1
|
Jangra R, Trant J, Sharma P. Water-mediated ribonucleotide-amino acid pairs and higher-order structures at the RNA-protein interface: analysis of the crystal structure database and a topological classification. NAR Genom Bioinform 2024; 6:lqae161. [PMID: 39664815 PMCID: PMC11632616 DOI: 10.1093/nargab/lqae161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/16/2024] [Accepted: 11/07/2024] [Indexed: 12/13/2024] Open
Abstract
Water is essential for the formation, stability and function of RNA-protein complexes. To delineate the structural role of water molecules in shaping the interactions between RNA and proteins, we comprehensively analyzed a dataset of 329 crystal structures of these complexes to identify water-mediated hydrogen-bonded contacts at RNA-protein interface. Our survey identified a total of 4963 water bridges. We then employed a graph theory-based approach to present a robust classification scheme, encompassing triplets, quartets and quintet bridging topologies, each further delineated into sub-topologies. The frequency of water bridges within each topology decreases with the increasing degree of water node, with simple triplet water bridges outnumbering the higher-order topologies. Overall, this analysis demonstrates the variety of water-mediated interactions and highlights the importance of water as not only the medium but also the organizing principle underlying biomolecular interactions. Further, our study emphasizes the functional significance of water-mediated interactions in RNA-protein complexes, and paving the way for exploring how these interactions operate in complex biological environments. Altogether, this understanding not only enhances insights into biomolecular dynamics but also informs the rational design of RNA-protein complexes, providing a framework for potential applications in biotechnology and therapeutics. All the scripts, and data are available at https://github.com/PSCPU/waterbridges.
Collapse
Affiliation(s)
- Raman Jangra
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Sector 14, Chandigarh 160014, India
| | - John F Trant
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave. Windsor, ON, N9B 3P4, Canada
- We-Spark Health Institute, University of Windsor, 401 Sunset Ave. Windsor ON, N9B 3P4, Canada
- Binary Star Research Services, University of Windsor, LaSalle, ON, N9J 3X8, Canada
| | - Purshotam Sharma
- Computational Biochemistry Laboratory, Department of Chemistry and Centre for Advanced Studies in Chemistry, Panjab University, Sector 14, Chandigarh 160014, India
- Department of Chemistry and Biochemistry, University of Windsor, 401 Sunset Ave. Windsor, ON, N9B 3P4, Canada
| |
Collapse
|
2
|
Brouwer B, Della-Felice F, Illies JH, Iglesias-Moncayo E, Roelfes G, Drienovská I. Noncanonical Amino Acids: Bringing New-to-Nature Functionalities to Biocatalysis. Chem Rev 2024; 124:10877-10923. [PMID: 39329413 PMCID: PMC11467907 DOI: 10.1021/acs.chemrev.4c00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
Biocatalysis has become an important component of modern organic chemistry, presenting an efficient and environmentally friendly approach to synthetic transformations. Advances in molecular biology, computational modeling, and protein engineering have unlocked the full potential of enzymes in various industrial applications. However, the inherent limitations of the natural building blocks have sparked a revolutionary shift. In vivo genetic incorporation of noncanonical amino acids exceeds the conventional 20 amino acids, opening new avenues for innovation. This review provides a comprehensive overview of applications of noncanonical amino acids in biocatalysis. We aim to examine the field from multiple perspectives, ranging from their impact on enzymatic reactions to the creation of novel active sites, and subsequent catalysis of new-to-nature reactions. Finally, we discuss the challenges, limitations, and promising opportunities within this dynamic research domain.
Collapse
Affiliation(s)
- Bart Brouwer
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Franco Della-Felice
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Jan Hendrik Illies
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Emilia Iglesias-Moncayo
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Gerard Roelfes
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ivana Drienovská
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
3
|
Li Z, Bilic M, Nagar B. Isolation of short RNAs with homogeneous 3'-ends using quaternary-amine anion exchange chromatography. Biol Methods Protoc 2024; 9:bpae033. [PMID: 38855193 PMCID: PMC11162090 DOI: 10.1093/biomethods/bpae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 06/11/2024] Open
Abstract
Visualizing RNA-protein interactions through structural approaches requires the use of RNA molecules purified to homogeneity. We describe here a simple and effective method, free of acrylamide contamination and without using UV radiation, to separate in vitro synthesized, heterogeneous RNA transcripts (up to ∼15 nucleotides) at single-nucleotide resolution by quaternary-amine anion exchange chromatography. The quality of short RNAs isolated through this method is validated by gel electrophoresis, mass spectrometry, and crystallization with a protein-binding partner.
Collapse
Affiliation(s)
- Zixian Li
- Department of Biochemistry and Centre de recherche en biologie structurale, McGill University, Montreal, QC H3G 0B1, Canada
| | - Mia Bilic
- Department of Biochemistry and Centre de recherche en biologie structurale, McGill University, Montreal, QC H3G 0B1, Canada
| | - Bhushan Nagar
- Department of Biochemistry and Centre de recherche en biologie structurale, McGill University, Montreal, QC H3G 0B1, Canada
| |
Collapse
|
4
|
DeMell A, Mendoza MR, Scholthof HB. A tomato bushy stunt virus-based vector for simultaneous editing and sensing to survey the host antiviral RNA silencing machinery. PNAS NEXUS 2024; 3:pgad436. [PMID: 38264147 PMCID: PMC10805433 DOI: 10.1093/pnasnexus/pgad436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 12/06/2023] [Indexed: 01/25/2024]
Abstract
A tomato bushy stunt virus (TBSV)-derived vector system was applied for the delivery of CRISPR/Cas9 gene editing materials, to facilitate rapid, transient assays of host-virus interactions involved in the RNA silencing pathway. Toward this, single guide RNAs designed to target key components of the virus-induced host RNA silencing pathway (AGO2, DCL2, HEN1) were inserted into TBSV-based GFP-expressing viral vectors TBSV-GFP (TG) and its P19 defective mutant TGΔP19. This produced rapid, efficient, and specific gene editing in planta. Targeting AGO2, DCL2, or HEN1 partially rescued the lack of GFP accumulation otherwise associated with TGΔP19. Since the rescue phenotypes are normally only observed in the presence of the P19 silencing suppressor, the results support that the DCL2, HEN1, and AGO2 proteins are involved in anti-TBSV RNA silencing. Additionally, we show that knockdown of the RNA silencing machinery increases cargo expression from a nonviral binary Cas9 vector. The TBSV-based gene editing technology described in this study can be adapted for transient heterologous expression, rapid gene function screens, and molecular interaction studies in many plant species considering the wide host range of TBSV. In summary, we demonstrate that a plant virus can be used to establish gene editing while simultaneously serving as an accumulation sensor for successful targeting of its homologous antiviral silencing machinery components.
Collapse
Affiliation(s)
- April DeMell
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
- Present address: Plant Biology, UC Davis, Davis, CA, USA
| | - Maria R Mendoza
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
- Present address: Fujifilm Diosynth Biotechnologies Texas, College Station, TX, USA
| | - Herman B Scholthof
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
5
|
Ahmed N, Ahmed N, Bilodeau DA, Pezacki JP. An unnatural enzyme with endonuclease activity towards small non-coding RNAs. Nat Commun 2023; 14:3777. [PMID: 37355703 PMCID: PMC10290691 DOI: 10.1038/s41467-023-39105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 05/25/2023] [Indexed: 06/26/2023] Open
Abstract
Endonucleases are enzymes that cleave internal phosphodiester bonds within double-stranded DNA or RNA and are essential for biological functions. Herein, we use genetic code expansion to create an unnatural endonuclease that cleaves non-coding RNAs including short interfering RNA (siRNA) and microRNAs (miRNAs), a function that does not exist in nature. We introduce a metal-chelating unnatural amino acid, (2,2'-bipyridin-5-yl)alanine (BpyAla) to impart endonuclease activity to the viral suppressor of RNA silencing protein p19. Upon binding of copper, the mutant p19-T111BpyAla displays catalytic site-specific cleavage of siRNA and human miRNAs. Catalysis is confirmed using fluorescence polarization and fluorescence turn-on. Global miRNA profiling reveals that the engineered enzyme cleaves miRNAs in a human cell line. The therapeutic potential is demonstrated by targeting miR-122, a critical host factor for the hepatitis C virus (HCV). Unnatural endonuclease function is shown to deplete miR-122 levels with similar effects to an antagomir that reduces HCV levels therapeutically.
Collapse
Affiliation(s)
- Noreen Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Nadine Ahmed
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - Didier A Bilodeau
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada
| | - John Paul Pezacki
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, Ottawa, Ontario, K1N 6N5, Canada.
| |
Collapse
|
6
|
Liang XN, Xu LY, Zhai ML, Zhang J. Treatment and nursing values of a new mixed-ligand In(III)-based complex on acute ischemic stroke. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Pertermann R, Golbik RP, Tamilarasan S, Gursinsky T, Gago-Zachert S, Pantaleo V, Thondorf I, Behrens SE. RNA and Protein Determinants Mediate Differential Binding of miRNAs by a Viral Suppressor of RNA Silencing Thus Modulating Antiviral Immune Responses in Plants. Int J Mol Sci 2022; 23:4977. [PMID: 35563369 PMCID: PMC9103804 DOI: 10.3390/ijms23094977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
Many plant viruses express suppressor proteins (VSRs) that can inhibit RNA silencing, a central component of antiviral plant immunity. The most common activity of VSRs is the high-affinity binding of virus-derived siRNAs and thus their sequestration from the silencing process. Since siRNAs share large homologies with miRNAs, VSRs like the Tombusvirus p19 may also bind miRNAs and in this way modulate cellular gene expression at the post-transcriptional level. Interestingly, the binding affinity of p19 varies considerably between different miRNAs, and the molecular determinants affecting this property have not yet been adequately characterized. Addressing this, we analyzed the binding of p19 to the miRNAs 162 and 168, which regulate the expression of the important RNA silencing constituents Dicer-like 1 (DCL1) and Argonaute 1 (AGO1), respectively. p19 binds miRNA162 with similar high affinity as siRNA, whereas the affinity for miRNA168 is significantly lower. We show that specific molecular features, such as mismatches and 'G-U wobbles' on the RNA side and defined amino acid residues on the VSR side, mediate this property. Our observations highlight the remarkable adaptation of VSR binding affinities to achieve differential effects on host miRNA activities. Moreover, they show that even minimal changes, i.e., a single base pair in a miRNA duplex, can have significant effects on the efficiency of the plant antiviral immune response.
Collapse
Affiliation(s)
- Robert Pertermann
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Saale, 06120 Halle, Germany; (R.P.); (R.P.G.); (S.T.); (T.G.); (S.G.-Z.); (I.T.)
| | - Ralph Peter Golbik
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Saale, 06120 Halle, Germany; (R.P.); (R.P.G.); (S.T.); (T.G.); (S.G.-Z.); (I.T.)
| | - Selvaraj Tamilarasan
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Saale, 06120 Halle, Germany; (R.P.); (R.P.G.); (S.T.); (T.G.); (S.G.-Z.); (I.T.)
| | - Torsten Gursinsky
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Saale, 06120 Halle, Germany; (R.P.); (R.P.G.); (S.T.); (T.G.); (S.G.-Z.); (I.T.)
| | - Selma Gago-Zachert
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Saale, 06120 Halle, Germany; (R.P.); (R.P.G.); (S.T.); (T.G.); (S.G.-Z.); (I.T.)
| | - Vitantonio Pantaleo
- Department of Biology, Agricultural and Food Sciences, Institute for Sustainable Plant Protection, Bari Unit, CNR, 70126 Bari, Italy;
| | - Iris Thondorf
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Saale, 06120 Halle, Germany; (R.P.); (R.P.G.); (S.T.); (T.G.); (S.G.-Z.); (I.T.)
| | - Sven-Erik Behrens
- Institute of Biochemistry and Biotechnology, Martin Luther University Halle-Wittenberg, Saale, 06120 Halle, Germany; (R.P.); (R.P.G.); (S.T.); (T.G.); (S.G.-Z.); (I.T.)
| |
Collapse
|
8
|
Ahmed N, Foss DV, Powdrill MH, Pezacki JP. Site-Specific Cross-Linking of a p19 Viral Suppressor of RNA Silencing Protein and Its RNA Targets Using an Expanded Genetic Code. Biochemistry 2019; 58:3520-3526. [PMID: 31329415 DOI: 10.1021/acs.biochem.9b00428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The p19 viral suppressor of RNA silencing protein has useful applications in biotechnology due to its high affinity for binding to small RNAs such as small interfering RNAs (siRNAs). Also, its applications for the study and modulation of microRNAs are actively expanding. Here we demonstrate the successful site-specific incorporation of a photoactivatable unnatural amino acid, p-azido-l-phenylalanine (AzF), for cross-linking to RNA substrates into the p19 sequence. Incorporation of AzF was performed at three positions in the protein near the RNA binding site: K67, R115, and T111. Incorporation of AzF at position T111 of p19 did not affect the binding affinity of p19 for siRNAs and also showed nanomolar affinity for human microRNA miR-122. The affinity was less favorable with AzF incorporation at two other positions, suggesting the sensitivity of placement of the unnatural amino acid. Exposure of the T111AzF in complex with either siRNA or miRNA to ultraviolet light resulted in cross-linking of the protein with the RNA, but no cross-linking could be detected with the wild-type protein. Our results demonstrate that p19-T111AzF can be used for detection of small RNAs, including human miR-122, with high sensitivity and to irreversibly sequester these RNAs through covalent photo-cross-linking.
Collapse
Affiliation(s)
- Noreen Ahmed
- Department of Biochemistry, Microbiology and Immunology , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - Dana V Foss
- Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - Megan H Powdrill
- Department of Biochemistry, Microbiology and Immunology , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - John Paul Pezacki
- Department of Biochemistry, Microbiology and Immunology , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada.,Department of Chemistry and Biomolecular Sciences , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| |
Collapse
|