1
|
Liu YX, Zhao M, Yu Y, Liu JP, Liu WJ, Yao RQ, Wang J, Yang RL, Wu Y, Dong N, Cao Y, Li SC, Zhang QH, Yan RM, Yao YM. Extracellular cold-inducible RNA-binding protein mediated neuroinflammation and neuronal apoptosis after traumatic brain injury. BURNS & TRAUMA 2024; 12:tkae004. [PMID: 38817684 PMCID: PMC11136617 DOI: 10.1093/burnst/tkae004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 01/09/2024] [Accepted: 01/25/2024] [Indexed: 06/01/2024]
Abstract
Background Extracellular cold-inducible RNA-binding protein (eCIRP) plays a vital role in the inflammatory response during cerebral ischaemia. However, the potential role and regulatory mechanism of eCIRP in traumatic brain injury (TBI) remain unclear. Here, we explored the effect of eCIRP on the development of TBI using a neural-specific CIRP knockout (KO) mouse model to determine the contribution of eCIRP to TBI-induced neuronal injury and to discover novel therapeutic targets for TBI. Methods TBI animal models were generated in mice using the fluid percussion injury method. Microglia or neuron lines were subjected to different drug interventions. Histological and functional changes were observed by immunofluorescence and neurobehavioural testing. Apoptosis was examined by a TdT-mediated dUTP nick end labelling assay in vivo or by an annexin-V assay in vitro. Ultrastructural alterations in the cells were examined via electron microscopy. Tissue acetylation alterations were identified by non-labelled quantitative acetylation via proteomics. Protein or mRNA expression in cells and tissues was determined by western blot analysis or real-time quantitative polymerase chain reaction. The levels of inflammatory cytokines and mediators in the serum and supernatants were measured via enzyme-linked immunoassay. Results There were closely positive correlations between eCIRP and inflammatory mediators, and between eCIRP and TBI markers in human and mouse serum. Neural-specific eCIRP KO decreased hemispheric volume loss and neuronal apoptosis and alleviated glial cell activation and neurological function damage after TBI. In contrast, eCIRP treatment resulted in endoplasmic reticulum disruption and ER stress (ERS)-related death of neurons and enhanced inflammatory mediators by glial cells. Mechanistically, we noted that eCIRP-induced neural apoptosis was associated with the activation of the protein kinase RNA-like ER kinase-activating transcription factor 4 (ATF4)-C/EBP homologous protein signalling pathway, and that eCIRP-induced microglial inflammation was associated with histone H3 acetylation and the α7 nicotinic acetylcholine receptor. Conclusions These results suggest that TBI obviously enhances the secretion of eCIRP, thereby resulting in neural damage and inflammation in TBI. eCIRP may be a biomarker of TBI that can mediate the apoptosis of neuronal cells through the ERS apoptotic pathway and regulate the inflammatory response of microglia via histone modification.
Collapse
Affiliation(s)
- Yu-xiao Liu
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, People’s Republic of China
| | - Ming Zhao
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, People’s Republic of China
| | - Yang Yu
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing 100037, People’s Republic of China
| | - Jing-peng Liu
- Department of Traditional Chinese Medical Science, Sixth Medical Center of the Chinese PLA General Hospital, Beijing 100037, People’s Republic of China
| | - Wen-jia Liu
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing 100071, People’s Republic of China
| | - Ren-qi Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, People’s Republic of China
| | - Jing Wang
- Department of Obstetrics and Gynecology, Seventh Medical Center of the Chinese PLA General Hospital, Beijing 100700, People’s Republic of China
| | - Rong-li Yang
- Intensive Care Unit, Dalian Municipal Central Hospital Affiliated Dalian University of Technology, Dalian 116033, People’s Republic of China
| | - Yao Wu
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, People’s Republic of China
| | - Ning Dong
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, People’s Republic of China
| | - Yang Cao
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, People’s Republic of China
| | - Shou-chun Li
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, People’s Republic of China
| | - Qin-hong Zhang
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, People’s Republic of China
| | - Run-min Yan
- Department of Neurosurgery, First Medical Center of the Chinese PLA General Hospital, Beijing 100853, People’s Republic of China
| | - Yong-ming Yao
- Translational Medicine Research Center, Medical Innovation Research Division and Fourth Medical Center of the Chinese PLA General Hospital, Beijing 100853, People’s Republic of China
| |
Collapse
|
2
|
Tsochantaridis I, Roupas A, Mohlin S, Pappa A, Voulgaridou GP. The Concept of Cancer Stem Cells: Elaborating on ALDH1B1 as an Emerging Marker of Cancer Progression. LIFE (BASEL, SWITZERLAND) 2023; 13:life13010197. [PMID: 36676146 PMCID: PMC9863106 DOI: 10.3390/life13010197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023]
Abstract
Cancer is a multifactorial, complex disease exhibiting extraordinary phenotypic plasticity and diversity. One of the greatest challenges in cancer treatment is intratumoral heterogeneity, which obstructs the efficient eradication of the tumor. Tumor heterogeneity is often associated with the presence of cancer stem cells (CSCs), a cancer cell sub-population possessing a panel of stem-like properties, such as a self-renewal ability and multipotency potential. CSCs are associated with enhanced chemoresistance due to the enhanced efflux of chemotherapeutic agents and the existence of powerful antioxidant and DNA damage repair mechanisms. The distinctive characteristics of CSCs make them ideal targets for clinical therapeutic approaches, and the identification of efficient and specific CSCs biomarkers is of utmost importance. Aldehyde dehydrogenases (ALDHs) comprise a wide superfamily of metabolic enzymes that, over the last years, have gained increasing attention due to their association with stem-related features in a wide panel of hematopoietic malignancies and solid cancers. Aldehyde dehydrogenase 1B1 (ALDH1B1) is an isoform that has been characterized as a marker of colon cancer progression, while various studies suggest its importance in additional malignancies. Here, we review the basic concepts related to CSCs and discuss the potential role of ALDH1B1 in cancer development and its contribution to the CSC phenotype.
Collapse
Affiliation(s)
- Ilias Tsochantaridis
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Angelos Roupas
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Sofie Mohlin
- Division of Pediatrics, Clinical Sciences, Lund Stem Cell Center, Lund University Cancer Center, 22384 Lund, Sweden
| | - Aglaia Pappa
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
| | - Georgia-Persephoni Voulgaridou
- Department of Molecular Biology & Genetics, Democritus University of Thrace, 68100 Alexandroupolis, Greece
- Correspondence:
| |
Collapse
|
3
|
Anticancer Effect of Polyphyllin I in Suppressing Stem Cell-Like Properties of Hepatocellular Carcinoma via the AKT/GSK-3β/β-Catenin Signaling Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:4031008. [PMID: 36317061 PMCID: PMC9617736 DOI: 10.1155/2022/4031008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 08/29/2022] [Accepted: 09/28/2022] [Indexed: 12/24/2022]
Abstract
Polyphyllin I (PPI), also called Chong Lou saponin I, is a steroidal saponin isolated from the rhizome of Paris polyphylla. PPI has been demonstrated to have strong anticancer activity. However, its effect on the stemness of liver cancer stem cells (LCSCs) is not completely understood. Herein, we aimed to investigate the effect of PPI on the stem cell-like features of LCSCs and hepatocellular carcinoma (HCC). LCSCs were enriched in a serum-free medium and treated with PPI, sorafenib (Sora), or PPI and Sora. Several endpoints, including spheroid formation and differentiation, cell proliferation, surface markers of LCSCs, PPI binding targets, and stemness-associated protein expression, were evaluated. Immunofluorescence staining, quantitative real-time polymerase chain reaction, siRNA transfection, and coimmunoprecipitation ubiquitination assays were conducted for in-depth mechanistic studies. Evaluation of in vivo antitumor efficacy demonstrated that PPI effectively inhibited the proliferation of liver cancer cells and the self-renewal and differentiation of LCSCs. Flow cytometry indicated that PPI suppressed the expression of the stem cell surface markers EpCAM and CD13. Molecular docking showed a high affinity between PPI and proteins of the Wnt/β-catenin signaling pathway, including AKT, GSK-3β, and β-catenin, with the binding energies of -5.51, -5.32, and -5.40 kcal/mol, respectively, which suggested that PPI might regulate the Wnt/β-catenin signaling pathway to affect the stem cell-like properties of HCC. Further ex vivo experiments implied that PPI activated the AKT/GSK-3β-mediated ubiquitin proteasomal degradation of β-catenin and subsequently attenuated the prooncogenic effect of LCSCs. Finally, the anticancer property of PPI was confirmed in vivo. It was found that PPI inhibited the tumor growth in an HCC cell line xenograft model. Taken together, molecular docking analysis and experimental data highlighted the novel function of PPI in suppressing the stem cell-like characteristics of LCSCs via the AKT/GSK-3β/β-catenin signaling pathway.
Collapse
|
4
|
Zhou J, Zhang B, Wang H, Wang D, Zhang M, Zhang M, Wang X, Fan S, Xu Y, Zeng Q, Jia Y, Xi J, Nan X, He L, Zhou X, Li S, Zhong W, Yue W, Pei X. A Functional Screening Identifies a New Organic Selenium Compound Targeting Cancer Stem Cells: Role of c-Myc Transcription Activity Inhibition in Liver Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201166. [PMID: 35652264 PMCID: PMC9353477 DOI: 10.1002/advs.202201166] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/05/2022] [Indexed: 05/04/2023]
Abstract
Cancer stem cells (CSCs) are reported to play essential roles in chemoresistance and metastasis. Pathways regulating CSC self-renewal and proliferation, such as Hedgehog, Notch, Wnt/β-catenin, TGF-β, and Myc, may be potential therapeutic targets. Here, a functional screening from the focused library with 365 compounds is performed by a step-by-step strategy. Among these candidate molecules, phenyl-2-pyrimidinyl ketone 4-allyl-3-amino selenourea (CU27) is chosen for further identification because it proves to be the most effective compound over others on CSC inhibition. Through ingenuity pathway analysis, it is shown CU27 may inhibit CSC through a well-known stemness-related transcription factor c-Myc. Gene set enrichment analysis, dual-luciferase reporter assays, expression levels of typical c-Myc targets, molecular docking, surface plasmon resonance, immunoprecipitation, and chromatin immunoprecipitation are conducted. These results together suggest CU27 binds c-Myc bHLH/LZ domains, inhibits c-Myc-Max complex formation, and prevents its occupancy on target gene promoters. In mouse models, CU27 significantly sensitizes sorafenib-resistant tumor to sorafenib, reduces the primary tumor size, and inhibits CSC generation, showing a dramatic anti-metastasis potential. Taken together, CU27 exerts inhibitory effects on CSC and CSC-associated traits in hepatocellular carcinoma (HCC) via c-Myc transcription activity inhibition. CU27 may be a promising therapeutic to treat sorafenib-resistant HCC.
Collapse
Affiliation(s)
- Jun‐Nian Zhou
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijing100850P. R. China
- South China Research Center for Stem Cell and Regenerative MedicineSCIBGuangzhou510005P. R. China
| | - Biao Zhang
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijing100850P. R. China
- South China Research Center for Stem Cell and Regenerative MedicineSCIBGuangzhou510005P. R. China
| | - Hai‐Yang Wang
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijing100850P. R. China
- South China Research Center for Stem Cell and Regenerative MedicineSCIBGuangzhou510005P. R. China
| | - Dong‐Xing Wang
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijing100850P. R. China
| | - Ming‐Ming Zhang
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijing100850P. R. China
| | - Min Zhang
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Xiao‐Kui Wang
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Shi‐Yong Fan
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Ying‐Chen Xu
- Department of Hepatobiliary SurgeryBeijing Tongren HospitalBeijing100730P. R. China
| | - Quan Zeng
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijing100850P. R. China
- South China Research Center for Stem Cell and Regenerative MedicineSCIBGuangzhou510005P. R. China
| | - Ya‐Li Jia
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijing100850P. R. China
- South China Research Center for Stem Cell and Regenerative MedicineSCIBGuangzhou510005P. R. China
| | - Jia‐Fei Xi
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijing100850P. R. China
- South China Research Center for Stem Cell and Regenerative MedicineSCIBGuangzhou510005P. R. China
| | - Xue Nan
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijing100850P. R. China
- South China Research Center for Stem Cell and Regenerative MedicineSCIBGuangzhou510005P. R. China
| | - Li‐Juan He
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijing100850P. R. China
- South China Research Center for Stem Cell and Regenerative MedicineSCIBGuangzhou510005P. R. China
| | - Xin‐Bo Zhou
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Song Li
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Wu Zhong
- National Engineering Research Center for the Emergency DrugBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Wen Yue
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijing100850P. R. China
- South China Research Center for Stem Cell and Regenerative MedicineSCIBGuangzhou510005P. R. China
| | - Xue‐Tao Pei
- Stem Cell and Regenerative Medicine LabBeijing Institute of Radiation MedicineBeijing100850P. R. China
- South China Research Center for Stem Cell and Regenerative MedicineSCIBGuangzhou510005P. R. China
| |
Collapse
|
5
|
Zhou JN, Rautio TC, Liu C, Xu XY, Wang DQ, Guo Y, Eriksson J, Zhang H. Delivery of Protein Kinase A by CRISPRMAX and Its Effects on Breast Cancer Stem-Like Properties. Pharmaceutics 2020; 13:E11. [PMID: 33374889 PMCID: PMC7824330 DOI: 10.3390/pharmaceutics13010011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022] Open
Abstract
Protein kinase A (PKA) activation has recently been reported to inhibit epithelial-mesenchymal transition (EMT) and cancer stem cell (CSC) ability, which is considered to be responsible for chemoresistance and tumor recurrence in patients. While current studies mainly focus on gene manipulation of the EMT process, the direct delivery of PKA enzymes to cancer cells has never been investigated. Here, we utilize the commercial Lipofectamine CRISPRMAX reagent to directly deliver PKAs to breast cancer cells and evaluate its effects on EMT regulation. We optimized the delivery parameters with fluorescent-labeled bovine serum albumin, and successfully delivered fluorescent PKAs through CRISPRMAX into breast cancer cells. Then, we evaluated the biological effects by immunofluorescence, flow cytometry, mammosphere assay, and chemoresistance assay. Our data showed the expression of EMT-related markers, α-smooth muscle actin and N-cadherin, was downregulated after CRISPRMAX-PKA treatment. Although the CD44+/CD24- population did not change considerably, the size of mammospheres significantly decreased. In paclitaxel and doxorubicin chemoresistance assays, we noticed PKA delivery significantly inhibited paclitaxel resistance rather than doxorubicin resistance. Taken together, these results suggest our direct enzyme delivery can be a potential strategy for inhibiting EMT/CSC-associated traits, providing a safer approach and having more clinical translational efficacy than gene manipulation. This strategy will also facilitate the direct testing of other target enzymes/proteins on their biological functions.
Collapse
Affiliation(s)
- Jun-Nian Zhou
- Experimental Hematology and Biochemistry Lab, Beijing Institute of Radiation Medicine, Beijing 100850, China;
- Stem Cell and Regenerative Medicine Lab, Institute of Health Service and Transfusion Medicine, Beijing 100850, China
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520 Turku, Finland; (T.-C.R.); (C.L.); (X.-Y.X.)
- Turku Bioscience Center, University of Turku, 20520 Turku, Finland
- Turku Bioscience Center, Åbo Akademi University, 20520 Turku, Finland
| | - Tzu-Chen Rautio
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520 Turku, Finland; (T.-C.R.); (C.L.); (X.-Y.X.)
- Institute of Biomedicine, Faculty of Medicine, University of Turku, 20520 Turku, Finland
| | - Chang Liu
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520 Turku, Finland; (T.-C.R.); (C.L.); (X.-Y.X.)
- Turku Bioscience Center, University of Turku, 20520 Turku, Finland
- Turku Bioscience Center, Åbo Akademi University, 20520 Turku, Finland
| | - Xiao-Yu Xu
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520 Turku, Finland; (T.-C.R.); (C.L.); (X.-Y.X.)
- Turku Bioscience Center, University of Turku, 20520 Turku, Finland
- Turku Bioscience Center, Åbo Akademi University, 20520 Turku, Finland
| | - Dong-Qing Wang
- Department of Radiology, Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China;
| | - Yong Guo
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520 Turku, Finland; (T.-C.R.); (C.L.); (X.-Y.X.)
- Turku Bioscience Center, University of Turku, 20520 Turku, Finland
- Turku Bioscience Center, Åbo Akademi University, 20520 Turku, Finland
- Department of Endocrinology, Key Laboratory of National Health and Family Planning Commission for Male Reproductive Health, National Research Institute for Family Planning, Beijing 100081, China
| | - John Eriksson
- Turku Bioscience Center, University of Turku, 20520 Turku, Finland
- Turku Bioscience Center, Åbo Akademi University, 20520 Turku, Finland
| | - Hongbo Zhang
- Pharmaceutical Sciences Laboratory, Åbo Akademi University, 20520 Turku, Finland; (T.-C.R.); (C.L.); (X.-Y.X.)
- Turku Bioscience Center, University of Turku, 20520 Turku, Finland
- Turku Bioscience Center, Åbo Akademi University, 20520 Turku, Finland
| |
Collapse
|