cell growth, migration, invasiveness, and promoted apoptosis. Circ-SLC7A5 knockdown diminished ESCC cell tumorigenicity. Mechanistically, circ-SLC7A5 contained a binding site for miR-874-3p. Also, miR-874-3p was responsible for circ-SLC7A5's function in ESCC cells. CORO1C was a direct miR-874-3p target. Circ-SLC7A5 functioned as a competing endogenous RNA (ceRNA) to control CORO1C by competing for shared miR-874-3p. Furthermore, CORO1C knockdown phenocopied miR-874-3p overexpression in impacting the biological behaviors of ESCC cells. CONCLUSION These findings identify circ-SLC7A5 as a crucial modulator of ESCC cells and establish a novel circ-SLC7A5/miR-874-3p/CORO1C ceRNA network in ESCC.
Collapse
Affiliation(s)
- Lei Wang
- Department of Cardiothoracic Surgery, Tongde Hospital of Zhejiang Province, Hangzhou City, Zhejiang Province, China
| | - Zhipeng Hong
- Department of Thoracic Surgery, The First Affiliated Hospital of Kunming Medical University, Kunming City, Yunnan Province, China.
| |
Collapse
|
4
|
Fukuda K, Seki N, Yasudome R, Mitsueda R, Asai S, Kato M, Idichi T, Kurahara H, Ohtsuka T. Coronin 1C, Regulated by Multiple microRNAs, Facilitates Cancer Cell Aggressiveness in Pancreatic Ductal Adenocarcinoma. Genes (Basel) 2023; 14:genes14050995. [PMID: 37239355 DOI: 10.3390/genes14050995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Coronin proteins are actin-related proteins containing WD repeat domains encoded by seven genes (CORO1A, CORO1B, CORO1C, CORO2A, CORO2B, CORO6, and CORO7) in the human genome. Analysis of large cohort data from The Cancer Genome Atlas revealed that expression of CORO1A, CORO1B, CORO1C, CORO2A, and CORO7 was significantly upregulated in pancreatic ductal adenocarcinoma (PDAC) tissues (p < 0.05). Moreover, high expression of CORO1C and CORO2A significantly predicted the 5 year survival rate of patients with PDAC (p = 0.0071 and p = 0.0389, respectively). In this study, we focused on CORO1C and investigated its functional significance and epigenetic regulation in PDAC cells. Knockdown assays using siRNAs targeting CORO1C were performed in PDAC cells. Aggressive cancer cell phenotypes, especially cancer cell migration and invasion, were inhibited by CORO1C knockdown. The involvement of microRNAs (miRNAs) is a molecular mechanism underlying the aberrant expression of cancer-related genes in cancer cells. Our in silico analysis revealed that five miRNAs (miR-26a-5p, miR-29c-3p, miR-130b-5p, miR-148a-5p, and miR-217) are putative candidate miRNAs regulating CORO1C expression in PDAC cells. Importantly, all five miRNAs exhibited tumor-suppressive functions and four miRNAs except miR-130b-5p negatively regulated CORO1C expression in PDAC cells. CORO1C and its downstream signaling molecules are potential therapeutic targets in PDAC.
Collapse
Affiliation(s)
- Kosuke Fukuda
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Naohiko Seki
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Ryutaro Yasudome
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Reiko Mitsueda
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Shunichi Asai
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Mayuko Kato
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Tetsuya Idichi
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Hiroshi Kurahara
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| | - Takao Ohtsuka
- Department of Digestive Surgery, Breast and Thyroid Surgery, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima 890-8520, Japan
| |
Collapse
|
5
|
Zhaoran S, Linnebacher CS, Linnebacher M. Increased SEC23A Expression Correlates with Poor Prognosis and Immune Infiltration in Stomach Adenocarcinoma. Cancers (Basel) 2023; 15:cancers15072065. [PMID: 37046730 PMCID: PMC10093042 DOI: 10.3390/cancers15072065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/23/2023] [Accepted: 03/28/2023] [Indexed: 04/03/2023] Open
Abstract
Background: Previous studies have described that the SEC23A gene is involved in the occurrence and development of various tumor entities. However, little is known about its expression and relevance in stomach adenocarcinoma (STAD). The aim of this study was to bioinformatically analyze the role of SEC23A in STAD, followed by patient tissue sample analyses. Materials and methods: SEC23A expression levels in STAD and normal gastric tissues were analyzed in the Cancer Genome Atlas and Gene Expression Omnibus databases; results were verified in fresh clinical STAD specimens on both gene and protein expression levels. SEC23A expression correlated with survival parameters by Kaplan–Meier and multivariate Cox regression analyses. The top genes co-expressed with SEC23A were identified by gene set enrichment analysis (GSEA) using the clusterProfiler package in R. Furthermore, the R package (immunedeconv), integrating the CIBERSORT algorithm, was used to estimate immune cell infiltration levels in STAD. Results: SEC23A gene and sec23a protein expression were both significantly upregulated in STAD, and this correlated with the pT stage. Moreover, high SEC23A expression was associated with poor disease-free and overall survival of STAD patients. Cox analyses revealed that besides age and pathologic stage, SEC23A expression is an independent risk factor for STAD. GSEA indicated that SEC23A was positively associated with ECM-related pathways. In the CIBERSORT analysis, the level of SEC23A negatively correlated with various infiltrating immune cell subsets, including follicular helper T cells, Tregs, activated NK cells and myeloid dendritic cells. Finally, the expression levels of immune checkpoint-related genes, including HAVCR2 and PDCD1LG2, were significantly increased in the high SEC23A expression group. Conclusions: We observed the significantly upregulated expression of SEC23A in STAD, an association with disease progression, patients’ prognosis and infiltrating immune cell subsets. Thus, we propose SEC23A as an independent prognostic factor with a putative role in immune response regulation in STAD.
Collapse
|
6
|
Cheng X, Jia X, Wang C, Zhou S, Chen J, Chen L, Chen J. Hyperglycemia induces PFKFB3 overexpression and promotes malignant phenotype of breast cancer through RAS/MAPK activation. World J Surg Oncol 2023; 21:112. [PMID: 36973739 PMCID: PMC10044395 DOI: 10.1186/s12957-023-02990-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 03/18/2023] [Indexed: 03/29/2023] Open
Abstract
BACKGROUND Breast cancer is the most common tumor in women worldwide. Diabetes mellitus is a global chronic metabolic disease with increasing incidence. Diabetes mellitus has been reported to positively regulate the development of many tumors. However, the specific mechanism of hyperglycemic environment regulating breast cancer remains unclear. PFKFB3 (6-phosphofructose-2-kinase/fructose-2, 6-bisphosphatase 3) is a key regulatory factor of the glycolysis process in diabetes mellitus, as well as a promoter of breast cancer. So, we want to explore the potential link between PFKFB3 and the poor prognosis of breast cancer patients with hyperglycemia in this study. METHODS Cell culture was utilized to construct different-glucose breast cancer cell lines. Immunohistochemistry was adopted to analyze the protein level of PFKFB3 in benign breast tissues, invasive ductal carcinoma with diabetes and invasive ductal carcinoma without diabetes. The Kaplan-Meier plotter database and GEO database (GSE61304) was adopted to analyze the survival of breast cancer patients with different PFKFB3 expression. Western blot was adopted to analyze the protein level of PFKFB3, epithelial-mesenchymal transition (EMT)-related protein and extracellular regulated protein kinases (ERK) in breast cancer cells. Gene Set Cancer Analysis (GSCA) was utilized to investigate the potential downstream signaling pathways of PFKFB3. TargetScan and OncomiR were utilized to explore the potential mechanism of PFKFB3 overexpression by hyperglycemia. Transfections (including siRNAs and miRNA transfection premiers) was utilized to restrain or mimic the expression of the corresponding RNA. Cell functional assays (including cell counting, MTT, colony formation, wound-healing, and cell migration assays) were utilized to explore the proliferation and migration of breast cancer cells. RESULTS In this study, we demonstrated that the expression of PFKFB3 in breast cancer complicated with hyperglycemia was higher than that in breast cancer with euglycemia through cell experiment in vitro and histological experiment. PFKFB3 overexpression decreased the survival period of breast cancer patients and was correlated with a number of clinicopathological parameters of breast cancer complicated with diabetes. PFKFB3 promoted the proliferation and migration of breast cancer in a hyperglycemic environment and might be regulated by miR-26. In addition, PFKFB3 stimulated epithelial-mesenchymal transition of breast cancer in a hyperglycemic environment. In terms of downstream mechanism exploration, we predicted and verified the cancer-promoting effect of PFKFB3 in breast cancer complicated with hyperglycemia through RAS/MAPK pathway. CONCLUSIONS In conclusion, PFKFB3 could be overexpressed by hyperglycemia and might be a potential therapeutic target for breast cancer complicated with diabetes.
Collapse
Affiliation(s)
- Xiao Cheng
- Department of Histopathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315000, Zhejiang, China
| | - Xiupeng Jia
- Department of Histopathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315000, Zhejiang, China
| | - Chunnian Wang
- Department of Histopathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315000, Zhejiang, China
| | - Shangyan Zhou
- Department of Histopathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315000, Zhejiang, China
| | - Jiayi Chen
- Department of Experimental Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315000, Zhejiang, China
| | - Lei Chen
- Department of Cytopathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315000, Zhejiang, China
| | - Jinping Chen
- Department of Histopathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo, 315000, Zhejiang, China.
| |
Collapse
|
7
|
Javed A, Yarmohammadi M, Korkmaz KS, Rubio-Tomás T. The Regulation of Cyclins and Cyclin-Dependent Kinases in the Development of Gastric Cancer. Int J Mol Sci 2023; 24:2848. [PMID: 36769170 PMCID: PMC9917736 DOI: 10.3390/ijms24032848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/23/2023] [Accepted: 01/28/2023] [Indexed: 02/05/2023] Open
Abstract
Gastric cancer predominantly occurs in adenocarcinoma form and is characterized by uncontrolled growth and metastases of gastric epithelial cells. The growth of gastric cells is regulated by the action of several major cell cycle regulators including Cyclins and Cyclin-dependent kinases (CDKs), which act sequentially to modulate the life cycle of a living cell. It has been reported that inadequate or over-activity of these molecules leads to disturbances in cell cycle dynamics, which consequently results in gastric cancer development. Manny studies have reported the key roles of Cyclins and CDKs in the development and progression of the disease in either in vitro cell culture studies or in vivo models. We aimed to compile the evidence of molecules acting as regulators of both Cyclins and CDKs, i.e., upstream regulators either activating or inhibiting Cyclins and CDKs. The review entails an introduction to gastric cancer, along with an overview of the involvement of cell cycle regulation and focused on the regulation of various Cyclins and CDKs in gastric cancer. It can act as an extensive resource for developing new hypotheses for future studies.
Collapse
Affiliation(s)
- Aadil Javed
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Izmir 35040, Turkey
| | - Mahdieh Yarmohammadi
- Department of Biology, Faculty of Sciences, Central Tehran Branch, Islamic Azad University, Tehran 33817-74895, Iran
| | - Kemal Sami Korkmaz
- Department of Bioengineering, Faculty of Engineering, Cancer Biology Laboratory, Ege University, Izmir 35040, Turkey
| | - Teresa Rubio-Tomás
- School of Medicine, University of Crete, 70013 Herakleion, Crete, Greece
| |
Collapse
|
8
|
Matthiesen R, Gameiro P, Henriques A, Bodo C, Moraes MCS, Costa-Silva B, Cabeçadas J, Gomes da Silva M, Beck HC, Carvalho AS. Extracellular Vesicles in Diffuse Large B Cell Lymphoma: Characterization and Diagnostic Potential. Int J Mol Sci 2022; 23:13327. [PMID: 36362114 PMCID: PMC9654702 DOI: 10.3390/ijms232113327] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 09/29/2023] Open
Abstract
Diffuse large B cell lymphoma (DLBCL) is an aggressive B cell lymphoma characterized by a heterogeneous behavior and in need of more accurate biological characterization monitoring and prognostic tools. Extracellular vesicles are secreted by all cell types and are currently established to some extent as representatives of the cell of origin. The present study characterized and evaluated the diagnostic and prognostic potential of plasma extracellular vesicles (EVs) proteome in DLBCL by using state-of-the-art mass spectrometry. The EV proteome is strongly affected by DLBCL status, with multiple proteins uniquely identified in the plasma of DLBCL. A proof-of-concept classifier resulted in highly accurate classification with a sensitivity and specificity of 1 when tested on the holdout test data set. On the other hand, no proteins were identified to correlate with non-germinal center B-cell like (non-GCB) or GCB subtypes to a significant degree after correction for multiple testing. However, functional analysis suggested that antigen binding is regulated when comparing non-GCB and GCB. Survival analysis based on protein quantitative values and clinical parameters identified multiple EV proteins as significantly correlated to survival. In conclusion, the plasma extracellular vesicle proteome identifies DLBCL cancer patients from healthy donors and contains potential EV protein markers for prediction of survival.
Collapse
Affiliation(s)
- Rune Matthiesen
- Computational and Experimental Biology Group, NOVA Medical School-Research, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Paula Gameiro
- Instituto Português de Oncologia, Departament of Hematology, 1099-213 Lisbon, Portugal
| | - Andreia Henriques
- Computational and Experimental Biology Group, NOVA Medical School-Research, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| | - Cristian Bodo
- Champalimaud Physiology and Cancer Programme, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | | | - Bruno Costa-Silva
- Champalimaud Physiology and Cancer Programme, Champalimaud Foundation, 1400-038 Lisbon, Portugal
| | - José Cabeçadas
- Instituto Português de Oncologia, Departament of Hematology, 1099-213 Lisbon, Portugal
| | - Maria Gomes da Silva
- Instituto Português de Oncologia, Departament of Hematology, 1099-213 Lisbon, Portugal
| | - Hans Christian Beck
- Centre for Clinical Proteomics, Department of Clinical Biochemistry, Odense University Hospital, DK-5000 Odense, Denmark
| | - Ana Sofia Carvalho
- Computational and Experimental Biology Group, NOVA Medical School-Research, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056 Lisbon, Portugal
| |
Collapse
|
9
|
Shen X, Kong S, Ma S, Shen L, zheng M, Qin S, Qi J, Wang Q, Cui X, Ju S. Hsa_circ_0000437 promotes pathogenesis of gastric cancer and lymph node metastasis. Oncogene 2022; 41:4724-4735. [DOI: 10.1038/s41388-022-02449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 08/05/2022] [Accepted: 08/19/2022] [Indexed: 11/09/2022]
|
10
|
Yamaguchi Y, Kadowaki T, Aibara N, Ohyama K, Okamoto K, Sakai E, Tsukuba T. Coronin1C Is a GDP-Specific Rab44 Effector That Controls Osteoclast Formation by Regulating Cell Motility in Macrophages. Int J Mol Sci 2022; 23:ijms23126619. [PMID: 35743062 PMCID: PMC9224296 DOI: 10.3390/ijms23126619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Osteoclasts are multinucleated bone-resorbing cells that are formed by the fusion of macrophages. Recently, we identified Rab44, a large Rab GTPase, as an upregulated gene during osteoclast differentiation that negatively regulates osteoclast differentiation. However, the molecular mechanisms by which Rab44 negatively regulates osteoclast differentiation remain unknown. Here, we found that the GDP form of Rab44 interacted with the actin-binding protein, Coronin1C, in murine macrophages. Immunoprecipitation experiments revealed that the interaction of Rab44 and Coronin1C occurred in wild-type and a dominant-negative (DN) mutant of Rab44, but not in a constitutively active (CA) mutant of Rab44. Consistent with these findings, the expression of the CA mutant inhibited osteoclast differentiation, whereas that of the DN mutant enhanced this differentiation. Using a phase-contrast microscope, Coronin1C-knockdown osteoclasts apparently impaired multinuclear formation. Moreover, Coronin1C knockdown impaired the migration and chemotaxis of RAW-D macrophages. An in vivo experimental system demonstrated that Coronin1C knockdown suppresses osteoclastogenesis. Therefore, the decreased cell formation and fusion of Coronin1C-depleted osteoclasts might be due to the decreased migration of Coronin1C-knockdown macrophages. These results indicate that Coronin1C is a GDP-specific Rab44 effector that controls osteoclast formation by regulating cell motility in macrophages.
Collapse
Affiliation(s)
- Yu Yamaguchi
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (Y.Y.); (E.S.)
| | - Tomoko Kadowaki
- Department of Frontier Oral Science, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan;
| | - Nozomi Aibara
- Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (N.A.); (K.O.)
| | - Kaname Ohyama
- Department of Pharmacy Practice, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (N.A.); (K.O.)
| | - Kuniaki Okamoto
- Department of Dental Pharmacology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8525, Japan;
| | - Eiko Sakai
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (Y.Y.); (E.S.)
| | - Takayuki Tsukuba
- Department of Dental Pharmacology, Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8588, Japan; (Y.Y.); (E.S.)
- Correspondence: ; Tel.: +81-95-819-7652
| |
Collapse
|
11
|
CORO1C, a novel PAK4 binding protein, recruits phospho-PAK4 at serine 99 to the leading edge and promotes the migration of gastric cancer cells. Acta Biochim Biophys Sin (Shanghai) 2022; 54:673-685. [PMID: 35593474 PMCID: PMC9827817 DOI: 10.3724/abbs.2022044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Gastric cancer is one of the malignant tumors in the world. PAK4 plays an important role in the occurrence and development of gastric cancer, especially in the process of invasion and metastasis. Here we discover that CORO1C, a member of coronin family that regulates microfilament and lamellipodia formation, recruits cytoplasmic PAK4 to the leading edge of gastric cancer cells by C-terminal extension (CE) domain of CORO1C (353-457 aa). The localization of PAK4 on the leading edge of the cell depends on two necessary conditions: the phosphorylation of PAK4 on serine 99 and the binding to the CE domain of CORO1C. Unphosphorylated PAK4 on serine 99 is closely associated with microtubules by PAK4/GEF-H1/Tctex-1 complex. Once phosphorylated, PAK4 is released from microtubule, and then is recruited by CORO1C to the leading edge and regulates the CORO1C/RCC2 (regulator of chromosome condensation 2) complex, leading to the migration of gastric cancer cells. Our results reveal a new mechanism by which PAK4 regulates the migration potential of gastric cancer cells through microtubule-microfilament cross talk.
Collapse
|
12
|
Zhang H, Huang T, Yuan S, Long Y, Tan S, Niu G, Zhang P, Yang M. Circ_0020123 plays an oncogenic role in non-small cell lung cancer depending on the regulation of miR-512-3p/CORO1C. Thorac Cancer 2022; 13:1406-1418. [PMID: 35388975 PMCID: PMC9058299 DOI: 10.1111/1759-7714.14408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 12/12/2022] Open
Abstract
Background Non‐small cell lung cancer (NSCLC) is one of the leading causes responsible for cancer‐associated death globally. The aim of this study was to illustrate the function of circular RNA_0020123 (circ_0020123) in NSCLC progression and its associated mechanism. Methods RNA and protein expression was determined by reverse transcription‐quantitative polymerase chain reaction (RT‐qPCR) and western blot assay. Cell proliferation, migration, invasion, angiogenesis, apoptosis and autophagy were analyzed to assess the role of circ_0020123/microRNA‐512‐3p (miR‐512‐3p)/coronin 1C (CORO1C) axis in NSCLC cells. Tumorigenesis in nude mice was analyzed to determine the in vivo role of circ_0020123. The intermolecular target relation was confirmed by dual‐luciferase reporter and RNA immunoprecipitation (RIP) assays. Results Circ_0020123 expression was aberrantly upregulated in NSCLC tissues and cell lines. Circ_0020123 interference markedly restrained cell proliferation, migration, invasion, angiogenesis and autophagy and induced cell apoptosis of NSCLC cells. Circ_0020123 knockdown suppressed xenograft tumor growth in vivo. Circ_0020123 acted as a molecular sponge for miR‐512‐3p. Circ_0020123 silencing‐induced effects in NSCLC cells were largely reversed by the knockdown of miR‐512‐3p. miR‐512‐3p interacted with the 3′ untranslated region (3′UTR) of CORO1C. CORO1C overexpression largely reversed miR‐512‐3p accumulation‐induced influences in NSCLC cells. Circ_0020123 positively regulated CORO1C expression by sponging miR‐512‐3p in NSCLC cells. Conclusion Circ_0020123 aggravated NSCLC progression by binding to miR‐512‐3p to induce CORO1C expression, which provided new potential targets for the treatment of NSCLC.
Collapse
Affiliation(s)
- Heng Zhang
- The Affiliated Nanhua Hospital, Department of Hematology, Hengyang Medical School, University of South China, Hengyang, China
| | - Ting Huang
- The Affiliated Nanhua Hospital, Department of Pain Treatment, Hengyang Medical School, University of South China, Hengyang, China
| | - Shisi Yuan
- The Affiliated Nanhua Hospital, Department of Hematology, Hengyang Medical School, University of South China, Hengyang, China
| | - Yuxi Long
- The Affiliated Nanhua Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Shuai Tan
- The Affiliated Nanhua Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Guoliang Niu
- The Affiliated Nanhua Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Puhua Zhang
- The Affiliated Nanhua Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, China
| | - Meiling Yang
- The Affiliated Nanhua Hospital, Department of Oncology, Hengyang Medical School, University of South China, Hengyang, China
| |
Collapse
|
13
|
Wang L, Zeng C, Chen Z, Qi J, Huang S, Liang H, Huang S, Ou Z. Circ_0025039 acts an oncogenic role in the progression of non-small cell lung cancer through miR-636-dependent regulation of CORO1C. Mol Cell Biochem 2022; 477:743-757. [PMID: 35034254 DOI: 10.1007/s11010-021-04320-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 11/29/2021] [Indexed: 11/28/2022]
Abstract
Non-small cell lung cancer remains the leading cause of cancer-related death worldwide. Circular RNA plays vital roles in NSCLC progression. This study is designed to reveal the role of circ_0025039 in NSCLC cell malignancy. The RNA expression of circ_0025039, microRNA-636 (miR-636), and coronin 1C was detected by quantitative real-time polymerase chain reaction. Protein expression was checked by Western blot analysis or immunohistochemistry assay. Cell proliferation, migration, invasion, tube formation ability, sphere formation capacity, and apoptosis were investigated by cell counting kit-8, 5-Ethynyl-29-deoxyuridine, transwell assay, tube formation assay, sphere formation assay, and flow cytometry analysis, respectively. Mouse model assay was conducted to reveal the effect of circ_0025039 silencing on tumor formation in vivo. The interaction between miR-636 and circ_0025039 or CORO1C was identified through dual-luciferase reporter and RNA pull-down assays. The expression of circ_0025039 and CORO1C was significantly increased, while miR-636 was decreased in NSCLC tissues and cells compared with controls. Circ_0025039 depletion repressed NSCLC cell proliferation, migration, invasion, tube-forming capacity, and sphere formation ability, but induced cell apoptosis. The neoplasm formation was repressed after circ_0025039 silencing. Additionally, circ_0025039 acted as a sponge for miR-636, which was found to target CORO1C. Importantly, the contribution of circ_0025039 to NSCLC progression was mediated by miR-636/CORO1C axis. Circ_0025039 silencing repressed NSCLC malignant progression by reducing CORO1C expression through miR-636, showing the possibility of circ_0025039 as a therapeutic target for NSCLC.
Collapse
Affiliation(s)
- Lei Wang
- Department of Respiratory and Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43, Renmin Avenue, Meilan District, Haikou City, Hainan Province, 570208, PR China
| | - Cimei Zeng
- Department of Respiratory and Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43, Renmin Avenue, Meilan District, Haikou City, Hainan Province, 570208, PR China
| | - Zhongren Chen
- Department of Respiratory and Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43, Renmin Avenue, Meilan District, Haikou City, Hainan Province, 570208, PR China
| | - Jianxu Qi
- Department of Respiratory and Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43, Renmin Avenue, Meilan District, Haikou City, Hainan Province, 570208, PR China
| | - Sini Huang
- Department of Respiratory and Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43, Renmin Avenue, Meilan District, Haikou City, Hainan Province, 570208, PR China
| | - Haimei Liang
- Department of Respiratory and Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43, Renmin Avenue, Meilan District, Haikou City, Hainan Province, 570208, PR China
| | - Shiren Huang
- Department of Respiratory and Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43, Renmin Avenue, Meilan District, Haikou City, Hainan Province, 570208, PR China
| | - Zongxing Ou
- Department of Respiratory and Critical Care Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, No. 43, Renmin Avenue, Meilan District, Haikou City, Hainan Province, 570208, PR China.
| |
Collapse
|
14
|
Kase-Kato I, Asai S, Minemura C, Tsuneizumi K, Oshima S, Koma A, Kasamatsu A, Hanazawa T, Uzawa K, Seki N. Molecular Pathogenesis of the Coronin Family: CORO2A Facilitates Migration and Invasion Abilities in Oral Squamous Cell Carcinoma. Int J Mol Sci 2021; 22:12684. [PMID: 34884487 PMCID: PMC8657730 DOI: 10.3390/ijms222312684] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 11/17/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022] Open
Abstract
In humans, the coronin family is composed of seven proteins containing WD-repeat domains that regulate actin-based cellular processes. Some members of the coronin family are closely associated with cancer cell migration and invasion. The Cancer Genome Atlas (TCGA) analysis revealed that CORO1C, CORO2A, and CORO7 were significantly upregulated in oral squamous cell carcinoma (OSCC) tissues (p < 0.05). Moreover, the high expression of CORO2A was significantly predictive of the 5-year survival rate of patients with OSCC (p = 0.0203). Overexpression of CORO2A was detected in OSCC clinical specimens by immunostaining. siRNA-mediated knockdown of CORO2A suppressed cancer cell migration and invasion abilities. Furthermore, we investigated the involvement of microRNAs (miRNAs) in the molecular mechanism underlying CORO2A overexpression in OSCC cells. TCGA analysis confirmed that tumor-suppressive miR-125b-5p and miR-140-5p were significantly downregulated in OSCC tissues. Notably, these miRNAs bound directly to the 3'-UTR of CORO2A and controlled CORO2A expression in OSCC cells. In summary, we found that aberrant expression of CORO2A facilitates the malignant transformation of OSCC cells, and that downregulation of tumor-suppressive miRNAs is involved in CORO2A overexpression. Elucidation of the interaction between genes and miRNAs will help reveal the molecular pathogenesis of OSCC.
Collapse
Affiliation(s)
- Ikuko Kase-Kato
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (I.K.-K.); (C.M.); (K.T.); (S.O.); (A.K.); (A.K.); (K.U.)
| | - Shunichi Asai
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Chikashi Minemura
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (I.K.-K.); (C.M.); (K.T.); (S.O.); (A.K.); (A.K.); (K.U.)
| | - Kenta Tsuneizumi
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (I.K.-K.); (C.M.); (K.T.); (S.O.); (A.K.); (A.K.); (K.U.)
| | - Sachi Oshima
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (I.K.-K.); (C.M.); (K.T.); (S.O.); (A.K.); (A.K.); (K.U.)
| | - Ayaka Koma
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (I.K.-K.); (C.M.); (K.T.); (S.O.); (A.K.); (A.K.); (K.U.)
| | - Atsushi Kasamatsu
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (I.K.-K.); (C.M.); (K.T.); (S.O.); (A.K.); (A.K.); (K.U.)
| | - Toyoyuki Hanazawa
- Department of Otorhinolaryngology/Head and Neck Surgery, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| | - Katsuhiro Uzawa
- Department of Oral Science, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan; (I.K.-K.); (C.M.); (K.T.); (S.O.); (A.K.); (A.K.); (K.U.)
| | - Naohiko Seki
- Department of Functional Genomics, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan;
| |
Collapse
|
15
|
CircETFA upregulates CCL5 by sponging miR-612 and recruiting EIF4A3 to promote hepatocellular carcinoma. Cell Death Discov 2021; 7:321. [PMID: 34716323 PMCID: PMC8556257 DOI: 10.1038/s41420-021-00710-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/24/2021] [Accepted: 10/06/2021] [Indexed: 12/12/2022] Open
Abstract
As a kind of malignant tumors, hepatocellular carcinoma (HCC) has been studied continuously, but the mechanisms are not well understood. Circular RNAs (circRNAs) are widespread in eukaryotes and play an important role in the growth of organisms and in the occurrence of diseases. The role of circRNAs in HCC remains to be further explored. In this study, CircRNA microarray analysis was used to assess the plasma from HCC patients and healthy controls and to identify circRNAs involved in HCC tumorigenesis. CircETFA was overexpressed in HCC tissues, plasma, and cells. Clinicopathological data revealed that abnormally high circETFA expression was associated with a poor prognosis. In function, circETFA promotes the malignant phenotype of HCC cells in vivo and in vitro, inhibits cycle arrest, and decreases the proportion of apoptotic cells. In mechanism, it can upregulate C-C motif chemokine ligand 5 (CCL5) in HCC cells, thereby regulating the phosphoinositide 3-kinase (PI3K)/Akt pathway and other key downstream effectors (e.g., FoxO6). Furthermore, circETFA prolonged the half-life of CCL5 mRNA by recruiting the eukaryotic initiation factor 4A3 (EIF4A3) and acted as a sponge of hsa-miR-612 to suppress the silencing effect of hsa-miR-612 on CCL5. In conclusion, CircETFA can increase the expression of CCL5 to promote the progression of HCC by sponging hsa-mir-612 and recruiting EIF4A3, and is promising as a novel biomarker and therapeutic target.
Collapse
|
16
|
Zhong C, Wu K, Wang S, Long Z, Yang T, Zhong W, Tan X, Wang Z, Li C, Lu J, Mao X. Autophagy-related circRNA evaluation reveals hsa_circ_0001747 as a potential favorable prognostic factor for biochemical recurrence in patients with prostate cancer. Cell Death Dis 2021; 12:726. [PMID: 34294687 PMCID: PMC8298711 DOI: 10.1038/s41419-021-04015-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 06/25/2021] [Accepted: 07/08/2021] [Indexed: 01/18/2023]
Abstract
Prostate cancer (PCa) is a common high-incidence malignancy in men, some of whom develop biochemical recurrence (BCR) in the advanced stage. However, there are currently no accurate prognostic indicators of BCR in PCa. The aim of our study was to identify an autophagy-related circular RNA prognostic factor of BCR for patients with PCa. In this study, immunochemistry revealed that the classic autophagy marker MAP1LC3B was positively correlated with Gleason score. Least absolute shrinkage and selector operator regression were conducted to develop a novel prognostic model with tenfold cross-validation and an L1 penalty. Five autophagy-related circRNA signatures were included in the prognostic model. Patients with PCa were ultimately divided into high- and low-risk groups, based on the median risk score. Patients with PCa, who had a high risk score, were more likely to develop BCR in a shorter period of time. Univariate and multivariate Cox regression analyses demonstrated that the risk score was an independent variable for predicting BCR in PCa. In addition, a prognostic nomogram integrated with the risk score and numerous clinicopathological parameters was developed to accurately predict 3- and 5-year BCR of patients with PCa. Finally, the hsa_circ_0001747 signature was selected for further experimental verification in vitro and in vivo, which showed that downregulated hsa_circ_0001747 might facilitate PCa via augmenting autophagy. Our findings indicate that the autophagy-related circRNA signature hsa_circ_0001747 may serve as a promising indicator for BCR prediction in patients with PCa.
Collapse
Affiliation(s)
- Chuanfan Zhong
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Kaihui Wu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Shuo Wang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zining Long
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Taowei Yang
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Weibo Zhong
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Xiao Tan
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | | | - Chuanyin Li
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Jianming Lu
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| | - Xiangming Mao
- Department of Urology, Zhujiang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
17
|
Wang Z, Jia L, sun Y, Li C, Zhang L, Wang X, Chen H. CORO1C is Associated With Poor Prognosis and Promotes Metastasis Through PI3K/AKT Pathway in Colorectal Cancer. Front Mol Biosci 2021; 8:682594. [PMID: 34179087 PMCID: PMC8223509 DOI: 10.3389/fmolb.2021.682594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/28/2021] [Indexed: 11/24/2022] Open
Abstract
Trophoblast cell surface protein 2 (Trop2) is one of the cancer-related proteins that plays a vital role in biological aggressiveness and poor prognosis of colorectal cancer (CRC). The study of the Trop2 related network is helpful for us to understand the mechanism of tumorigenesis. However, the effects of the related proteins interacting with Trop2 in CRC remain unclear. Here, we found that coronin-like actin-binding protein 1C (CORO1C) could interact with Trop2 and the expression of CORO1C in CRC tissues was higher than that in paracarcinoma tissues. The expression of CORO1C was associated with histological type, lymph node metastasis, distant metastasis, AJCC stage, venous invasion, and perineural invasion. The correlation between CORO1C expression and clinical characteristics was analyzed demonstrating that high CORO1C expression in CRC patients were associated with poor prognosis. Furthermore, CORO1C knockdown could decrease the cell proliferation, colony formation, migration and invasion in vitro and tumor growth in vivo. The underlying mechanisms were predicted by bioinformatics analysis and verified by Western blotting. We found that PI3K/AKT signaling pathway was significantly inhibited by CORO1C knockdown and the tuomr-promoting role of CORO1C was leastwise partly mediated by PI3K/AKT signaling pathway. Thus, CORO1C may be a valuable prognostic biomarker and drug target in CRC patients.
Collapse
Affiliation(s)
- Zongxia Wang
- Cancer Center, Bayannur Hospital, Bayannur, China
| | - Lizhou Jia
- Cancer Center, Bayannur Hospital, Bayannur, China
- Department of Pathology, Wannan Medical College, Wuhu, China
| | - Yushu sun
- Department of Oncology, Inner Mongolia Autonomous Region Cancer Hospital, Hohhot, China
| | - Chunli Li
- Cancer Center, Bayannur Hospital, Bayannur, China
| | - Lingli Zhang
- Department of Ophthalmology, Inner Mongolia Autonomous Region People’s Hospital, Hohhot, China
| | - Xiangcheng Wang
- Department of Nuclear Medicine, The Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
- Key Laboratory of Inner Mongolia Autonomous Region Molecular Imaging, Inner Mongolia Medical University, Hohhot, China
| | - Hao Chen
- Department of Pathology, Wannan Medical College, Wuhu, China
- Faculty of Medical Science, Jinan University, Guangzhou, China
| |
Collapse
|
18
|
Actin-Binding Proteins as Potential Biomarkers for Chronic Inflammation-Induced Cancer Diagnosis and Therapy. ACTA ACUST UNITED AC 2021; 2021:6692811. [PMID: 34194957 PMCID: PMC8203385 DOI: 10.1155/2021/6692811] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/13/2021] [Accepted: 05/18/2021] [Indexed: 12/15/2022]
Abstract
Actin-binding proteins (ABPs), by interacting with actin, regulate the polymerization, depolymerization, bundling, and cross-linking of actin filaments, directly or indirectly, thereby mediating the maintenance of cell morphology, cell movement, and many other biological functions. Consequently, these functions of ABPs help regulate cancer cell invasion and metastasis when cancer occurs. In recent years, a variety of ABPs have been found to be abnormally expressed in various cancers, indicating that the detection and interventions of unusual ABP expression to alter this are available for the treatment of cancer. The early stages of most cancer development involve long-term chronic inflammation or repeated stimulation. This is the case for breast cancer, gastric cancer, lung cancer, prostate cancer, liver cancer, esophageal cancer, pancreatic cancer, melanoma, and colorectal cancer. This article discusses the relationship between chronic inflammation and the above-mentioned cancers, emphatically introduces relevant research on the abnormal expression of ABPs in chronic inflammatory diseases, and reviews research on the expression of different ABPs in the above-mentioned cancers. Furthermore, there is a close relationship between ABP-induced inflammation and cancer. In simple terms, abnormal expression of ABPs contributes to the chronic inflammation developing into cancer. Finally, we provide our viewpoint regarding these unusual ABPs serving as potential biomarkers for chronic inflammation-induced cancer diagnosis and therapy, and interventions to reverse the abnormal expression of ABPs represent a potential approach to preventing or treating the corresponding cancers.
Collapse
|
19
|
Carli ALE, Afshar-Sterle S, Rai A, Fang H, O'Keefe R, Tse J, Ferguson FM, Gray NS, Ernst M, Greening DW, Buchert M. Cancer stem cell marker DCLK1 reprograms small extracellular vesicles toward migratory phenotype in gastric cancer cells. Proteomics 2021; 21:e2000098. [PMID: 33991177 DOI: 10.1002/pmic.202000098] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 04/15/2021] [Accepted: 05/12/2021] [Indexed: 12/15/2022]
Abstract
Doublecortin-like kinase 1 (DCLK1) is a putative cancer stem cell marker, a promising diagnostic and prognostic maker for malignant tumors and a proposed driver gene for gastric cancer (GC). DCLK1 overexpression in a majority of solid cancers correlates with lymph node metastases, advanced disease and overall poor-prognosis. In cancer cells, DCLK1 expression has been shown to promote epithelial-to-mesenchymal transition (EMT), driving disruption of cell-cell adhesion, cell migration and invasion. Here, we report that DCLK1 influences small extracellular vesicle (sEV/exosome) biogenesis in a kinase-dependent manner. sEVs isolated from DCLK1 overexpressing human GC cell line MKN1 (MKN1OE -sEVs), promote the migration of parental (non-transfected) MKN1 cells (MKN1PAR ). Quantitative proteome analysis of MKN1OE -sEVs revealed enrichment in migratory and adhesion regulators (STRAP, CORO1B, BCAM, COL3A, CCN1) in comparison to MKN1PAR -sEVs. Moreover, using DCLK1-IN-1, a specific small molecule inhibitor of DCLK1, we reversed the increase in sEV size and concentration in contrast to other EV subtypes, as well as kinase-dependent cargo selection of proteins involved in EV biogenesis (KTN1, CHMP1A, MYO1G) and migration and adhesion processes (STRAP, CCN1). Our findings highlight a specific role of DCLK1-kinase dependent cargo selection for sEVs and shed new light on its role as a regulator of signaling in gastric tumorigenesis.
Collapse
Affiliation(s)
- Annalisa L E Carli
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Shoukat Afshar-Sterle
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Alin Rai
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Haoyun Fang
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia
| | - Ryan O'Keefe
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Janson Tse
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - Fleur M Ferguson
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Nathanael S Gray
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA.,Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthias Ernst
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| | - David W Greening
- Baker Heart and Diabetes Institute, Molecular Proteomics, Melbourne, Victoria, Australia.,Central Clinical School, Monash University, Melbourne, Victoria, Australia.,Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia.,Baker Department of Cardiometabolic Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Michael Buchert
- Cancer Inflammation Laboratory, Olivia Newton-John Cancer Research Institute, Heidelberg, Victoria, Australia.,School of Cancer Medicine, La Trobe University, Bundoora, Victoria, Australia
| |
Collapse
|
20
|
Yan Y, Cheng X, Li L, Zhang R, Zhu Y, Wu Z, Ding K. A Novel Small Molecular Antibody, HER2-Nanobody, Inhibits Tumor Proliferation in HER2-Positive Breast Cancer Cells In Vitro and In Vivo. Front Oncol 2021; 11:669393. [PMID: 34055637 PMCID: PMC8149955 DOI: 10.3389/fonc.2021.669393] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/26/2021] [Indexed: 01/01/2023] Open
Abstract
Breast cancer is the most common malignant cancer in women worldwide, especially in developing countries. Herceptin is a monoclonal antibody with an antitumor effect in HER2-positive breast cancer. However, the large molecular weight of Herceptin limited its employment. In this study, we constructed and screened HER2-nanobody and verified its tumor-suppressive effect in HER2-positive breast cancer cells. HER2-nanobody was established, filtrated, purified, and was demonstrated to inhibit cell total number, viability, colony formation and mitosis, and promote cell apoptosis in HER2-positive breast cancer cells in vitro. Treated with HER2-nanobody, tumor growth was significantly inhibited by both intratumor injection and tail intravenous injection in vivo. The phosphorylation of ERK and AKT was restrained by HER2-nanobody in HER2-positive breast cancer cells. RAS-RAF-MAPK and PI3K-AKT-mTOR are two important pathways involved in HER2. It was credible for HER2-nanobody to play the tumor suppressive role by inhibiting the phosphorylation of ERK and AKT. Therefore, HER2-nanobody could be employed as a small molecular antibody to suppress HER2-positive breast cancer.
Collapse
Affiliation(s)
- Yan Yan
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China.,Key Laboratory of Flexible Electronics (KLOFE), Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, China
| | - Xiao Cheng
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Lin Li
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Rumeng Zhang
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Yong Zhu
- Department of Pathophysiology, School of Basic Medicine, Anhui Medical University, Hefei, China
| | - Zhengsheng Wu
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China.,Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Keshuo Ding
- Department of Pathology, School of Basic Medicine, Anhui Medical University, Hefei, China.,Department of Pathology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
21
|
Role of microRNAs in Lung Carcinogenesis Induced by Asbestos. J Pers Med 2021; 11:jpm11020097. [PMID: 33546236 PMCID: PMC7913345 DOI: 10.3390/jpm11020097] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/25/2021] [Accepted: 01/29/2021] [Indexed: 02/07/2023] Open
Abstract
MicroRNAs are a class of small noncoding endogenous RNAs 19–25 nucleotides long, which play an important role in the post-transcriptional regulation of gene expression by targeting mRNA targets with subsequent repression of translation. MicroRNAs are involved in the pathogenesis of numerous diseases, including cancer. Lung cancer is the leading cause of cancer death in the world. Lung cancer is usually associated with tobacco smoking. However, about 25% of lung cancer cases occur in people who have never smoked. According to the International Agency for Research on Cancer, asbestos has been classified as one of the cancerogenic factors for lung cancer. The mechanism of malignant transformation under the influence of asbestos is associated with the genotoxic effect of reactive oxygen species, which initiate the processes of DNA damage in the cell. However, epigenetic mechanisms such as changes in the microRNA expression profile may also be implicated in the pathogenesis of asbestos-induced lung cancer. Numerous studies have shown that microRNAs can serve as a biomarker of the effects of various adverse environmental factors on the human body. This review examines the role of microRNAs, the expression profile of which changes upon exposure to asbestos, in key processes of carcinogenesis, such as proliferation, cell survival, metastasis, neo-angiogenesis, and immune response avoidance.
Collapse
|
22
|
Zhang W, Song C, Ren X. Circ_0003998 Regulates the Progression and Docetaxel Sensitivity of DTX-Resistant Non-Small Cell Lung Cancer Cells by the miR-136-5p/CORO1C Axis. Technol Cancer Res Treat 2021; 20:1533033821990040. [PMID: 33511909 PMCID: PMC7871354 DOI: 10.1177/1533033821990040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Drug resistance in cancer cells is a major challenge for anti-cancer therapy.
Circular RNA (circRNA) circ_0003998 has been identified as an important
regulator in the chemoresistance development of non-small cell lung cancer
(NSCLC). The purpose of this study was to investigate the molecular basis
underlying the resistance control of circ_0003998 in NSCLC. Methods: The levels of circ_0003998, miR-136-5p and coronin 1C (CORO1C) were gauged by
the quantitative real-time polymerase chain reaction (qRT-PCR) or western
blot. Cell viability, colony formation and apoptosis were evaluated by the
Cell Counting Kit-8 (CCK-8), colony formation and flow cytometry assays,
respectively. Targeted relationships among circ_0003998, miR-136-5p and
CORO1C were confirmed by the dual-luciferase reporter and RNA
immunoprecipitation (RIP) assays. Animal studies were performed to evaluate
the function of circ_0003998 in vivo. Results: Our data indicated that circ_0003998 expression was associated with NSCLC
resistance to docetaxel (DTX). The knockdown of circ_0003998 promoted DTX
sensitivity, suppressed cell colony formation, and enhanced cell apoptosis
of A549/DTX and H1299/DTX cells in vitro. Moreover,
circ_0003998 knockdown hampered tumor growth and enhanced DTX sensitivity
in vivo. Mechanistically, circ_0003998 directly
targeted miR-136-5p, and miR-136-5p was a molecular mediator of circ_0003998
function in vitro. Furthermore, CORO1C was a functionally
important target of miR-136-5p in regulating DTX-resistant NSCLC cell colony
formation, apoptosis and DTX sensitivity in vitro.
Additionally, circ_0003998 modulated CORO1C expression by working as a
miR-136-5p sponge. Conclusion: Our present work identified that circ_0003998 regulated DTX-resistant NSCLC
cell colony formation, apoptosis and DTX sensitivity at least partially by
controlling CORO1C expression by sponging miR-136-5p, illuminating a
rationale for developing circ_0003998 as a therapeutic target of
chemoresistant NSCLC.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Pharmacy, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan City, Shandong Province, China
| | - Chao Song
- Department of Pharmacy, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| | - Xiaona Ren
- Department of Pharmacy, Shandong Provincial Third Hospital, Cheeloo College of Medicine, Shandong University, Jinan City, Shandong Province, China
| |
Collapse
|
23
|
Han S, Ding X, Wang S, Xu L, Li W, Sun W. miR-133a-3p Regulates Hepatocellular Carcinoma Progression Through Targeting CORO1C. Cancer Manag Res 2020; 12:8685-8693. [PMID: 33061567 PMCID: PMC7519587 DOI: 10.2147/cmar.s254617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
Introduction MicroRNAs (miRNAs) are key modulators for gene expression via inducing translational repression or target gene degradation. miR-133a-3p was reported to stimulate or inhibit cancer progression but its role in hepatocellular carcinoma (HCC) remains to be explored. Methods Quantitative real-time PCR (RT-qPCR) was utilized to explore miR-133a-3p expression level in HCC cells. Dual-luciferase activity reporter assay was used to validate the direct interaction between miR-133a-3p and coronin-like actin-binding protein 1C (CORO1C). In addition, we analyzed the expression levels of miR-133a-3p and CORO1C in HCC tissues and normal tissues on the UCALAN website. Functional assays including cell counting kit-8 assay, colony formation assay, flow cytometry analysis and transwell invasion assay were conducted to explore the biological functions of miR-133a-3p in HCC. Results miR-133a-3p was found to have downregulated expression in HCC tissues and cells. Meanwhile, we showed that low miR-133a-3p levels were correlated with poorer overall survival of HCC patients. Overexpression of miR-133a-3p suppressed HCC cell growth and invasion but promoted cell apoptosis via targeting CORO1C. Discussion Our results revealed a novel mechanism of miR-133a-3p in regulating HCC progression and provided evidence that miR-133a-3p functions as a tumor suppressor in HCC.
Collapse
Affiliation(s)
- Shuangxi Han
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100043, People's Republic of China.,Department of Hepatobiliary Surgery, Binzhou Central Hospital, Binzhou 251700, People's Republic of China
| | - Xuemei Ding
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100043, People's Republic of China
| | - Shaohong Wang
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100043, People's Republic of China
| | - Li Xu
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100043, People's Republic of China
| | - Wenxiao Li
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100043, People's Republic of China
| | - Wenbing Sun
- Department of Hepatobiliary Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100043, People's Republic of China
| |
Collapse
|
24
|
Wang C, Yang Y, Yin L, Wei N, Hong T, Sun Z, Yao J, Li Z, Liu T. Novel Potential Biomarkers Associated With Epithelial to Mesenchymal Transition and Bladder Cancer Prognosis Identified by Integrated Bioinformatic Analysis. Front Oncol 2020; 10:931. [PMID: 32695668 PMCID: PMC7338771 DOI: 10.3389/fonc.2020.00931] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Bladder cancer (BC) is one of the most common malignancies in terms of incidence and recurrence worldwide. The aim of this study was to identify novel prognostic biomarkers related to BC progression utilizing weighted gene co-expression network analysis (WGCNA) and further bioinformatic analysis. First, we constructed a co-expression network by using WGCNA among 274 TCGA-BLCA patients and preliminarily screened out four genes (CORO1C, TMPRSS4, PIK3C2B, and ZNF692) associated with advanced clinical traits. In support, GSE19915 and specimens from 124 patients were used to validate the genes selected by WGCNA; then, CORO1C and TMPRSS4 were confirmed as hub genes with strong prognostic values in BC. Moreover, the result of gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) indicated that CORO1C and TMPRSS4 might be involved in the process of epithelial to mesenchymal transition (EMT) reversely. In addition, high expression of CORO1C was found to be significantly correlated with tumor-infiltrating neutrophils (TINs), a negative regulatory component that facilitates tumor distant progression and induces poor clinical outcome. In conclusion, our study first identified CORO1C and TMPRSS4 as vital regulators in the process of tumor progression through influencing EMT and could be developed to effective prognostic and therapeutic targets in future BC treatment.
Collapse
Affiliation(s)
- Chengyuan Wang
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yujing Yang
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Lei Yin
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ningde Wei
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ting Hong
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zuyu Sun
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiaxi Yao
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhi Li
- Department of Medical Oncology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Tao Liu
- Department of Urology, The First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|
25
|
Degtyareva AO, Leberfarb EY, Efimova EG, Brusentsov II, Usova AV, Lushnikova EL, Merkulova TI. rs2072580T>A Polymorphism in the Overlapping Promoter Regions of the SART3 and ISCU Genes Associated with the Risk of Breast Cancer. Bull Exp Biol Med 2020; 169:81-84. [PMID: 32495170 DOI: 10.1007/s10517-020-04829-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Indexed: 10/24/2022]
Abstract
We analyzed association of potentially regulatory polymorphisms (rs590352, rs11542583, rs3829202, rs207258, and rs4796672) with breast cancer. A significant association was found between this disease and rs2072580T>A (p=0.001) located in the overlapping promoter regions of the SART3 and ISCU genes. In women with AA and AT genotypes, the risk of breast cancer is higher by 6.7 times (p=0.001) and 12 times (p=0.001), respectively, in comparison with TT genotype. Under a codominant model of inheritance (AT vs AA+TT), the risk of breast cancer was increased by 4.2 times (р=0.001) for the AT genotype. Under a recessive model of inheritance (TT vs AA+TT), the risk of disease was 10-fold higher (р=0.001) for the TT genotype. It has been demonstrated that the T>A substitution affects the binding properties of transcription factors CREB1 and REST.
Collapse
Affiliation(s)
- A O Degtyareva
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia.
| | - E Y Leberfarb
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk State Medical University, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - E G Efimova
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - I I Brusentsov
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia
| | - A V Usova
- Novosibirsk State Medical University, Ministry of Health of the Russian Federation, Novosibirsk, Russia
| | - E L Lushnikova
- Institute for Molecular Pathology and Pathomorphology, Federal Research Center for Fundamental and Translational Medicine, Novosibirsk, Russia
| | - T I Merkulova
- Federal Research Center Institute of Cytology and Genetics, Siberian Division of Russian Academy of Sciences, Novosibirsk, Russia.,Novosibirsk National Research State University, Novosibirsk, Russia
| |
Collapse
|
26
|
Wu Y, Zhang Y, Zheng X, Dai F, Lu Y, Dai L, Niu M, Guo H, Li W, Xue X, Bo Y, Guo Y, Qin J, Qin Y, Liu H, Zhang Y, Yang T, Li L, Zhang L, Hou R, Wen S, An C, Li H, Xu W, Gao W. Circular RNA circCORO1C promotes laryngeal squamous cell carcinoma progression by modulating the let-7c-5p/PBX3 axis. Mol Cancer 2020; 19:99. [PMID: 32487167 PMCID: PMC7265647 DOI: 10.1186/s12943-020-01215-4] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 05/11/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Laryngeal squamous cell carcinoma (LSCC) is a common malignant tumor of the head and neck. LSCC patients have seriously impaired vocal, respiratory, and swallowing functions with poor prognosis. Circular RNA (circRNA) has attracted great attention in cancer research. However, the expression patterns and roles of circRNAs in LSCC remain largely unknown. METHODS RNA sequencing was performed on 57 pairs of LSCC and matched adjacent normal mucosa tissues to construct circRNA, miRNA, and mRNA expression profiles. RT-PCR, qPCR, Sanger sequencing, and FISH were undertaken to study the expression, localization, and clinical significance of circCORO1C in LSCC tissues and cells. The functions of circCORO1C in LSCC were investigated by RNAi-mediated knockdown, proliferation analysis, EdU staining, colony formation assay, Transwell assay, and apoptosis analysis. The regulatory mechanisms among circCORO1C, let-7c-5p, and PBX3 were investigated by luciferase assay, RNA immunoprecipitation, western blotting, and immunohistochemistry. RESULTS circCORO1C was highly expressed in LSCC tissues and cells, and this high expression was closely associated with the malignant progression and poor prognosis of LSCC. Knockdown of circCORO1C inhibited the proliferation, migration, invasion, and in vivo tumorigenesis of LSCC cells. Mechanistic studies revealed that circCORO1C competitively bound to let-7c-5p and prevented it from decreasing the level of PBX3, which promoted the epithelial-mesenchymal transition and finally facilitated the malignant progression of LSCC. CONCLUSIONS circCORO1C has an oncogenic role in LSCC progression and may serve as a novel target for LSCC therapy. circCORO1C expression has the potential to serve as a novel diagnostic and prognostic biomarker for LSCC detection.
Collapse
Affiliation(s)
- Yongyan Wu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yuliang Zhang
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Xiwang Zheng
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Fengsheng Dai
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yan Lu
- Department of Otolaryngology Head & Neck Surgery, The First Hospital, Jinzhou Medical University, Jinzhou, 121001, Liaoning, People's Republic of China
| | - Li Dai
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Min Niu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Huina Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Wenqi Li
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yunfeng Bo
- Department of Pathology, Shanxi Cancer Hospital, Shanxi Medical University, Taiyuan, 030013, Shanxi, People's Republic of China
| | - Yujia Guo
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Jiangbo Qin
- Department of Otolaryngology Head & Neck Surgery, Heping Hospital Affiliated to Changzhi Medical College, Changzhi, 046000, Shanxi, People's Republic of China
| | - Yixiao Qin
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Hongliang Liu
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Department of Cell Biology and Genetics, Basic Medical School of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Yu Zhang
- Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.,Department of Physiology, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Tao Yang
- Department of Biochemistry & Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Li Li
- Department of Cell Biology and Genetics, Basic Medical School of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China
| | - Linshi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, Zhejiang, People's Republic of China
| | - Rui Hou
- Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, the University of Western Australia, PO Box 7214, 6 Verdun Street, Nedlands, Perth, Western Australia, 6009, Australia
| | - Shuxin Wen
- General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, People's Republic of China
| | - Changming An
- Department of Head and Neck Surgery, Cancer Hospital, National Cancer Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100021, People's Republic of China.
| | - Huizheng Li
- Department of Otolaryngology Head & Neck Surgery, Dalian Municipal Friendship Hospital, Dalian Medical University, Dalian, 116100, Liaoning, People's Republic of China.
| | - Wei Xu
- Shandong Provincial ENT Hospital Affiliated to Shandong University, Jinan, 250022, Shandong, People's Republic of China. .,Shandong Provincial Institute of Otolaryngology, Jinan, 250022, Shandong, People's Republic of China. .,Key Laboratory of Otolaryngology, Ministry of Health, Shandong University, Jinan, 250022, Shandong, People's Republic of China.
| | - Wei Gao
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China. .,Shanxi Province Clinical Medical Research Center for Precision Medicine of Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China. .,Department of Otolaryngology Head & Neck Surgery, The First Hospital of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China. .,Key Laboratory of Cellular Physiology, Ministry of Education, Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China. .,Department of Cell Biology and Genetics, Basic Medical School of Shanxi Medical University, Taiyuan, 030001, Shanxi, People's Republic of China.
| |
Collapse
|
27
|
Solga R, Behrens J, Ziemann A, Riou A, Berwanger C, Becker L, Garrett L, de Angelis MH, Fischer L, Coras R, Barkovits K, Marcus K, Mahabir E, Eichinger L, Schröder R, Noegel AA, Clemen CS. CRN2 binds to TIMP4 and MMP14 and promotes perivascular invasion of glioblastoma cells. Eur J Cell Biol 2019; 98:151046. [PMID: 31677819 DOI: 10.1016/j.ejcb.2019.151046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/13/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022] Open
Abstract
CRN2 is an actin filament binding protein involved in the regulation of various cellular processes including cell migration and invasion. CRN2 has been implicated in the malignant progression of different types of human cancer. We used CRN2 knock-out mice for analyses as well as for crossbreeding with a Tp53/Pten knock-out glioblastoma mouse model. CRN2 knock-out mice were subjected to a phenotyping screen at the German Mouse Clinic. Murine glioblastoma tissue specimens as well as cultured murine brain slices and glioblastoma cell lines were investigated by immunohistochemistry, immunofluorescence, and cell biological experiments. Protein interactions were studied by immunoprecipitation, pull-down, and enzyme activity assays. CRN2 knock-out mice displayed neurological and behavioural alterations, e.g. reduced hearing sensitivity, reduced acoustic startle response, hypoactivity, and less frequent urination. While glioblastoma mice with or without the additional CRN2 knock-out allele exhibited no significant difference in their survival rates, the increased levels of CRN2 in transplanted glioblastoma cells caused a higher tumour cell encasement of murine brain slice capillaries. We identified two important factors of the tumour microenvironment, the tissue inhibitor of matrix metalloproteinase 4 (TIMP4) and the matrix metalloproteinase 14 (MMP14, synonym: MT1-MMP), as novel binding partners of CRN2. All three proteins mutually interacted and co-localised at the front of lamellipodia, and CRN2 was newly detected in exosomes. On the functional level, we demonstrate that CRN2 increased the secretion of TIMP4 as well as the catalytic activity of MMP14. Our results imply that CRN2 represents a pro-invasive effector within the tumour cell microenvironment of glioblastoma multiforme.
Collapse
Affiliation(s)
- Roxana Solga
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Juliane Behrens
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Anja Ziemann
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Adrien Riou
- In-vivo NMR, Max Planck Institute for Metabolism Research, 50931, Cologne, Germany
| | - Carolin Berwanger
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany; Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147, Cologne, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Centre Munich, German Research Centre for Environmental Health, 85764, Neuherberg, Germany
| | - Lillian Garrett
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Centre Munich, German Research Centre for Environmental Health, 85764, Neuherberg, Germany; Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Centre Munich, German Research Centre for Environmental Health, 85764, Neuherberg, Germany; Chair of Experimental Genetics, School of Life Science Weihenstephan, Technische Universität München, 85354, Freising, Germany; German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Lisa Fischer
- Comparative Medicine, Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - Roland Coras
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Katalin Barkovits
- Medizinisches Proteom‑Center, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Katrin Marcus
- Medizinisches Proteom‑Center, Medical Faculty, Ruhr-University Bochum, 44801, Bochum, Germany
| | - Esther Mahabir
- Comparative Medicine, Center for Molecular Medicine Cologne, University of Cologne, 50931, Cologne, Germany
| | - Ludwig Eichinger
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany
| | - Rolf Schröder
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - Angelika A Noegel
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany.
| | - Christoph S Clemen
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931, Cologne, Germany; Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054, Erlangen, Germany; Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, 50931, Cologne, Germany.
| |
Collapse
|