1
|
Pelisenco IA, Zizioli D, Guerra F, Grossi I, Bucci C, Mignani L, Girolimetti G, Di Corato R, D'Agostino VG, Marchina E, De Petro G, Salvi A. miR-23b-3p, miR-126-3p and GAS5 delivered by extracellular vesicles inhibit breast cancer xenografts in zebrafish. Cell Commun Signal 2024; 22:552. [PMID: 39558342 PMCID: PMC11572517 DOI: 10.1186/s12964-024-01936-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Extracellular vesicles (EVs) are a group of nanoscale cell-derived membranous structures secreted by all cell types, containing molecular cargoes involved in intercellular communication. EVs can be used to mimic "nature's delivery system" to transport nucleic acids, peptides, lipids, and metabolites to target recipient cells. EVs offer a range of advantages over traditional synthetic carriers, thus paving the way for innovative drug delivery approaches that can be used in different diseases, including cancer. Here, by using breast cancer (BC) cells treated with the multi-kinase inhibitor sorafenib, we generated EVs enriched in specific non-coding RNAs (miR-23b-3p, miR-126-3p, and the long ncRNA GAS5) and investigated their potential impact on the aggressive properties of the BC in vitro and in vivo using zebrafish. METHODS EVs were collected from 4 different BC cell lines (HCC1937, MDA-MB-231, MCF-7, and MDA-MB-453) and characterized by western blotting, transmission electron microscopy and nanoparticle tracking analysis. Levels of encapsulated miR-23b-3p, miR-126-3p, and GAS5 were quantified by ddPCR. The role of the EVs as carriers of ncRNAs in vivo was established by injecting MDA-MB-231 and MDA-MB-453 cells into zebrafish embryos followed by EV-based treatment of the xenografts with EVs rich in miR-23b-3p, miR-126-3p and GAS5. RESULTS ddPCR analysis revealed elevated levels of miR-23b-3p, miR-126-3p, and GAS5, encapsulated in the EVs released by the aforementioned cell lines, following sorafenib treatment. The use of EVs as carriers of these specific ncRNAs in the treatment of BC cells resulted in a significant increase in the expression levels of the three ncRNAs along with the inhibition of cellular proliferation in vitro. In vivo experiments demonstrated a remarkable reduction of xenograft tumor area, suppression of angiogenesis, and decreased number of micrometastasis in the tails after administration of EVs enriched with these ncRNAs. CONCLUSIONS Our study demonstrated that sorafenib-induced EVs, enriched with specific tumor-suppressor ncRNAs, can effectively inhibit the aggressive BC characteristics in vitro and in vivo. Our findings indicate an alternative way to enrich EVs with specific tumor-suppressor ncRNAs by treating the cells with an anticancer drug and support the development of new potential experimental molecular approaches to target the aggressive properties of cancer cells.
Collapse
Affiliation(s)
- Iulia Andreea Pelisenco
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Daniela Zizioli
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Flora Guerra
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 165, 73100, Lecce, Italy
| | - Ilaria Grossi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Cecilia Bucci
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 165, 73100, Lecce, Italy
| | - Luca Mignani
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Giulia Girolimetti
- Department of Biological and Environmental Sciences and Technologies, University of Salento, Via Provinciale Lecce-Monteroni, 165, 73100, Lecce, Italy
| | - Riccardo Di Corato
- Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100, Lecce, Italy
- Center for Biomolecular Nanotechnologies, Istituto Italiano di Tecnologia, 73010, Arnesano, Italy
| | - Vito Giuseppe D'Agostino
- Department of Cellular, Computational and Integrative Biology (CIBIO), University of Trento, 38123, Trento, Italy
| | - Eleonora Marchina
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Giuseppina De Petro
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy
| | - Alessandro Salvi
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa, 11, 25123, Brescia, Italy.
| |
Collapse
|
2
|
Smirnova O, Efremov Y, Klyucherev T, Peshkova M, Senkovenko A, Svistunov A, Timashev P. Direct and cell-mediated EV-ECM interplay. Acta Biomater 2024; 186:63-84. [PMID: 39043290 DOI: 10.1016/j.actbio.2024.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 07/07/2024] [Accepted: 07/17/2024] [Indexed: 07/25/2024]
Abstract
Extracellular vesicles (EV) are a heterogeneous group of lipid particles excreted by cells. They play an important role in regeneration, development, inflammation, and cancer progression, together with the extracellular matrix (ECM), which they constantly interact with. In this review, we discuss direct and indirect interactions of EVs and the ECM and their impact on different physiological processes. The ECM affects the secretion of EVs, and the properties of the ECM and EVs modulate EVs' diffusion and adhesion. On the other hand, EVs can affect the ECM both directly through enzymes and indirectly through the modulation of the ECM synthesis and remodeling by cells. This review emphasizes recently discovered types of EVs bound to the ECM and isolated by enzymatic digestion, including matrix-bound nanovesicles (MBV) and tissue-derived EV (TiEV). In addition to the experimental studies, computer models of the EV-ECM-cell interactions, from all-atom models to quantitative pharmacology models aiming to improve our understanding of the interaction mechanisms, are also considered. STATEMENT OF SIGNIFICANCE: Application of extracellular vesicles in tissue engineering is an actively developing area. Vesicles not only affect cells themselves but also interact with the matrix and change it. The matrix also influences both cells and vesicles. In this review, different possible types of interactions between vesicles, matrix, and cells are discussed. Furthermore, the united EV-ECM system and its regulation through the cellular activity are presented.
Collapse
Affiliation(s)
- Olga Smirnova
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Yuri Efremov
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Timofey Klyucherev
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | - Maria Peshkova
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, 119991 Moscow, Russia
| | - Alexey Senkovenko
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia
| | | | - Peter Timashev
- Institute for Regenerative Medicine, Sechenov University, 119991 Moscow, Russia; World-Class Research Center "Digital Biodesign and Personalized Healthcare", Sechenov University, 119991 Moscow, Russia; Chemistry Department, Lomonosov Moscow State University, 119991 Moscow, Russia.
| |
Collapse
|
3
|
Han Y, Ye S, Liu B. Roles of extracellular vesicles derived from healthy and obese adipose tissue in inter-organ crosstalk and potential clinical implication. Front Endocrinol (Lausanne) 2024; 15:1409000. [PMID: 39268243 PMCID: PMC11390393 DOI: 10.3389/fendo.2024.1409000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024] Open
Abstract
Extracellular vesicles (EVs) are nanovesicles containing bioactive molecules including proteins, nucleic acids and lipids that mediate intercellular and inter-organ communications, holding promise as potential therapeutics for multiple diseases. Adipose tissue (AT) serves as a dynamically distributed energy storage organ throughout the body, whose accumulation leads to obesity, a condition characterized by infiltration with abundant immune cells. Emerging evidence has illustrated that EVs secreted by AT are the novel class of adipokines that regulate the homeostasis between AT and peripheral organs. However, most of the studies focused on the investigations of EVs derived from adipocytes or adipose-derived stem cells (ADSCs), the summarization of functions in cellular and inter-organ crosstalk of EVs directly derived from adipose tissue (AT-EVs) are still limited. Here, we provide a systemic summary on the key components and functions of EVs derived from healthy adipose tissue, showing their significance on the tissue recovery and metabolic homeostasis regulation. Also, we discuss the harmful influences of EVs derived from obese adipose tissue on the distal organs. Furthermore, we elucidate the potential applications and constraints of EVs from healthy patients lipoaspirates as therapeutic agents, highlighting the potential of AT-EVs as a valuable biological material with broad prospects for future clinical use.
Collapse
Affiliation(s)
- Yue Han
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Sheng Ye
- School of Engineering Medicine, Beihang University, Beijing, China
- Key Laboratory of Big Data-based Precision Medicine (Beihang University), Ministry of Industry and Information Technology, Beijing, China
| | - Bowen Liu
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, China
- School of Life Sciences, Westlake University, Hangzhou, China
| |
Collapse
|
4
|
Lin J, Lu W, Huang B, Yang W, Wang X. The role of tissue-derived extracellular vesicles in tumor microenvironment. Tissue Cell 2024; 89:102470. [PMID: 39002287 DOI: 10.1016/j.tice.2024.102470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
The tumor microenvironment (TME) is a highly heterogeneous ecosystem that plays critical roles in the initiation, progression, invasion, and metastasis of cancers. Extracellular vesicles (EVs), as emerging components of the host-tumor communication, are lipid-bilayer membrane structures that are secreted by most cell types into TEM and increasingly recognized as critical elements that regulate the interaction between tumor cells and their surroundings. They contain a variety of bioactive molecules, such as proteins, nucleic acids, and lipids, and participate in various pathophysiological processes while regulating intercellular communication. While many studies have focused on the EVs derived from different body fluids or cell culture supernatants, the direct isolation of tissue-derived EVs (Ti-EVs) has garnered more attention due to the advantages of tissue specificity and accurate reflection of tissue microenvironment. In this review, we summarize the protocol for isolating Ti-EVs from different tissue interstitium, discuss the role of tumor-derived and adipose tissue-derived Ti-EVs in regulating TME. In addition, we sum up the latest application of Ti-EVs as potential biomarkers for cancer diseases.
Collapse
Affiliation(s)
- Jin Lin
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Wan Lu
- Jiangxi Provincial Key Laboratory of Birth Defect for Prevention and Control, Medical Genetics Center, Jiangxi Maternal and Child Health Hospital, Nanchang, China
| | - Bo Huang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Weiming Yang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China
| | - Xiaozhong Wang
- Jiangxi Province Key Laboratory of Immunology and Inflammation, Jiangxi Provincial Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, China.
| |
Collapse
|
5
|
Li W, Zhu J, Li J, Jiang Y, Sun J, Xu Y, Pan H, Zhou Y, Zhu J. Research advances of tissue-derived extracellular vesicles in cancers. J Cancer Res Clin Oncol 2024; 150:184. [PMID: 38598014 PMCID: PMC11006789 DOI: 10.1007/s00432-023-05596-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 12/23/2023] [Indexed: 04/11/2024]
Abstract
BACKGROUND Extracellular vesicles (EVs) can mediate cell-to-cell communication and affect various physiological and pathological processes in both parent and recipient cells. Currently, extensive research has focused on the EVs derived from cell cultures and various body fluids. However, insufficient attention has been paid to the EVs derived from tissues. Tissue EVs can reflect the microenvironment of the specific tissue and the cross-talk of communication among different cells, which can provide more accurate and comprehensive information for understanding the development and progression of diseases. METHODS We review the state-of-the-art technologies involved in the isolation and purification of tissue EVs. Then, the latest research progress of tissue EVs in the mechanism of tumor occurrence and development is presented. And finally, the application of tissue EVs in the clinical diagnosis and treatment of cancer is anticipated. RESULTS We evaluate the strengths and weaknesses of various tissue processing and EVs isolation methods, and subsequently analyze the significance of protein characterization in determining the purity of tissue EVs. Furthermore, we focus on outlining the importance of EVs derived from tumor and adipose tissues in tumorigenesis and development, as well as their potential applications in early tumor diagnosis, prognosis, and treatment. CONCLUSION When isolating and characterizing tissue EVs, the most appropriate protocol needs to be specified based on the characteristics of different tissues. Tissue EVs are valuable in the diagnosis, prognosis, and treatment of tumors, and the potential risks associated with tissue EVs need to be considered as therapeutic agents.
Collapse
Affiliation(s)
- Wei Li
- Jiading District Central Hospital Affiliated to Shanghai University of Medicine and Health Sciences, Shanghai, 201800, People's Republic of China
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Jingyao Zhu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Jiayuan Li
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Yiyun Jiang
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Jiuai Sun
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Yan Xu
- Research Laboratory for Functional Nanomaterial, National Engineering Research Center for Nanotechnology, Shanghai, 200241, People's Republic of China
| | - Hongzhi Pan
- Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China.
- Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, 200120, People's Republic of China.
| | - Yan Zhou
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China.
| | - Jun Zhu
- School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China.
- Research Laboratory for Functional Nanomaterial, National Engineering Research Center for Nanotechnology, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
6
|
Zhang C, Yang X, Jiang T, Yan C, Xu X, Chen Z. Tissue-derived extracellular vesicles: Isolation, purification, and multiple roles in normal and tumor tissues. Life Sci 2023; 321:121624. [PMID: 37001806 DOI: 10.1016/j.lfs.2023.121624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/18/2023] [Accepted: 03/22/2023] [Indexed: 03/31/2023]
Abstract
Extracellular vesicles (EVs) are particles released from cells, and their lipid bilayer membrane encloses large amounts of bioactive molecules that endow EVs with intercellular or inter-tissue communicational abilities. Tissue-derived extracellular vesicles (Ti-EVs) are EVs directly separated from the interstitial space of tissue. They could better reflect the actual physiological or pathological state of the tissue microenvironment compared with cell line-derived EVs and biofluid EVs, indicating their potential roles in elucidating the underlying mechanism of pathogenesis and guiding the diagnosis, therapeutic targeting, and cell-free treatment of diseases. However, there have been a relatively limited number of investigations of Ti-EVs. In this review, we have summarized general procedures for Ti-EVs isolation, as well as some caveats with respect to operations after the isolation step, such as purification and storage. In addition, we have also briefly concluded the current research trends on EVs from various normal and tumor tissues, aiming to cast new light on the future research direction of Ti-EVs.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaofan Yang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Tao Jiang
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chengqi Yan
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiang Xu
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Zhenbing Chen
- Department of Hand Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
7
|
Deng W, Wang X, Chen L, Wen B, Chen Y, Ji K, Liu H. Proteomic and miRNA Profiles of Exosomes Derived from Myometrial Tissue in Laboring Women. Int J Mol Sci 2022; 23:ijms232012343. [PMID: 36293200 PMCID: PMC9603981 DOI: 10.3390/ijms232012343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 11/16/2022] Open
Abstract
Myometrial contraction is essential for successful delivery. Recent studies have highlighted the vital roles of tissue-derived exosomes in disease diagnostic, prognostic, and therapeutic applications; however, the characteristics of uterine myometrium-derived exosomes are unclear. Here, we successfully isolated exosomes from myometrial tissues, human myometrial smooth muscle cells (HMSMCs), and human umbilical vein endothelial cells (HUVECs), then performed quantitative liquid chromatography-tandem mass spectrometry and miRNA sequencing to investigate the cargo of the exosomes. Fifty-two proteins and five miRNAs were differentially expressed (DE) in term non-labor and term labor myometrium-derived exosomes. Among them, seven proteins (SERPINE1, THBS1, MGAT1, VIM, FGB, FGG, and VWF) were differentially expressed both in the myometrial exosomes and tissues, three miRNAs (miR-363-3p, miR-203a-3p, and miR-205-5p) target 13 DE genes. The top three miRNA derived from HMSMCs (miR-125b-1-3p, miR-337-5p, and miR-503-5p) and HUVECs (miR-663a, miR-4463, and miR-3622a-5p) were identified. Two proteins, GJA1 and SLC39A14, exist in female blood exosomes and are highly expressed in HMSMCs exosomes, are also upregulated in the laboring myometrium, which verified increased in laboring blood samples, might be novel potential biomarkers for myometrial activation. The proteomic and miRNA profile of exosomes derived from laboring myometrium revealed some molecules in the exosomes that affect the intercellular communication and the function of the myometrium.
Collapse
Affiliation(s)
- Wenfeng Deng
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xiaodi Wang
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Lina Chen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Bolun Wen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yunshan Chen
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Kaiyuan Ji
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Correspondence: (K.J.); (H.L.)
| | - Huishu Liu
- Guangzhou Key Laboratory of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou 510623, China
- Correspondence: (K.J.); (H.L.)
| |
Collapse
|
8
|
Wakao S, Oguma Y, Kushida Y, Kuroda Y, Tatsumi K, Dezawa M. Phagocytosing differentiated cell-fragments is a novel mechanism for controlling somatic stem cell differentiation within a short time frame. Cell Mol Life Sci 2022; 79:542. [PMID: 36203068 PMCID: PMC9537123 DOI: 10.1007/s00018-022-04555-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/29/2022]
Abstract
Stem cells undergo cytokine-driven differentiation, but this process often takes longer than several weeks to complete. A novel mechanism for somatic stem cell differentiation via phagocytosing ‘model cells’ (apoptotic differentiated cells) was found to require only a short time frame. Pluripotent-like Muse cells, multipotent mesenchymal stem cells (MSCs), and neural stem cells (NSCs) phagocytosed apoptotic differentiated cells via different phagocytic receptor subsets than macrophages. The phagocytosed-differentiated cell-derived contents (e.g., transcription factors) were quickly released into the cytoplasm, translocated into the nucleus, and bound to promoter regions of the stem cell genomes. Within 24 ~ 36 h, the cells expressed lineage-specific markers corresponding to the phagocytosed-differentiated cells, both in vitro and in vivo. At 1 week, the gene expression profiles were similar to those of the authentic differentiated cells and expressed functional markers. Differentiation was limited to the inherent potential of each cell line: triploblastic-, adipogenic-/chondrogenic-, and neural-lineages in Muse cells, MSCs, and NSCs, respectively. Disruption of phagocytosis, either by phagocytic receptor inhibition via small interfering RNA or annexin V treatment, impeded differentiation in vitro and in vivo. Together, our findings uncovered a simple mechanism by which differentiation-directing factors are directly transferred to somatic stem cells by phagocytosing apoptotic differentiated cells to trigger their rapid differentiation into the target cell lineage.
Collapse
Affiliation(s)
- Shohei Wakao
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Japan.
| | - Yo Oguma
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Japan
| | - Yoshihiro Kushida
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Japan
| | - Yasumasa Kuroda
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Japan
| | - Kazuki Tatsumi
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Japan.,Regenerative Medicine Division, Analytical Research Department, Technology Development Unit, Life Science Institute, Inc., Tokyo, Japan
| | - Mari Dezawa
- Department of Stem Cell Biology and Histology, Tohoku University Graduate School of Medicine, 2-1, Seiryo-Machi, Aoba-Ku, Sendai, 980-8575, Japan.
| |
Collapse
|
9
|
Parker E, Mendhe B, Ruan L, Marshall B, Zhi W, Liu Y, Fulzele S, Tang YL, McGee-Lawrence M, Lee TJ, Sharma A, Johnson M, Chen J, Hamrick MW. MicroRNA cargo of extracellular vesicles released by skeletal muscle fibro-adipogenic progenitor cells is significantly altered with disuse atrophy and IL-1β deficiency. Physiol Genomics 2022; 54:296-304. [PMID: 35759450 PMCID: PMC9342138 DOI: 10.1152/physiolgenomics.00177.2021] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/31/2022] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
Fibro-adipogenic progenitor cells (FAPs) are a population of stem cells in skeletal muscle that play multiple roles in muscle repair and regeneration through their complex secretome; however, it is not well understood how the FAP secretome is altered with muscle disuse atrophy. Previous work suggests that the inflammatory cytokine IL-1β is increased in FAPs with disuse and denervation. Inflammasome activation and IL-1β secretion are also known to stimulate the release of extracellular vesicles (EVs). Here, we examined the microRNA (miRNA) cargo of FAP-derived, platelet-derived growth factor receptor A (PDGFRα+) EVs from hindlimb muscles of wild-type and IL-1β KO mice after 14 days of single-hindlimb immobilization. Hindlimb muscles were isolated from mice following the immobilization period, and PDGFRα+ extracellular vesicles were isolated using size-exclusion chromatography and immunoprecipitation. Microarrays were performed to detect changes in miRNAs with unloading and IL-1β deficiency. Results indicate that the PDGFRα+, FAP-derived EVs show a significant increase in miRNAs, such as miR-let-7c, miR-let-7b, miR-181a, and miR-124. These miRNAs have previously been demonstrated to play important roles in cellular senescence and muscle atrophy. Furthermore, the expression of these same miRNAs was not significantly altered in FAP-derived EVs isolated from the immobilized IL-1β KO. These data suggest that disuse-related activation of IL-1β can mediate the miRNA cargo of FAP-derived EVs, contributing directly to the release of senescence- and atrophy-related miRNAs. Therapies targeting FAPs in settings associated with muscle disuse atrophy may therefore have the potential to preserve muscle function and enhance muscle recovery.
Collapse
Affiliation(s)
- Emily Parker
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Bharati Mendhe
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Ling Ruan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Brendan Marshall
- EM/Histology Core Laboratory, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Wenbo Zhi
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Yutao Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Sadanand Fulzele
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Yao Liang Tang
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Meghan McGee-Lawrence
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Maribeth Johnson
- Division of Biostatistics and Data Science, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Jie Chen
- Division of Biostatistics and Data Science, Medical College of Georgia at Augusta University, Augusta, Georgia
| | - Mark W Hamrick
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia
| |
Collapse
|
10
|
Kimiz-Gebologlu I, Oncel SS. Exosomes: Large-scale production, isolation, drug loading efficiency, and biodistribution and uptake. J Control Release 2022; 347:533-543. [PMID: 35597405 DOI: 10.1016/j.jconrel.2022.05.027] [Citation(s) in RCA: 205] [Impact Index Per Article: 102.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 12/24/2022]
Abstract
Exosomes are nanovesicles with different contents that play a role in various biological and pathological processes. It offers significant advantages over other delivery systems such as liposomes and polymeric nanoparticles. Although exosomes are expected to be effective therapeutic agents, their optimal use remains a challenge. The development of methods for large-scale production, isolation, and drug loading is necessary to improve their efficiency and therapeutic potential. In this review, after mentioning general properties and biological functions of the exosomes, details of their potential for use in the drug delivery system are presented. For this purpose, methodologies for the large-scale production of exosomes, exosome isolation, exosomal cargo loading, and exosome uptake by the recipient cell are reviewed. The current challenges and potential directions of this new area of drug delivery that has become popular recently are also investigated.
Collapse
Affiliation(s)
| | - Suphi S Oncel
- Department of Bioengineering, Faculty of Engineering, Ege University, Izmir, Turkey..
| |
Collapse
|
11
|
Qin B, Hu XM, Su ZH, Zeng XB, Ma HY, Xiong K. Tissue-derived extracellular vesicles: Research progress from isolation to application. Pathol Res Pract 2021; 226:153604. [PMID: 34500372 DOI: 10.1016/j.prp.2021.153604] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/24/2021] [Accepted: 08/27/2021] [Indexed: 02/08/2023]
Abstract
Extracellular vesicles (EVs) are the structures that all cells release into the environment. They are separated by a lipid bilayer and contain the cellular components that release them. To date, most studies have been performed on EVs derived from cell supernatants or different body fluids, while the number of studies on EV isolation directly from tissues is still limited. Studies of EV isolation directly from tissues may provide us with better information. This review summarizes the role of EV in the extracellular matrix, the protocol for isolation of EV in the tissue interstitium, and the application of the protocol in different tissues.
Collapse
Affiliation(s)
- Bo Qin
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District Guilin North Road No.16, Huangshi 435003, China
| | - Xi-Min Hu
- Clinical Medicine Eight-year Program, 02 Class, 17 Grade, Xiangya School of Medicine, Central South University, Changsha, Hunan 410013, China
| | - Zhen-Hong Su
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District Guilin North Road No.16, Huangshi 435003, China
| | - Xiao-Bo Zeng
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District Guilin North Road No.16, Huangshi 435003, China
| | - Hong-Ying Ma
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Xialu District Guilin North Road No.16, Huangshi 435003, China
| | - Kun Xiong
- Department of Neurobiology and Human Anatomy, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China; Hunan Key Laboratory of Ophthalmology, Changsha, Hunan 410008, China.
| |
Collapse
|