1
|
Goyal H, Parwani S, Kaur J. Deciphering the nexus between long non-coding RNAs and endoplasmic reticulum stress in hepatocellular carcinoma: biomarker discovery and therapeutic horizons. Cell Death Discov 2024; 10:451. [PMID: 39448589 PMCID: PMC11502918 DOI: 10.1038/s41420-024-02200-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
Hepatocellular carcinoma (HCC) remains a significant global health challenge with few effective treatment options. The dysregulation of endoplasmic reticulum (ER) stress responses has emerged as a pivotal factor in HCC progression and therapy resistance. Long non-coding RNAs (lncRNAs) play a crucial role as key epigenetic modifiers in this process. Recent research has explored how lncRNAs influence ER stress which in turn affects lncRNAs activity in HCC. We systematically analyze the current literature to highlight the regulatory roles of lncRNAs in modulating ER stress and vice versa in HCC. Our scrutinization highlights how dysregulated lncRNAs contribute to various facets of HCC, including apoptosis resistance, enhanced proliferation, invasion, and metastasis, all driven by ER stress. Moreover, we delve into the emerging paradigm of the lncRNA-miRNA-mRNA axis, elucidating it as the promising avenue for developing novel biomarkers and paving the way for more personalized treatment options in HCC. Nevertheless, we acknowledge the challenges and future directions in translating these insights into clinical practice. In conclusion, our review provides insights into the complex regulatory mechanisms governing ER stress modulation by lncRNAs in HCC.
Collapse
Affiliation(s)
- Himanshi Goyal
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sachin Parwani
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Jyotdeep Kaur
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India.
| |
Collapse
|
2
|
An J, Shi J, Yang C, Luo J, Li Y, Ren J, Lv Y, Zhang Y. Regulation of tumorigenesis and ferroptosis in non-small cell lung cancer by a novel BBOX1-AS1/miR-326/PROM2 axis. Mol Cell Biochem 2024; 479:2143-2155. [PMID: 37639200 DOI: 10.1007/s11010-023-04837-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/14/2023] [Indexed: 08/29/2023]
Abstract
Dysregulation of long non-coding RNAs (lncRNAs) is associated with the tumorigenesis and ferroptosis of non-small cell lung cancer (NSCLC). BBOX1 antisense RNA 1 (BBOX1-AS1) functions as an oncogenic driver in NSCLC. Here, we aim to investigate the regulation effect and underlying mechanism of BBOX1-AS1 in NSCLC progression and ferroptosis. RNA expression was detected by quantitative real-time PCR (qRT-PCR), and protein expression was measured by immunoblotting. Cell growth was assessed by CCK-8 and colony formation assays. Transwell assay was applied to evaluate cell invasion and migration. RNA pull-down and dual-luciferase reporter assays were applied to verify the relationship between miR-326 and BBOX1-AS1 or prominin 2 (PROM2). The role of BBOX1-AS1 in NSCLC tumorigenicity was also analyzed by xenograft assays. Silencing BBOX1-AS1 or PROM2 impeded NSCLC cell growth, migration, and invasion. Silencing BBOX1-AS1 induced cell apoptosis and ferroptosis. BBOX1-AS1 up-regulated PROM2 expression, and re-expression of PROM2 reversed the effects of BBOX1-AS1 depletion on cell malignant phenotypes and ferroptosis. BBOX1-AS1 post-transcriptionally modulated PROM2 expression by sponging miR-326. MiR-326 was validated as a mediator of BBOX1-AS1 in regulating NSCLC cell malignant phenotypes and ferroptosis. Additionally, BBOX1-AS1 deficiency in vivo resulted in the suppression of xenograft tumor growth. Together, our study defines a novel BBOX1-AS1/miR-326/PROM2 axis in regulating NSCLC malignant progression and ferroptosis, offering new evidence for the oncogenic role of BBOX1-AS1 in NSCLC. These findings may provide a basis for the future usage of targeting BBOX1-AS1 in NSCLC treatment.
Collapse
MESH Headings
- Animals
- Female
- Humans
- Mice
- Carcinogenesis/genetics
- Carcinogenesis/metabolism
- Carcinoma, Non-Small-Cell Lung/pathology
- Carcinoma, Non-Small-Cell Lung/metabolism
- Carcinoma, Non-Small-Cell Lung/genetics
- Cell Line, Tumor
- Cell Proliferation
- Ferroptosis/genetics
- Gene Expression Regulation, Neoplastic
- Lung Neoplasms/pathology
- Lung Neoplasms/metabolism
- Lung Neoplasms/genetics
- Mice, Inbred BALB C
- Mice, Nude
- MicroRNAs/genetics
- MicroRNAs/metabolism
- RNA, Long Noncoding/genetics
- RNA, Long Noncoding/metabolism
- RNA, Neoplasm/genetics
- RNA, Neoplasm/metabolism
- RNA, Antisense
- gamma-Butyrobetaine Dioxygenase/genetics
Collapse
Affiliation(s)
- Jinlu An
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Jiang Shi
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China.
| | - Chao Yang
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Junfang Luo
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Yuning Li
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Jie Ren
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Yuanjun Lv
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| | - Yang Zhang
- Department of Geriatric Respiratory Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe East Road, Zhengzhou, 450052, China
| |
Collapse
|
3
|
Zhu X, Li X, Zhang M, Ni J. LncRNA BBOX1-AS1 Contributes to Laryngeal Carcinoma Progression by Recruiting SRSF1 to Maintain EFNB2 mRNA Stability. Biochem Genet 2024:10.1007/s10528-024-10879-2. [PMID: 38965134 DOI: 10.1007/s10528-024-10879-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/27/2024] [Indexed: 07/06/2024]
Abstract
Laryngeal cancer is a common malignancy of the larynx with a generally poor prognosis. This study systematically assessed the functional role of lncRNA BBOX1-AS1 in laryngeal carcinoma progression and associated molecular regulatory mechanisms. The proliferation, migration, and invasion of laryngeal carcinoma cells were detected by Cell Counting Kit-8, wound healing, clonal formation, and transwell assays. In addition, the interaction between BBOX1-AS1, Serine/Arginine Splicing Factor 1 (SRSF1), and Ephrin-B2 (EFNB2) mRNA was examined employing RNA immunoprecipitation and RNA pull-down experiments. Furthermore, western blotting, and RT-qPCR assays were adopted to detect the expression levels of BBOX1-AS1, SRSF1, and EFNB2. The impact of BBOX1-AS1 and SRSF1 on EFNB2 mRNA stability was examined using the RNA stability assay. BBOX1-AS1 was highly expressed in human laryngeal carcinoma tissues and cell lines. BBOX1-AS1 knockdown suppressed the growth, proliferation, migration, and invasion of laryngeal carcinoma cells. BBOX1-AS1 maintained the stability of EFNB2 mRNA in laryngeal carcinoma cells by recruiting SRSF1. EFNB2 knockdown inhibited the growth and metastatic function of laryngeal carcinoma cells in vitro. EFNB2 overexpression reversed the influence of BBOX1-AS1 knockdown on laryngeal cancer tumorigenesis. BBOX1-AS1 maintained EFNB2 mRNA stability by recruiting SRSF1, thereby aggravating laryngeal carcinoma malignant phenotypes. BBOX1-AS1 might be a new theoretical target for the treatment of laryngeal carcinoma.
Collapse
Affiliation(s)
- Xiaowen Zhu
- General Surgery Fourth Ward, First Affiliated Hospital of Jiamusi University, No.348 Dexiang Street, Xiangyang District, Jiamusi, 154007, Heilongjiang, China
| | - Xuan Li
- Physical Examination Center, First Affiliated Hospital of Jiamusi University, Jiamusi, 154007, Heilongjiang, China
| | - MeiJia Zhang
- Department of Otolaryngology, The First Affiliated Hospital of Jiamusi University, No.348 Dexiang Street, Xiangyang District, Jiamusi, 154007, Heilongjiang, China.
| | - Jian Ni
- General Surgery Fourth Ward, First Affiliated Hospital of Jiamusi University, No.348 Dexiang Street, Xiangyang District, Jiamusi, 154007, Heilongjiang, China.
| |
Collapse
|
4
|
Lin Y, Zhao W, Lv Z, Xie H, Li Y, Zhang Z. The functions and mechanisms of long non-coding RNA in colorectal cancer. Front Oncol 2024; 14:1419972. [PMID: 39026978 PMCID: PMC11254705 DOI: 10.3389/fonc.2024.1419972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/18/2024] [Indexed: 07/20/2024] Open
Abstract
CRC poses a significant challenge in the global health domain, with a high number of deaths attributed to this disease annually. If CRC is detected only in its advanced stages, the difficulty of treatment increases significantly. Therefore, biomarkers for the early detection of CRC play a crucial role in improving patient outcomes and increasing survival rates. The development of a reliable biomarker for early detection of CRC is particularly important for timely diagnosis and treatment. However, current methods for CRC detection, such as endoscopic examination, blood, and stool tests, have certain limitations and often only detect cases in the late stages. To overcome these constraints, researchers have turned their attention to molecular biomarkers, which are considered a promising approach to improving CRC detection. Non-invasive methods using biomarkers such as mRNA, circulating cell-free DNA, microRNA, LncRNA, and proteins can provide more reliable diagnostic information. These biomarkers can be found in blood, tissue, stool, and volatile organic compounds. Identifying molecular biomarkers with high sensitivity and specificity for the early and safe, economic, and easily measurable detection of CRC remains a significant challenge for researchers.
Collapse
Affiliation(s)
- Yuning Lin
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Wenzhen Zhao
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Zhenyi Lv
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Hongyan Xie
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| | - Ying Li
- Ultrasonography Department, Women and Children’s Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Zhongying Zhang
- Medical Laboratory, Xiamen Humanity Hospital, Fujian Medical University, Xiamen, China
| |
Collapse
|
5
|
Lotfi E, Kholghi A, Golab F, Mohammadi A, Barati M. Circulating miRNAs and lncRNAs serve as biomarkers for early colorectal cancer diagnosis. Pathol Res Pract 2024; 255:155187. [PMID: 38377721 DOI: 10.1016/j.prp.2024.155187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
BACKGROUND Colorectal cancer (CRC), the third most prevalent and lethal disease, accounted for approximately 1.9 million new cases and claimed nearly 861,000 lives in 2018. It is imperative to develop a minimally invasive diagnostic technique for early identification of CRC. This would facilitate the selection of patient populations most suitable for clinical trials, monitoring disease progression, assessing treatment effectiveness, and enhancing overall patient care. Utilizing blood as a biomarker source is advantageous due to its minimal discomfort for patients, enabling better integration into clinical and follow-up trials. Recent findings indicate that long noncoding RNAs (lncRNAs) and microRNAs (miRNAs) are detectable in the blood of cancer patients, proving crucial in diagnosing various malignancies. METHODS In this case-control study, we collected plasma samples from 30 patients diagnosed with colorectal cancer (CRC) and 30 healthy volunteers. Following RNA extraction, we measured the expression levels of specific biomolecules, including miR-410, miR-211, miR-139, miR-197, lncRNA UICLM, lncRNA FEZF1-AS1, miR-129, lncRNA CCAT1, lncRNA BBOX1-AS1, and lncRNA LINC00698, using real-time quantitative polymerase chain reaction (RT-qPCR). The obtained data underwent analysis using the Mann-Whitney test for non-parametric data and the T-test for parametric data. RESULTS The level of miR-410, miR-211, miR-139, miR-197, lncRNA UICLM, lncRNA FEZF1-AS1 were significantly higher in patients with CRC than healthy controls (p < .05). Meanwhile, the level of miR-129, lncRNA CCAT1, lncRNA BBOX1-AS1, and lncRNA LINC00698 were higher in healthy controls than in CRC patients (p < .05). CONCLUSION MicroRNA (miRNA) and long noncoding RNAs (lncRNAs) have recently emerged as detectable entities in the blood of cancer patients, playing crucial roles in diagnosing various malignancies. However, their specific relevance in the diagnosis of colorectal cancer (CRC) remains underexplored. This study aimed to investigate miRNA and lncRNA profiles in the plasma fraction of human blood to discern significant differences in content and expression levels between CRC patients and healthy individuals. Our cohort comprised 30 CRC patients and 30 healthy controls, with no statistically significant differences (p < 0.05) in age or gender observed between the two groups. Noteworthy is the uniqueness of our study, as we identified a panel of three significant microRNAs and one significant lncRNA, providing a more reliable prediction compared to existing molecular markers in diagnosing CRC. The four genes examined, including miR-211, miR-129, miR-197, and lncRNA UICLM, demonstrated impeccable results in terms of sensitivity and specificity, suggesting their potential candidacy for inclusion in diagnostic panels. Further validation in a larger statistical population is recommended to confirm the robustness of these genes as promising markers for colorectal cancer diagnosis.
Collapse
Affiliation(s)
- Ehsan Lotfi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical sciences, Tehran, Iran
| | - Azam Kholghi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical sciences, Tehran, Iran
| | - Fereshteh Golab
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Mohammadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical sciences, Tehran, Iran
| | - Mahmood Barati
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical sciences, Tehran, Iran.
| |
Collapse
|
6
|
Chandel SS, Mishra A, Dubey G, Singh RP, Singh M, Agarwal M, Chawra HS, Kukreti N. Unravelling the role of long non-coding RNAs in modulating the Hedgehog pathway in cancer. Pathol Res Pract 2024; 254:155156. [PMID: 38309021 DOI: 10.1016/j.prp.2024.155156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 02/05/2024]
Abstract
Cancer is a multifactorial pathological condition characterized by uncontrolled cellular proliferation, genomic instability, and evasion of regulatory mechanisms. It arises from the accumulation of genetic mutations confer selective growth advantages, leading to malignant transformation and tumor formation. The intricate interplay between LncRNAs and the Hedgehog pathway has emerged as a captivating frontier in cancer research. The Hedgehog pathway, known for its fundamental roles in embryonic development and tissue homeostasis, is frequently dysregulated in various cancers, contributing to aberrant cellular proliferation, survival, and differentiation. The Hh pathway is crucial in organizing growth and maturation processes in multicellular organisms. It plays a pivotal role in the initiation of tumors as well as in conferring resistance to conventional therapeutic approaches. The crosstalk among the Hh pathway and lncRNAs affects the expression of Hh signaling components through various transcriptional and post-transcriptional processes. Numerous pathogenic processes, including both non-malignant and malignant illnesses, have been identified to be induced by this interaction. The dysregulation of lncRNAs has been associated with the activation or inhibition of the Hh pathway, making it a potential therapeutic target against tumorigenesis. Insights into the functional significance of LncRNAs in Hedgehog pathway modulation provide promising avenues for diagnostic and therapeutic interventions. The dysregulation of LncRNAs in various cancer types underscores their potential as biomarkers for early detection and prognostication. Additionally, targeting LncRNAs associated with the Hedgehog pathway presents an innovative strategy for developing precision therapeutics to restore pathway homeostasis and impede cancer progression. This review aims to elucidate the complex regulatory network orchestrated by LncRNAs, unravelling their pivotal roles in modulating the Hedgehog pathway and influencing cancer progression.
Collapse
Affiliation(s)
| | - Anurag Mishra
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Gaurav Dubey
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | | | - Mithilesh Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Mohit Agarwal
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India.
| | | | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| |
Collapse
|
7
|
Hu J, Liu J, Zhou S, Luo H. A review on the role of gamma-butyrobetaine hydroxylase 1 antisense RNA 1 in the carcinogenesis and tumor progression. Cancer Cell Int 2023; 23:263. [PMID: 37925403 PMCID: PMC10625699 DOI: 10.1186/s12935-023-03113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/27/2023] [Indexed: 11/06/2023] Open
Abstract
Gamma-butyrobetaine hydroxylase 1 antisense RNA 1 (BBOX1-AS1), located on human chromosome 11 p14, emerges as a critical player in tumorigenesis with diverse oncogenic effects. Aberrant expression of BBOX1-AS1 intricately regulates various cellular processes, including cell growth, epithelial-mesenchymal transition, migration, invasion, metastasis, cell death, and stemness. Notably, the expression of BBOX1-AS1 was significantly correlated with clinical-pathological characteristics and tumor prognoses, and it could also be used for the diagnosis of lung and esophageal cancers. Through its involvement in the ceRNA network, BBOX1-AS1 competitively binds to eight miRNAs in ten different cancer types. Additionally, BBOX1-AS1 can directly modulate downstream protein-coding genes or act as an mRNA stabilizer. The implications of BBOX1-AS1 extend to critical signaling pathways, including Hedgehog, Wnt/β-catenin, and MELK/FAK pathways. Moreover, it influences drug resistance in hepatocellular carcinoma. The present study provides a systematic review of the clinical significance of BBOX1-AS1's aberrant expression in diverse tumor types. It sheds light on the intricate molecular mechanisms through which BBOX1-AS1 influences cancer initiation and progression and outlines potential avenues for future research in this field.
Collapse
Affiliation(s)
- Juan Hu
- Medical Service Division, The Second Affiliated Hospital of Nanchang University, Nanchang, 330000, Jiangxi, China
| | - Jipeng Liu
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330000, Jiangxi, People's Republic of China
| | - Siwei Zhou
- Second School of Clinical Medicine, Nanchang University, Nanchang, 330038, Jiangxi, China
| | - Hongliang Luo
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Nanchang University, 1 Minde Road, Nanchang, 330000, Jiangxi, People's Republic of China.
| |
Collapse
|
8
|
Zhang R, Gao X, Gu X. BBOX1-AS1: A novel oncogenic long non-coding RNA in human cancers. Pathol Res Pract 2023; 250:154810. [PMID: 37696243 DOI: 10.1016/j.prp.2023.154810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 09/08/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Long non-coding RNAs (lncRNAs) are transcripts that contain more than 200 nucleotides. Despite the fact that they cannot encode proteins, many studies have identified roles they play in human cancers through diverse mechanisms. BBOX1-AS1, an oncogenic lncRNA, has recently been demonstrated to participate in tumorigenesis and progression of numerous cancers. Experimental evidence has determined that it participates in diverse biological process, including cell proliferation, invasion, migration, and apoptosis. The dysregulation of BBOX1-AS1 exerts its oncogenicity by acting as a competitive endogenous RNA (ceRNA) or by directly impacting downstream molecules and signaling pathways. Here we summarize the current understanding of the biological functions and clinical significance of BBOX1-AS1 for human cancers.
Collapse
Affiliation(s)
- Renfang Zhang
- Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | - Xiaohui Gao
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471000, Henan, China
| | - Xinyu Gu
- Department of Oncology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang 471000, Henan, China.
| |
Collapse
|
9
|
Lin G, Wang Y, Deng L, Ye T. Prognostic effect of lncRNA BBOX1-AS1 in malignancies: a meta-analysis. Front Genet 2023; 14:1234040. [PMID: 37636267 PMCID: PMC10453800 DOI: 10.3389/fgene.2023.1234040] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 07/21/2023] [Indexed: 08/29/2023] Open
Abstract
Background: With the increasing number of new cancer cases and mortality rates, cancer has become a serious global health problem, but there are no ideal cancer biomarkers for effective diagnosis. Currently, mounting evidence demonstrates that lncRNAs play a fundamental role in cancer progression. BBOX1 anti-sense RNA 1 (BBOX1-AS1) is a recently clarified lncRNA and has been identified as dysregulated in various carcinomas, and it contributes to poor survival in cancer patients. Methods: We thoroughly searched six databases for eligible articles published as of 27, April 2023. The association of BBOX1-AS1 expression levels with prognostic and clinicopathological parameters was assessed by odds ratios (OR) and hazard ratios with 95% CIs. Additionally, we further validated our results utilizing the GEPIA online database. Results: Eight studies comprising 602 patients were included in this analysis. High BBOX1-AS1 expression indicated poor overall survival (OS) (hazard ratios = 2.30, 95% Cl [1.99, 2.67], p < 0.00001) when compared with low BBOX1-AS1 expression. Furthermore, BBOX1-AS1 expression was positively correlated with lymph node metastasis (OR = 3.00, 95% CI [1.71-5.28], p = 0.0001) and advanced tumor stage (OR = 3.74, 95% CI [2.63-5.32], p < 0.00001) for cancer patients. Moreover, BBOX1-AS1 was remarkably upregulated in 12 malignancies, and the elevated BBOX1-AS1 expression predicted poorer OS and worse disease-free survival (DFS) confirmed through the GEPIA online gene analysis tool. Conclusion: The findings highlight that BBOX1-AS1 was significantly associated with detrimental overall survival, disease-free survival, lymph node metastasis and tumor stage; thus, it could act as a novel promising biomarker to predict the clinicopathological characteristics and prognosis for various cancers.
Collapse
Affiliation(s)
- Guangyao Lin
- Department of Gynecology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yongzhou Wang
- Department of Gynecology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Li Deng
- Department of Gynecology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| | - Tao Ye
- Department of Gynecology, The Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Ma R, Lu Y, He X, Zeng X. LncRNA BBOX1-AS1 targets miR-361-3p/COL1A1 axis to drive the progression of oesophageal carcinoma. Eur J Clin Invest 2023; 53:e13929. [PMID: 36453878 DOI: 10.1111/eci.13929] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 11/17/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
BACKGROUND Oesophageal carcinoma (EC) is one of the types of prevalent malignant cancer in the globe. Many researchers reported the vital role played by long-coding RNAs in EC. In the current research, we investigated the mechanisms of the action of lncRNA BBOX1-AS1 in EC progression. METHODS In EC tissues and EC cells, the expression levels of miR-361-3p along with COL1A1 and BBOX1-AS1 were detected through RT-qPCR or western blotting. MiR-361-3p interactions with BBOX1-AS1 or COL1A1 were verified through Luciferase reporter and RIP tests. Loss of function combined with caspase-3 activity, CCK-8 and Transwell assays was performed to investigate cell apoptosis, proliferation and migration, respectively. Knockdown of BBOX1-AS1 was used for evaluating BBOX1-AS1 effects on tumour development in vivo. RESULTS BBOX1-AS1 was remarkably elevated in EC tissues and cells. In addition, the silencing of BBOX1-AS1 attenuated the cell viability, cell migration and enhanced cell apoptosis of EC, as well as suppressed EC tumour formation in vivo. Moreover, BBOX1-AS1 was found to be a sponge of miR-361-3p, which downregulated miR-361-3p expression. MiR-361-3p inhibitor rescued the anti-tumour effect of BBOX1-AS1 knockdown on the progression of EC. Furthermore, we discovered that miR-361-3p specially bound to COL1A1 3'UTR and downregulated COL1A1 and COL1A1 reduction declined the promoting effect of silencing miR-361-3p on EC cell malignant phenotypes. CONCLUSION BBOX1-AS1 facilitated the EC development and malignancy via miR-361-3p/COL1A1 axis, indicating BBOX1-AS1 could be a novel therapy target for the diagnostic of EC.
Collapse
Affiliation(s)
- Ruidong Ma
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Yuhai Lu
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaoping He
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| | - Xiaofei Zeng
- Department of Cardiothoracic Surgery, First Affiliated Hospital of Chengdu Medical College, Chengdu, China
| |
Collapse
|
11
|
Kim KS, Moon KM, Min KW, Jung WY, Shin SJ, Lee SW, Kwon MJ, Kim DH, Oh S, Noh YK. Low gamma-butyrobetaine dioxygenase (BBOX1) expression as a prognostic biomarker in patients with clear cell renal cell carcinoma: a machine learning approach. J Pathol Clin Res 2023; 9:236-248. [PMID: 36864013 PMCID: PMC10073934 DOI: 10.1002/cjp2.315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/03/2023] [Accepted: 02/14/2023] [Indexed: 03/04/2023]
Abstract
Gamma-butyrobetaine dioxygenase (BBOX1) is a catalyst for the conversion of gamma-butyrobetaine to l-carnitine, which is detected in normal renal tubules. The purpose of this study was to analyze the prognosis, immune response, and genetic alterations associated with low BBOX1 expression in patients with clear cell renal cell carcinoma (RCC). We analyzed the relative influence of BBOX1 on survival using machine learning and investigated drugs that can inhibit renal cancer cells with low BBOX1 expression. We analyzed clinicopathologic factors, survival rates, immune profiles, and gene sets according to BBOX1 expression in a total of 857 patients with kidney cancer from the Hanyang University Hospital cohort (247 cases) and The Cancer Genome Atlas (610 cases). We employed immunohistochemical staining, gene set enrichment analysis, in silico cytometry, pathway network analyses, in vitro drug screening, and gradient boosting machines. BBOX1 expression in RCC was decreased compared with that in normal tissues. Low BBOX1 expression was associated with poor prognosis, decreased CD8+ T cells, and increased neutrophils. In gene set enrichment analyses, low BBOX1 expression was related to gene sets with oncogenic activity and a weak immune response. In pathway network analysis, BBOX1 was linked to regulation of various T cells and programmed death-ligand 1. In vitro drug screening showed that midostaurin, BAY-61-3606, GSK690693, and linifanib inhibited the growth of RCC cells with low BBOX1 expression. Low BBOX1 expression in patients with RCC is related to short survival time and reduced CD8+ T cells; midostaurin, among other drugs, may have enhanced therapeutic effects in this context.
Collapse
Affiliation(s)
- Kyu-Shik Kim
- Department of Urology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea
| | - Kyoung Min Moon
- Department of Pulmonary, Allergy and Critical Care Medicine, Gangneung Asan Hospital, University of Ulsan College of Medicine, Gangneung, Gangwon-do, Republic of Korea
| | - Kyueng-Whan Min
- Department of Pathology, Uijeongbu Eulji Medical Center, Eulji University School of Medicine, Uijeongbu, Gyeonggi-do, Republic of Korea
| | - Woon Yong Jung
- Department of Pathology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea
| | - Su-Jin Shin
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seung Wook Lee
- Department of Urology, Hanyang University Guri Hospital, Hanyang University College of Medicine, Guri, Gyeonggi-do, Republic of Korea
| | - Mi Jung Kwon
- Department of Pathology, Hallym University Sacred Heart Hospital, Hallym University College of Medicine, Anyang, Gyeonggi-do, Republic of Korea
| | - Dong-Hoon Kim
- Department of Pathology, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sukjoong Oh
- Department of Internal Medicine, Hanyang University Hospital, Hanyang University College of Medicine, Seoul, Republic of Korea
| | - Yung-Kyun Noh
- Department of Computer Science, Hanyang University, Seoul, Republic of Korea.,School of Computational Sciences, Korea Institute for Advanced Study, Seoul, Republic of Korea
| |
Collapse
|
12
|
LncRNA BBOX1-AS1 Contributes to the Progression of Esophageal Carcinoma by Targeting the miR-361-3p/COL5A1 Axis. Biochem Genet 2022:10.1007/s10528-022-10307-3. [PMID: 36586008 DOI: 10.1007/s10528-022-10307-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 11/22/2022] [Indexed: 01/01/2023]
Abstract
Long noncoding RNAs (lncRNAs) are known to participate in the progression of several cancers, including esophageal carcinoma (EC), a common malignancy of the digestive system. Although the role of the lncRNA-miRNA-mRNA regulatory network is crucial for the growth and progression of EC, the regulation of lncRNA BBOX1-AS1 (BBOX1 antisense RNA1) remains unclear. We performed reverse transcription-quantitative PCR (RT-qPCR) and western blotting to evaluate miR-361-3p, collagen type V alpha 1 chain (COL5A1), and BBOX1-AS1 expression levels in EC cells and tissues. The colony formation assay (CFA) and Cell Counting Kit-8 (CCK-8) were employed to identify EC cell proliferation, while western blotting was used to examine EC cell apoptosis and Bax and Bcl-2 expression levels. The effect of BBOX1-AS1 on EC proliferation was determined using an in vivo carcinogenesis assay. Correlation between COL5A1, BBOX1-AS1, and miR-361-3p was examined using the luciferase reporter system and RNA immunoprecipitation assay (RIP). Herein, we observed that BBOX1-AS1 expression levels were upregulated in EC cells and tissues. BBOX1-AS1 knockdown inhibited EC cell proliferation and conferred a pro-apoptotic effect. These results indicated a positive interaction between BBOX1-AS1 and miR-361-3p in EC and a negative association with miR-361-3p. COL5A1 was recognized as a downstream miR-361-3p target and was inversely related to miR-361-3p in EC. Therefore, BBOX1-AS1 expression suppressed cell apoptosis and promoted cell proliferation via the downregulation of miR-361-3p and upregulation of COL5A1 expression. Overall, BBOX1-AS1 facilitates EC progression via the miR-361-3p or COL5A1 axis, indicating that BBOX1-AS1 might be a potential therapeutic target for EC therapy.
Collapse
|
13
|
Shi ZL, Zhou GQ, Guo J, Yang XL, Yu C, Shen CL, Zhu XG. Identification of a Prognostic Colorectal Cancer Model Including LncRNA FOXP4-AS1 and LncRNA BBOX1-AS1 Based on Bioinformatics Analysis. Cancer Biother Radiopharm 2022; 37:893-906. [PMID: 33481661 PMCID: PMC9805880 DOI: 10.1089/cbr.2020.4242] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Background: Knowledge about the prognostic role of long noncoding RNA (lncRNA) in colorectal cancer (CRC) is limited. Therefore, we constructed a lncRNA-related prognostic model based on data from the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA). Materials and Methods: CRC transcriptome and clinical data were downloaded from the GSE20916 dataset and the TCGA database, respectively. R software was used for data processing and analysis. The differential lncRNA expression within the two datasets was first screened, and then intersections were measured. Cox regression and the Kaplan-Meier method were used to evaluate the effects of various factors on prognosis. The area under the curve (AUC) of the receiver operating characteristic curve and a nomogram based on multivariate Cox analysis were used to estimate the prognostic value of the lncRNA-related model. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were applied to elucidate the significantly involved biological functions and pathways. Results: A total of 11 lncRNAs were crossed. The univariate Cox analysis screened out two lncRNAs, which were analyzed in the multivariate Cox analysis. A nomogram based on the two lncRNAs and other clinicopathological risk factors was constructed. The AUC of the nomogram was 0.56 at 3 years and 0.71 at 5 years. The 3-year nomogram model was compared with the ideal model, which showed that some indices of the 3-year model were consistent with the ideal model, suggesting that our model was highly accurate. The GO and KEGG enrichment analyses showed that positive regulation of secretion by cells, positive regulation of secretion, positive regulation of exocytosis, endocytosis, and the calcium signaling pathway were differentially enriched in the two-lncRNA-associated phenotype. Conclusions: A two-lncRNA prognostic model of CRC was constructed by bioinformatics analysis. The model had moderate prediction accuracy. LncRNA BBOX1-AS1 and lncRNA FOXP4-AS1 were identified as prognostic biomarkers.
Collapse
Affiliation(s)
- Zhi-Liang Shi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Gastrointestinal Surgery, Changshu No. 2 Hospital, Suzhou, China
| | - Guo-Qiang Zhou
- Department of Gastrointestinal Surgery, Changshu No. 2 Hospital, Suzhou, China
| | - Jian Guo
- Department of Gastrointestinal Surgery, Changshu No. 2 Hospital, Suzhou, China
| | - Xiao-Ling Yang
- Department of Gastrointestinal Surgery, Changshu No. 2 Hospital, Suzhou, China
| | - Cheng Yu
- Department of Gastrointestinal Surgery, Changshu No. 2 Hospital, Suzhou, China
| | - Cheng-Long Shen
- Department of Gastrointestinal Surgery, Changshu No. 2 Hospital, Suzhou, China
| | - Xin-Guo Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Address correspondence to: Xin-Guo Zhu; Department of General Surgery, The First Affiliated Hospital of Soochow University; 188 Shizi Street, Gusu District, Suzhou City, Suzhou 215006, Jiangsu Province, China
| |
Collapse
|
14
|
Zhao C, Shi W, Chen M. Long non-coding RNA BBOX1-antisense RNA 1 enhances cell proliferation and migration and suppresses apoptosis in oral squamous cell carcinoma via the miR-3940-3p/laminin subunit gamma 2 axis. Bioengineered 2022; 13:11138-11153. [PMID: 35506252 PMCID: PMC9278455 DOI: 10.1080/21655979.2022.2059982] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) play an essential role in oral squamous cell carcinoma (OSCC). We aimed to demonstrate the effects of lncRNA gamma-butyrobetaine hydroxylase 1 (BBOX1)-antisense RNA 1 (AS1) in OSCC and its regulatory mechanisms. The levels of BBOX1-AS1, microRNA (miR)-3940-3p, and laminin subunit gamma 2 (LAMC2) in OSCC were determined using reverse transcription-quantitative polymerase chain reaction. The correlations among BBOX1-AS1, miR-3940-3p, and LAMC2 were validated using luciferase, pull-down, and RNA immunoprecipitation assays. Cell proliferation, migration, and apoptosis were examined. BBOX1-AS1 and LAMC2 were notably overexpressed in OSCC, while miR-3940-3p showed the opposite trend. BBOX-1-AS1 silencing reduced the cell proliferation and migration, while promoting apoptosis. Mechanistically, BBOX1-AS1 modulates LAMC2 expression by competitively binding to miR-3940-3p. miR-3940-3p inhibition alleviated the inhibitory effects of BBOX1-AS1 deficiency on OSCC development. LAMC2 knockdown reversed these changes. Our results revealed that BBOX1-AS1 promotes the malignant phenotype of OSCC cells via the upregulation of LAMC2 expression by targeting miR-3940-3p, indicating that BBOX1-AS1 may be a novel target for OSCC intervention.
Collapse
Affiliation(s)
- Chunguang Zhao
- Department of Stomatology, the Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| | - Wei Shi
- Department of Otolaryngology, Tongji Hospital Affiliated to Tongji Medical College of Hust, Wuhan, Hubei, China
| | - Min Chen
- Department of Stomatology, the Sixth Hospital of Wuhan, Affiliated Hospital of Jianghan University, Wuhan, Hubei, China
| |
Collapse
|
15
|
Cai T, Peng B, Hu J, He Y. Long noncoding RNA BBOX1-AS1 promotes the progression of gastric cancer by regulating the miR-361-3p/Mucin 13 signaling axis. Bioengineered 2022; 13:13407-13421. [PMID: 36700475 PMCID: PMC9275992 DOI: 10.1080/21655979.2022.2072629] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Gastric cancer (GC) places a heavy burden on global health, and the information on the molecular mechanism of the progression of GC is still inadequate. Long noncoding RNA (LncRNA) has been confirmed to be widely involved in regulating the progression of GC. Our aim in this study was to explore the role and potential regulatory mechanism of lncRNA BBOX1-AS1 in GC. The expression levels of BBOX1-AS1, miR-361-3p, and MUC13 in GC tissues and cells were evaluated using quantitative real-time polymerase chain reaction and western blotting. The silencer of BBOX1 antisense RNA 1 (BBOX1-AS1) and mucin 13 (MUC13), the mimics and inhibitor of miR-361-3p, and their negative controls were used to alter the expression of these genes. Luciferase reporter, pull-down, and RNA immunoprecipitation assays were performed to verify the correlation between miR-361-3p, BBOX1-AS1, and MUC13. GC cell proliferation, invasion, and apoptosis were detected by cell counting kit-8, transwell, and flow cytometry assays, respectively. An in vivo functional experiment was performed to assess the effect of BBOX1-AS1 on GC. The results showed that BBOX1-AS1 was significantly upregulated in GC tissues. Silencing of BBOX1-AS1 inhibited GC cell proliferation and invasion and inhibited tumor growth in vivo, whereas it promoted apoptosis. MiR-361-3p was significantly downregulated in GC and counteracted the inhibitory effects of BBOX1-AS1 on GC progression. MUC13, which is targeted by miR-361-3p, is significantly upregulated in GC. MUC13 silencing inhibited GC progression was aborgated by miR-361-3p inhibitor. Collectively, BBOX1-AS1 silencing inhibits GC progression by regulating the miR-361-3p/MUC13 axis, providing a potential therapeutic biomarker for GC.
Collapse
Affiliation(s)
- Tao Cai
- Department of Gastrointestinal Surgery, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, Hubei, China
| | - Binyu Peng
- Department of Thyroid and Breast Surgery, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, Hubei, China
| | - Jun Hu
- Department of Gastrointestinal Surgery, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, Hubei, China
| | - Yan He
- Department of Thyroid and Breast Surgery, Hubei No. 3 People’s Hospital of Jianghan University, Wuhan, Hubei, China,CONTACT Yan He Department of Thyroid and Breast Surgery, Hubei No. 3 People’s Hospital of Jianghan University, No. 26 Zhongshan Avenue, Qiaokou District, Wuhan 430033, Hubei, China
| |
Collapse
|
16
|
Long Non-coding RNA ZFPM2-AS1: A Novel Biomarker in the Pathogenesis of Human Cancers. Mol Biotechnol 2022; 64:725-742. [DOI: 10.1007/s12033-021-00443-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/22/2021] [Indexed: 10/19/2022]
|
17
|
Circ_0009910 Serves as miR-361-3p Sponge to Promote the Proliferation, Metastasis, and Glycolysis of Gastric Cancer via Regulating SNRPA. Biochem Genet 2022; 60:1809-1824. [DOI: 10.1007/s10528-021-10168-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/06/2021] [Indexed: 01/04/2023]
|
18
|
VPS9D1-AS1 gene rs7206570 polymorphism associated with the clinical stage of colorectal cancer and binding with hsa-miR-361-3p. Hum Cell 2022; 35:522-527. [PMID: 35022999 DOI: 10.1007/s13577-021-00658-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 12/08/2021] [Indexed: 12/24/2022]
Abstract
VPS9D1-AS1 is a long non-coding RNA that can operate as a competitive endogenous RNA and plays an essential role in the occurrence and development of malignancies, including colorectal cancer (CRC). In this study, we investigated whether a putative functional polymorphism (rs7206570) in the VPS9D1-AS1 gene is linked to the risk and clinical stage of CRC. Sanger sequencing method was used to detect the rs7206570 polymorphism in 500 CRC patients and 500 healthy individuals. Quantitative real-time PCR technology was used to detect the expression of VPS9D1-AS1 and hsa-miR-361-3p in colorectal tissues with different rs7206570 genotypes. The dual-luciferase reporter assay was used to examine whether the rs7206570 polymorphism affects hsa-miR-361-3p binding. The rs7206570 polymorphism was not associated with CRC risk, but was associated with the clinical stage of CRC. CRC patients with rs7206570 A allele were less likely to have high-stage CRC. Furthermore, there was a significant negative correlation between the expression of VPS9D1-AS1 and hsa-miR-361-3p in CRC tissues with rs7206570 GG genotype. Dual-luciferase reporter assay showed that the rs7206570 A allele presumably hinders the binding of VPS9D1-AS1 to hsa-miR-361-3p. In conclusion, VPS9D1-AS1 gene rs7206570 polymorphism affecting hsa-miR-361-3p binding was associated with the clinical stage of CRC, which might be able to assist in the preoperative staging of CRC.
Collapse
|
19
|
Jiang H, He Q, Liu T. BBOX1-AS1 Accelerates Nasopharyngeal Carcinoma Progression by Sponging miR-3940-3p and Enhancing KPNA2 Upregulation. Cancer Manag Res 2021; 13:9049-9062. [PMID: 34938119 PMCID: PMC8687136 DOI: 10.2147/cmar.s327211] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Background Upregulation of lncRNA BBOX1 antisense RNA 1 (BBOX1-AS1) has been examined in various tumors. However, its role in nasopharyngeal carcinoma (NPC) remains poorly understood. Methods RT-qPCR was performed to measure the expression of BBOX1-AS1, KPNA2, and miR-3940-3p. In vitro assays were performed to determine the alteration of cell phenotypes in NPC cells upon transfection or co-transfection with sh-BBOX1-AS1, sh-KPNA2, or miR-3940-3p inhibitor. The BBOX1-AS1-miR-3940-3p and miR-3940-3p-KPNA2 interplay was verified via luciferase reporter and RNA pull-down assays. Results High BBOX1-AS1 levels were detected in the nasopharyngeal carcinoma tissues. BBOX1-AS1 silencing considerably suppressed the proliferative, migratory, and invasive abilities of NPC cells in vitro. Interestingly, BBOX1-AS1 could specifically bind to miR-3940-3 and abrogate the inhibition of KPNA2 induced by miR-3940-3. Additionally, analysis of tissue samples showed that miR-3940-3 was inversely correlated with BBOX1-AS1 and KPNA2. Conclusion Our findings revealed that the BBOX1-AS1/miR-3940-3/KPNA2 axis is pro-oncogenic in NPC progression, uncovering novel insights into targeted therapy for this disorder.
Collapse
Affiliation(s)
- Haihua Jiang
- Department of Otolaryngology Head and Neck Surgery, Yantai Affiliated Hospital of Binzhou Medical College, Yantai, Shandong, 264100, People's Republic of China
| | - Qinglong He
- Department of Otolaryngology Head and Neck Surgery, Yantai Affiliated Hospital of Binzhou Medical College, Yantai, Shandong, 264100, People's Republic of China
| | - Tingyan Liu
- Department of Otolaryngology Head and Neck Surgery, Yantai Affiliated Hospital of Binzhou Medical College, Yantai, Shandong, 264100, People's Republic of China
| |
Collapse
|
20
|
Jia M, Shi Y, Xie Y, Li W, Deng J, Fu D, Bai J, Ma Y, Zuberi Z, Li J, Li Z. WT1-AS/IGF2BP2 Axis Is a Potential Diagnostic and Prognostic Biomarker for Lung Adenocarcinoma According to ceRNA Network Comprehensive Analysis Combined with Experiments. Cells 2021; 11:cells11010025. [PMID: 35011587 PMCID: PMC8750352 DOI: 10.3390/cells11010025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 11/29/2021] [Accepted: 12/14/2021] [Indexed: 12/16/2022] Open
Abstract
Lung adenocarcinoma (LUAD) is one of the most common malignancies, and there is still a lack of effective biomarkers for early detection and prognostic prediction. Here, we comprehensively analyze the characteristics of. an RNA sequencing data set of LUAD samples. In total, 395 long non-coding RNAs (lncRNAs), 89 microRNAs (miRNAs), and 872 mRNAs associated with c-Myc were identified, which were differentially expressed between tumor and normal tissues. The most relevant pathway was found to be WT1-AS–miR-200a-3p–IGF2BP2 according to the rules of competitive endogenous RNA (ceRNA) regulation. WT1-AS and IGF2BP2 expression were positively correlated and increased in LUAD samples, while miR-200a-3p had relatively low expression. The high expression of WT1-AS and IGF2BP2 was associated with poor prognosis in LUAD patients, while low expression of miR-200a-3p predicted reduced survival (p < 0.05). The analysis of the multi-gene regulation model indicated that the WT1-AS (downregulation)–miR-200a-3p (upregulation)–IGF2BP2 (downregulation) pattern significantly improved the survival of LUAD patients. Finally, reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting were detected in LUAD cells, and the results are consistent with the bioinformatics analysis. In summary, the WT1-AS/IGF2BP2 axis is a potential prognostic biomarker in LUAD and is expected to become an effective target for diagnosis and treatment.
Collapse
Affiliation(s)
- Mingxi Jia
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (M.J.); (Y.S.); (Y.X.); (D.F.); (J.B.); (J.L.)
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
| | - Yi Shi
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (M.J.); (Y.S.); (Y.X.); (D.F.); (J.B.); (J.L.)
| | - Yang Xie
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (M.J.); (Y.S.); (Y.X.); (D.F.); (J.B.); (J.L.)
| | - Wen Li
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (M.J.); (Y.S.); (Y.X.); (D.F.); (J.B.); (J.L.)
- College of Life Sciences and Chemistry, Hunan University of Technology, Zhuzhou 412007, China
- Correspondence: (W.L.); (J.D.)
| | - Jing Deng
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (M.J.); (Y.S.); (Y.X.); (D.F.); (J.B.); (J.L.)
- Correspondence: (W.L.); (J.D.)
| | - Da Fu
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (M.J.); (Y.S.); (Y.X.); (D.F.); (J.B.); (J.L.)
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China;
| | - Jie Bai
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (M.J.); (Y.S.); (Y.X.); (D.F.); (J.B.); (J.L.)
| | - Yushui Ma
- Central Laboratory for Medical Research, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China;
| | - Zavuga Zuberi
- Department of Science and Laboratory Technology, Dar es Salaam Institute of Technology, Dares Salaam P.O. Box 2958, Tanzania;
| | - Juan Li
- Hunan Key Laboratory of Processed Food for Special Medical Purpose, College of Food Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, China; (M.J.); (Y.S.); (Y.X.); (D.F.); (J.B.); (J.L.)
| | - Zheng Li
- NHC Key Laboratory of Carcinogenesis, Cancer Research Institute and School of Basic Medical, Central South University, Changsha 410013, China;
| |
Collapse
|
21
|
Zhang Y, Wang X, Cheng XK, Zong YY, He RQ, Chen G, Qin YJ. Clinical significance and effect of lncRNA BBOX1-AS1 on the proliferation and migration of lung squamous cell carcinoma. Oncol Lett 2021; 23:17. [PMID: 34820016 PMCID: PMC8607367 DOI: 10.3892/ol.2021.13135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/19/2021] [Indexed: 12/25/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have a role in the occurrence and development of lung squamous cell carcinoma (LUSC). lncRNA γ-butyrobetaine hydroxylase 1 (BBOX1)-antisense 1 (AS1) may contribute to disease development. However, there are no studies on the role of BBOX1-AS1 in LUSC to date. In the present study, an in-house gene microarray analysis was performed to detect the differentially expressed lncRNAs and mRNAs between three pairs of LUSC and normal lung tissues. Only one lncRNA, BBOX1-AS1, was differentially expressed in the in-house microarray and The Cancer Genome Atlas (TCGA), Gene Expression Omnibus (GEO) and ArrayExpress databases. Reverse transcription-quantitative PCR (RT-qPCR) was then performed and the original RNA-sequencing data from the TCGA, GEO and ArrayExpress datasets were used to determine the expression and clinical value of BBOX1-AS1 in LUSC. In addition, a Cell Counting Kit-8 assay, cell cycle analysis and scratch assay were performed to explore whether BBOX1-AS1 expression affected the proliferation and migration of LUSC cells in vitro. The results of the RT-qPCR analysis and data obtained from the TCGA database, GEO datasets, in-house gene microarray and standard mean deviation analysis all supported the upregulated expression level of BBOX1-AS1 in LUSC. Furthermore, silencing of BBOX1-AS1 inhibited the proliferation and migration of LUSC cells according to in vitro assays. In addition, the cells were arrested in S-phase after knockdown of BBOX1-AS1. In conclusion, the expression level of BBOX1-AS1 was upregulated in LUSC tissues. BBOX1-AS1 may exert an oncogenic effect on LUSC by regulating various biological functions. However, additional functional experiments should be performed to verify the exact mechanism.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, P.R. China
| | - Xiao Wang
- Department of Orthopedics, Shandong Second Provincial General Hospital, Shandong Provincial ENT Hospital, Jinan, Shandong 250000, P.R. China
| | - Xian-Kui Cheng
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, P.R. China
| | - Yuan-Yuan Zong
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, P.R. China
| | - Rong-Quan He
- Department of Oncology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Ye-Jun Qin
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250000, P.R. China
| |
Collapse
|
22
|
Wang J, Xie Z, Liu Y, Zhang W, Ji T. MicroRNA-361 reduces the viability and migratory ability of pancreatic cancer cells via mediation of the MAPK/JNK pathway. Exp Ther Med 2021; 22:1365. [PMID: 34659511 PMCID: PMC8515516 DOI: 10.3892/etm.2021.10799] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 06/19/2020] [Indexed: 12/16/2022] Open
Abstract
Previous research has revealed that microRNA-361 (miR-361) functions as a fundamental modulator in non-small-cell lung cancer and esophageal carcinoma. However, its involvement in pancreatic cancer (PC) is yet to be elucidated. Therefore, the present study aimed to examine the mechanism and function of miR-361 during the regulation of PC cell migration and viability. It was demonstrated that miR-361 expression decreased in PC cell lines and tissues, and the overexpression of miR-361 suppressed in vivo PC cell proliferation in mice. Moreover, flow cytometry and MTT assays indicated that the miR-361 mimic decreased the viability and increased the apoptosis of PC cells. Both Transwell migration and wound healing assays identified that miR-361 ameliorated the migratory ability of PC cells. Using dual-luciferase reporter assays, it was found that miR-361 targeted mitogen-activated protein kinase (MAPK)/JNK 3'-untranslated regions, inducing the downregulation of this gene. In PC cells, overexpression of MAPK/JNK diminished the pro-apoptotic effect of the miR-361 mimic, while restoring the migratory activity of PC cells. Collectively, the present results suggested novel molecular mechanisms underlying PC progression and development.
Collapse
Affiliation(s)
- Juan Wang
- Department of Gastroenterology, People's Hospital of Leling City, Dezhou, Shandong 253600, P.R. China
| | - Zongjing Xie
- Department of General Surgery, Zhucheng People's Hospital, Weifang, Shandong 262200, P.R. China
| | - Yan Liu
- Department of Gastroenterology, Qiqihar Jianhua Hospital, Qiqihar, Heilongjiang 161000, P.R. China
| | - Weiguo Zhang
- Second Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin 300450, P.R. China
| | - Tingting Ji
- Department of Gastroenterology, No. 215 Hospital of Shaanxi Nuclear Industry, Xianyang, Shaanxi 712000, P.R. China
| |
Collapse
|
23
|
Guo T, Liu D, Peng S, Wang M, Li Y. A Positive Feedback Loop of lncRNA MIR31HG-miR-361-3p -YY1 Accelerates Colorectal Cancer Progression Through Modulating Proliferation, Angiogenesis, and Glycolysis. Front Oncol 2021; 11:684984. [PMID: 34485123 PMCID: PMC8416113 DOI: 10.3389/fonc.2021.684984] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
Background Colorectal cancer (CRC) is a common malignant tumor with high metastatic and recurrent rates. This study probes the effect and mechanism of long non-coding RNA MIR31HG on the progression of CRC cells. Materials and Methods Quantitative real-time PCR (qRT-PCR) was used to analyze the expression of MIR31HG and miR-361-3p in CRC tissues and normal tissues. Gain- or loss-of-function assays were conducted to examine the roles of MIR31HG, miR-361-3p and YY1 transcription factor (YY1) in the CRC progression. 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, and colony formation experiment were conducted to test CRC cell proliferation. CRC cell invasion was determined by Transwell assay. The glucose detection kit and lactic acid detection kit were utilized to monitor the levels of glucose and lactate in CRC cells. The glycolysis level in CRC cells was examined by the glycolytic stress experiment. Western blot was performed to compare the expression of glycolysis-related proteins (PKM2, GLUT1 and HK2) and angiogenesis-related proteins (including VEGFA, ANGPT1, HIF1A and TIMP1) in HUVECs. The binding relationships between MIR31HG and miR-361-3p, miR-361-3p and YY1 were evaluated by the dual-luciferase reporter assay and RNA immunoprecipitation (RIP). Results MIR31HG was up-regulated in CRC tissues and was associated with poorer prognosis of CRC patients. The in-vitro and in-vivo experiments confirmed that overexpressing MIR31HG heightened the proliferation, growth, invasion, glycolysis and lung metastasis of CRC cells as well as the angiogenesis of HUVECs. In addition, MIR3HG overexpression promoted YY1 mRNA and protein level, and forced overexpression of YY1 enhanced MIR31HG level. Overexpressing YY1 reversed the tumor-suppressive effect mediated by MIR31HG knockdown. miR-361-3p, which was inhibited by MIR31HG overexpression, repressed the malignant behaviors of CRC cells. miR-361-3p-mediated anti-tumor effects were mostly reversed by upregulating MIR31HG. Further mechanism studies illustrated that miR-361-3p targeted and negatively regulated the expression of YY1. Conclusion This study reveals that MIR31HG functions as an oncogenic gene in CRC via forming a positive feedback loop of MIR31HG-miR-361-3p-YY1.
Collapse
Affiliation(s)
- Tao Guo
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Defeng Liu
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Shihao Peng
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Meng Wang
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yangyang Li
- Department of General Surgery, The Fourth Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
24
|
Li C, Li Y, Zhang Y, Yan H, Huang C. Knockdown of LINC01123 inhibits cell viability, migration and invasion via miR-361-3p/TSPAN1 targeting in cervical cancer. Exp Ther Med 2021; 22:1184. [PMID: 34475974 DOI: 10.3892/etm.2021.10618] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/29/2021] [Indexed: 12/27/2022] Open
Abstract
Cervical cancer (CC) is a type of gynecological malignancy that poses a significant threat to females. The aim of the present study was to examine the role of long intergenic non-protein coding RNA 1123 (LINC01123) and its underlying molecular mechanism in the development of CC. mRNA expression levels of LINC01123 and microRNA (miR)-361-3p in CC tissue samples and cell lines were evaluated using reverse transcription-quantitative PCR. Cell viability, migration and invasion were detected using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, wound healing and Transwell assays. Moreover, a xenograft tumor model was established for elucidating the influence of LINC01123 knockdown on tumor growth in vivo. A dual-luciferase reporter assay was used to confirm the association between LINC01123 and miR-361-3p, and miR-361-3p and tetraspanin 1 (TSPAN1). Western blot analysis was used to determine TSPAN1 protein expression. LINC01123 expression was upregulated and miR-361-3p expression was reduced in CC tissue samples and cell lines. Knockdown of LINC01123 inhibited cell viability, migration and invasion in vitro, and suppressed tumor growth in vivo. Furthermore, LINC01123 targeted miR-361-3p and negatively regulated miR-361-3p expression. Overexpression of miR-361-3p inhibited cell viability, migration and invasion in HeLa and CaSki cells. Additionally, miR-361-3p targeted TSPAN1 and negatively regulated TSPAN1 expression. Inhibition of miR-361-3p and overexpression of TSPAN1 reversed the effect of LINC01123 knockdown on cell proliferation, migration and invasion in HeLa cells. Knockdown of LINC01123 inhibited cell proliferation, migration and invasion via miR-361-3p/TSPAN1 regulation in CC, which may present an effective target for treatment of CC.
Collapse
Affiliation(s)
- Cui Li
- Department of Gynecology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Yujuan Li
- Department of Gynecology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Yuying Zhang
- Department of Gynecology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Hua Yan
- Department of Gynecology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| | - Chengxiang Huang
- Department of Gynecology, Linyi Central Hospital, Linyi, Shandong 276400, P.R. China
| |
Collapse
|
25
|
Zhang Z, Mou Z, Xu C, Wu S, Dai X, Chen X, Ou Y, Chen Y, Yang C, Jiang H. Autophagy-associated circular RNA hsa_circ_0007813 modulates human bladder cancer progression via hsa-miR-361-3p/IGF2R regulation. Cell Death Dis 2021; 12:778. [PMID: 34365465 PMCID: PMC8349354 DOI: 10.1038/s41419-021-04053-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/23/2021] [Accepted: 06/24/2021] [Indexed: 01/07/2023]
Abstract
Circular RNAs (circRNAs) drive several cellular processes including proliferation, survival, and differentiation. Here, we identified a circRNA hsa_circ_0007813, whose expression was upregulated in bladder cancer. High hsa_circ_0007813 expression was associated with larger tumor size, higher primary tumor T stage, and higher pathologic grade. Survival analysis showed that patients with high hsa_circ_0007813 expression levels had a poorer prognosis. Based on these findings from clinical tissue samples and cell lines, we assumed that hsa_circ_0007813 functioned a vital role in bladder cancer progression. Next, functional experiments revealed that knockdown of hsa_circ_0007813 inhibited proliferation, migration, and invasiveness of bladder cancer cells both in vitro and in vivo. Through extensive bioinformatic prediction and RNA pull-down assays, we identified hsa-miR-361-3p as a competing endogenous RNA of hsa_circ_0007813. Further bioinformatic studies narrowed targets to 35 possible downstream genes. We then found that knockdown of hsa_circ_0007813 led to altered cell autophagy, bringing our attention to IGF2R, one of the possible downstream genes. IGF2R was also known as cation-independent mannose-6-phosphate receptor (CI-M6PR), was discovered to participate in both autophagy and tumor biology. Regarding autophagy has a dominant role in the survival of tumor cells overcoming cellular stress and correlates with tumor progression, investigations were made to prove that hsa_circ_0007813 could regulate IGF2R expression via hsa-miR-361-3p sponging. The potential of hsa_circ_0007813 in regulating IGF2R expression explained its influence on cell behavior and clinical outcomes. Collectively, our data could offer new insight into the biology of circRNA in bladder cancer.
Collapse
Affiliation(s)
- Zheyu Zhang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Zezhong Mou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chenyang Xu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Siqi Wu
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiyu Dai
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xinan Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yuxi Ou
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yiling Chen
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China
| | - Chen Yang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China.
| | - Haowen Jiang
- Department of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- Fudan Institute of Urology, Huashan Hospital, Fudan University, Shanghai, China.
- National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China.
| |
Collapse
|
26
|
Tao H, Li J, Liu J, Yuan T, Zhang E, Liang H, Huang Z. Construction of a ceRNA Network and a Prognostic lncRNA Signature associated with Vascular Invasion in Hepatocellular Carcinoma based on Weighted Gene Co-Expression Network Analysis. J Cancer 2021; 12:3754-3768. [PMID: 34093785 PMCID: PMC8176257 DOI: 10.7150/jca.57260] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/21/2021] [Indexed: 12/28/2022] Open
Abstract
Background: Understanding risk factors for vascular invasion (VI) is crucial for assessing the risk of recurrence and overall prognosis of hepatocellular carcinoma (HCC). This study aimed to construct a prognostic long non-coding RNA (lncRNA) signature and a ceRNA Network associated with vascular invasion in HCC. Methods: Differentially expressed genes (DEGs) of HCC patients associated with VI were identified by analyzing data from TCGA. Weighted gene co-expression network analysis (WGCNA) was used to identify associations between gene expression modules and clinical features. A VI-related prognostic lncRNA signature was then established using univariate, LASSO and multivariate Cox proportional hazards regression analyses. Based on the hub modules identified by the WGCNA, we constructed a VI-related lncRNA-miRNA-mRNA ceRNA network and screened hub lncRNAs for further research. Finally, we conducted in vitro and in vivo experiments to determine the biological roles of the identified hub gene BBOX1-AS1. Results: The key module related to VI and OS was identified using WGCNA, after which a prognostic model consisting of eight lncRNAs was established, and verified using time-dependent receiver operating characteristic (ROC) curve analysis. BBOX1-AS1 was confirmed to be highly expressed in HCC tissues, and its expression was significantly correlated with a poor prognosis. Silencing BBOX1-AS1 in vitro significantly suppressed the proliferation, migration and invasion of HCC cells. In vivo experiments demonstrated that knocking down of BBOX1-AS1 could result in significant decrease of tumor volume and tumor weight. Conclusions: The VI-related lncRNA signature established in this study can be used to predict the clinical outcomes of HCC patients. In addition, we constructed a VI-related lncRNA-miRNA-mRNA ceRNA network and demonstrated that BBOX1-AS1 might be a novel biomarker associated with VI in HCC.
Collapse
Affiliation(s)
- Haisu Tao
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Jiang Li
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Junjie Liu
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Tong Yuan
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Erlei Zhang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Huifang Liang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| | - Zhiyong Huang
- Hepatic Surgery Center, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, China.,Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Wuhan, China
| |
Collapse
|
27
|
Shi J, Yang C, An J, Hao D, Liu C, Liu J, Sun J, Jiang J. KLF5-induced BBOX1-AS1 contributes to cell malignant phenotypes in non-small cell lung cancer via sponging miR-27a-5p to up-regulate MELK and activate FAK signaling pathway. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:148. [PMID: 33931086 PMCID: PMC8086369 DOI: 10.1186/s13046-021-01943-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 04/11/2021] [Indexed: 02/06/2023]
Abstract
Background Non-small cell lung cancer (NSCLC) is a major histological subtype of lung cancer with high mortality and morbidity. A substantial amount of evidence demonstrates long non-coding RNAs (lncRNA) as critical regulators in tumorigeneis and malignant progression of human cancers. The oncogenic role of BBOX1 anti-sense RNA 1 (BBOX1-AS1) has been reported in several tumors. As yet, the potential functions and mechanisms of BBOX1-AS1 in NSCLC are obscure. Methods The gene and protein expression was detected by qRT-PCR and western blot. Cell function was determined by CCK-8, colony forming, would healing and transwell assays. Bioinformatics tools, ChIP assays, dual luciferase reporters system and RNA pull-down experiments were used to examine the interaction between molecules. Subcutaneous tumor models in nude mice were established to investigate in vivo NSCLC cell behavior. Results BBOX1-AS1 was highly expressed in NSCLC tissues and cells. High BBOX1-AS1 expression was associated with worse clinical parameters and poor prognosis. BBOX1-AS1 up-regulation was induced by transcription factor KLF5. BBOX1-AS1 deficiency resulted in an inhibition of cell proliferation, migration, invasion and EMT in vitro. Also, knockdown of BBOX1-AS1 suppressed NSCLC xenograft tumor growth in mice in vivo. Mechanistically, BBOX1-AS1 acted act as a competetive “sponge” of miR-27a-5p to promote maternal embryonic leucine zipper kinase (MELK) expression and activate FAK signaling. miR-27a-5p was confirmed as a tumor suppressor in NSCLC. Moreover, BBOX1-AS1-induced increase of cell proliferation, migration, invasion and EMT was greatly reversed due to the overexpression of miR-27a-5p. In addition, the suppressive effect of NSCLC progression owing to BBOX1-AS1 depletion was abated by the up-regulation of MELK. Consistently, BBOX1-AS1-mediated carcinogenicity was attenuated in NSCLC after treatment with a specific MELK inhibitor OTSSP167. Conclusions KLF5-induced BBOX1-AS1 exerts tumor-promotive roles in NSCLC via sponging miR-27a-5p to activate MELK/FAK signaling, providing the possibility of employing BBOX1-AS1 as a therapeutic target for NSCLC patients. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-01943-5.
Collapse
Affiliation(s)
- Jiang Shi
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Chao Yang
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jinlu An
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Dexun Hao
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Cong Liu
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jumin Liu
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jing Sun
- Department of Neurology, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Junguang Jiang
- Department of Geriatric Respiratory Medicine, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| |
Collapse
|
28
|
Tian S, Tang M, Li J, Wang C, Liu W. Identification of long non-coding RNA signatures for squamous cell carcinomas and adenocarcinomas. Aging (Albany NY) 2020; 13:2459-2479. [PMID: 33318305 PMCID: PMC7880362 DOI: 10.18632/aging.202278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Accepted: 11/08/2020] [Indexed: 11/25/2022]
Abstract
Studies have demonstrated that both squamous cell carcinomas (SCCs) and adenocarcinomas (ACs) possess some common molecular characteristics. Evidence has accumulated to support the theory that long non-coding RNAs (lncRNAs) serve as novel biomarkers and therapeutic targets in complex diseases such as cancer. In this study, we aimed to identify pan lncRNA signatures that are common to squamous cell carcinomas or adenocarcinomas with different tissues of origin. With the aid of elastic-net regularized regression models, a 35-lncRNA pan discriminative signature and an 11-lncRNA pan prognostic signature were identified for squamous cell carcinomas, whereas a 6-lncRNA pan discriminative signature and a 5-lncRNA pan prognostic signature were identified for adenocarcinomas. Among them, many well-known cancer relevant genes such as MALAT1 and PVT1 were included. The identified pan lncRNA lists can help experimental biologists generate research hypotheses and adopt existing treatments for less prevalent cancers. Therefore, these signatures warrant further investigation.
Collapse
Affiliation(s)
- Suyan Tian
- Division of Clinical Research, First Hospital of Jilin University, Changchun 130021, Jilin, P.R. China
| | - Mingbo Tang
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Jialin Li
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun 130021, Jilin, China
| | - Chi Wang
- Department of Internal Medicine, College of Medicine, University of Kentucky, Lexington, KY 40536, USA.,Markey Cancer Center, University of Kentucky, Lexington, KY 40536, USA
| | - Wei Liu
- Department of Thoracic Surgery, First Hospital of Jilin University, Changchun 130021, Jilin, China
| |
Collapse
|
29
|
Minezaki T, Usui Y, Asakage M, Takanashi M, Shimizu H, Nezu N, Narimatsu A, Tsubota K, Umazume K, Yamakawa N, Kuroda M, Goto H. High-Throughput MicroRNA Profiling of Vitreoretinal Lymphoma: Vitreous and Serum MicroRNA Profiles Distinct from Uveitis. J Clin Med 2020; 9:jcm9061844. [PMID: 32545709 PMCID: PMC7356511 DOI: 10.3390/jcm9061844] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/06/2020] [Accepted: 06/09/2020] [Indexed: 01/01/2023] Open
Abstract
Purpose: Vitreoretinal lymphoma (VRL) is a non-Hodgkin lymphoma of the diffuse large B cell type (DLBCL), which is an aggressive cancer causing central nervous system related mortality. The pathogenesis of VRL is largely unknown. The role of microRNAs (miRNAs) has recently acquired remarkable importance in the pathogenesis of many diseases including cancers. Furthermore, miRNAs have shown promise as diagnostic and prognostic markers of cancers. In this study, we aimed to identify differentially expressed miRNAs and pathways in the vitreous and serum of patients with VRL and to investigate the pathogenesis of the disease. Materials and Methods: Vitreous and serum samples were obtained from 14 patients with VRL and from controls comprising 40 patients with uveitis, 12 with macular hole, 14 with epiretinal membrane, 12 healthy individuals. The expression levels of 2565 miRNAs in serum and vitreous samples were analyzed. Results: Expression of the miRNAs correlated significantly with the extracellular matrix (ECM) ‒receptor interaction pathway in VRL. Analyses showed that miR-326 was a key driver of B-cell proliferation, and miR-6513-3p could discriminate VRL from uveitis. MiR-1236-3p correlated with vitreous interleukin (IL)-10 concentrations. Machine learning analysis identified miR-361-3p expression as a discriminator between VRL and uveitis. Conclusions: Our findings demonstrate that aberrant microRNA expression in VRL may affect the expression of genes in a variety of cancer-related pathways. The altered serum miRNAs may discriminate VRL from uveitis, and serum miR-6513-3p has the potential to serve as an auxiliary tool for the diagnosis of VRL.
Collapse
Affiliation(s)
- Teruumi Minezaki
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (T.M.); (M.A.); (H.S.); (N.N.); (A.N.); (K.T.); (K.U.); (N.Y.); (H.G.)
| | - Yoshihiko Usui
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (T.M.); (M.A.); (H.S.); (N.N.); (A.N.); (K.T.); (K.U.); (N.Y.); (H.G.)
- Correspondence:
| | - Masaki Asakage
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (T.M.); (M.A.); (H.S.); (N.N.); (A.N.); (K.T.); (K.U.); (N.Y.); (H.G.)
| | - Masakatsu Takanashi
- Department of Molecular Pathology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (M.T.); (M.K.)
| | - Hiroyuki Shimizu
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (T.M.); (M.A.); (H.S.); (N.N.); (A.N.); (K.T.); (K.U.); (N.Y.); (H.G.)
| | - Naoya Nezu
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (T.M.); (M.A.); (H.S.); (N.N.); (A.N.); (K.T.); (K.U.); (N.Y.); (H.G.)
| | - Akitomo Narimatsu
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (T.M.); (M.A.); (H.S.); (N.N.); (A.N.); (K.T.); (K.U.); (N.Y.); (H.G.)
| | - Kinya Tsubota
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (T.M.); (M.A.); (H.S.); (N.N.); (A.N.); (K.T.); (K.U.); (N.Y.); (H.G.)
| | - Kazuhiko Umazume
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (T.M.); (M.A.); (H.S.); (N.N.); (A.N.); (K.T.); (K.U.); (N.Y.); (H.G.)
| | - Naoyuki Yamakawa
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (T.M.); (M.A.); (H.S.); (N.N.); (A.N.); (K.T.); (K.U.); (N.Y.); (H.G.)
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (M.T.); (M.K.)
| | - Hiroshi Goto
- Department of Ophthalmology, Tokyo Medical University, 6-7-1 Nishi-shinjuku, Shinjuku-ku, Tokyo 160-0023, Japan; (T.M.); (M.A.); (H.S.); (N.N.); (A.N.); (K.T.); (K.U.); (N.Y.); (H.G.)
| |
Collapse
|
30
|
Wu B, Ren A, Tian Y, Huang R. Hsa_circ_0075960 Serves as a Sponge for miR-361-3p/SH2B1 in Endometrial Carcinoma. Technol Cancer Res Treat 2020; 19:1533033820983079. [PMID: 33356989 PMCID: PMC7768316 DOI: 10.1177/1533033820983079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 01/26/2023] Open
Abstract
Although the cases of endometrial carcinoma (EC) is gradually increasing across the world, its etiology and pathogenesis remain unknown. The present study is the first to define the role and biological function of circRNA hsa_circ_0075960 in the development and progression of EC. We first determined that hsa_circ_0075960 is aberrantly expressed in EC cells. Then, we uncovered that the downregulation of hsa_circ_0075960 suppressed cell proliferation and promoted cell apoptosis of EC cells, suggesting that hsa_circ_0075960 could inhibit the progression of EC in vitro. In addition, we identified that miR-361-3p was the direct target of hsa_circ_0075960. Further analysis revealed that hsa_circ_0075960 affected the development of EC via sponging miR-361-3p. Interestingly, we verified that the level of SH2B1 was controlled by the downregulation of hsa_circ_0075960 and that the negative effect caused by hsa_circ_0075960 could be reversed via miR-361-3p inhibition. Our cumulative results revealed that the novel tumor regulator hsa_circ_0075960 functioned as a sponge for miR-361-3p/SH2B1 in EC cells and regulated the progression of EC through the modulation of miR-361-3p.
Collapse
Affiliation(s)
- Bo Wu
- Department of Clinical Laboratory, Hospital of Chengdu
University of Traditional Chinese Medicine, Chengdu, China
| | - Ailing Ren
- Department of Gynecology, Hospital of Chengdu University of
Traditional Chinese Medicine, Chengdu, China
| | - Ying Tian
- Department of Urology Surgery, Hospital of Chengdu
University of Traditional Chinese Medicine, Chengdu, China
| | - Ruizhen Huang
- Department of Cardiovascular Diseases, Hospital of Chengdu
University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|