1
|
Louka E, Koumandou VL. The Emerging Role of Human Gut Bacteria Extracellular Vesicles in Mental Disorders and Developing New Pharmaceuticals. Curr Issues Mol Biol 2024; 46:4751-4767. [PMID: 38785554 PMCID: PMC11120620 DOI: 10.3390/cimb46050286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/25/2024] Open
Abstract
In recent years, further evidence has emerged regarding the involvement of extracellular vesicles in various human physiopathological conditions such as Alzheimer's disease, Parkinson's disease, irritable bowel syndrome, and mental disorders. The biogenesis and cargo of such vesicles may reveal their impact on human health nd disease and set the underpinnings for the development of novel chemical compounds and pharmaceuticals. In this review, we examine the link between bacteria-derived exosomes in the gastrointestinal tract and mental disorders, such as depression and anxiety disorders. Crucially, we focus on whether changes in the gut environment affect the human mental state or the other way around. Furthermore, the possibility of handling bacteria-derived exosomes as vectors of chemicals to treat such conditions is examined.
Collapse
Affiliation(s)
- Effrosyni Louka
- Genetics Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| | - Vassiliki Lila Koumandou
- Genetics Laboratory, Department of Biotechnology, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece
| |
Collapse
|
2
|
Wright DE, De la Rosa MA. Serving the scientific community: FEBS Open Bio in 2024. FEBS Open Bio 2024; 14:4-7. [PMID: 38168511 PMCID: PMC10761931 DOI: 10.1002/2211-5463.13747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
FEBS Open Bio is committed to not only publishing sound science but also to supporting early-career researchers and the scientific community as a whole. In this editorial, we look back at how the journal recognised and rewarded excellent research in 2023 and look forward to 2024.
Collapse
|
3
|
Zhu X, Sakamoto S, Ishii C, Smith MD, Ito K, Obayashi M, Unger L, Hasegawa Y, Kurokawa S, Kishimoto T, Li H, Hatano S, Wang TH, Yoshikai Y, Kano SI, Fukuda S, Sanada K, Calabresi PA, Kamiya A. Dectin-1 signaling on colonic γδ T cells promotes psychosocial stress responses. Nat Immunol 2023; 24:625-636. [PMID: 36941398 DOI: 10.1038/s41590-023-01447-8] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 02/02/2023] [Indexed: 03/23/2023]
Abstract
The intestinal immune system interacts with commensal microbiota to maintain gut homeostasis. Furthermore, stress alters the microbiome composition, leading to impaired brain function; yet how the intestinal immune system mediates these effects remains elusive. Here we report that colonic γδ T cells modulate behavioral vulnerability to chronic social stress via dectin-1 signaling. We show that reduction in specific Lactobacillus species, which are involved in T cell differentiation to protect the host immune system, contributes to stress-induced social-avoidance behavior, consistent with our observations in patients with depression. Stress-susceptible behaviors derive from increased differentiation in colonic interleukin (IL)-17-producing γδ T cells (γδ17 T cells) and their meningeal accumulation. These stress-susceptible cellular and behavioral phenotypes are causally mediated by dectin-1, an innate immune receptor expressed in γδ T cells. Our results highlight the previously unrecognized role of intestinal γδ17 T cells in the modulation of psychological stress responses and the importance of dectin-1 as a potential therapeutic target for the treatment of stress-induced behaviors.
Collapse
Affiliation(s)
- Xiaolei Zhu
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shinji Sakamoto
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuropsychiatry, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama, Japan
| | - Chiharu Ishii
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Matthew D Smith
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Koki Ito
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Psychiatry, Hokkaido University Graduate School of Medicine, Hokkaido, Japan
| | - Mizuho Obayashi
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Lisa Unger
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Yuto Hasegawa
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shunya Kurokawa
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
| | - Taishiro Kishimoto
- Department of Neuropsychiatry, Keio University School of Medicine, Tokyo, Japan
- Hills Joint Research Laboratory for Future Preventive Medicine and Wellness, Keio University School of Medicine, Tokyo, Japan
| | - Hui Li
- Departments of Mechanical Engineering and Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
- School of Electrical, Computer and Biomedical Engineering, Southern Illinois University, Carbondale, IL, USA
| | - Shinya Hatano
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Tza-Huei Wang
- Departments of Mechanical Engineering and Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Yasunobu Yoshikai
- Medical Institute of Bioregulation, Kyushu University, Fukuoka, Japan
| | - Shin-Ichi Kano
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, AL, USA
| | - Shinji Fukuda
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
- Gut Environmental Design Group, Kanagawa Institute of Industrial Science and Technology, Kawasaki, Japan
- Transborder Medical Research Center, University of Tsukuba, Tsukuba, Japan
- Laboratory for Regenerative Microbiology, Graduate School of Medicine, Juntendo University, Tokyo, Japan
| | - Kenji Sanada
- Department of Psychiatry, School of Medicine, Showa University, Tokyo, Japan
| | - Peter A Calabresi
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Atsushi Kamiya
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
4
|
Kong L, Zhang D, Huang S, Lai J, Lu L, Zhang J, Hu S. Extracellular Vesicles in Mental Disorders: A State-of-art Review. Int J Biol Sci 2023; 19:1094-1109. [PMID: 36923936 PMCID: PMC10008693 DOI: 10.7150/ijbs.79666] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Accepted: 01/26/2023] [Indexed: 03/13/2023] Open
Abstract
Extracellular vesicles (EVs) are nanoscale particles with various physiological functions including mediating cellular communication in the central nervous system (CNS), which indicates a linkage between these particles and mental disorders such as schizophrenia, bipolar disorder, major depressive disorder, etc. To date, known characteristics of mental disorders are mainly neuroinflammation and dysfunctions of homeostasis in the CNS, and EVs are proven to be able to regulate these pathological processes. In addition, studies have found that some cargo of EVs, especially miRNAs, were significantly up- or down-regulated in patients with mental disorders. For many years, interest has been generated in exploring new diagnostic and therapeutic methods for mental disorders, but scale assessment and routine drug intervention are still the first-line applications so far. Therefore, underlying the downstream functions of EVs and their cargo may help uncover the pathogenetic mechanisms of mental disorders as well as provide novel biomarkers and therapeutic candidates. This review aims to address the connection between EVs and mental disorders, and discuss the current strategies that focus on EVs-related psychiatric detection and therapy.
Collapse
Affiliation(s)
- Lingzhuo Kong
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Danhua Zhang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Shu Huang
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Jianbo Lai
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou 310003, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Lin Lu
- Peking University Sixth Hospital, Peking University Institute of Mental Health, NHC Key Laboratory of Mental Health (Peking University), National Clinical Research Center for Mental Disorders (Peking University Sixth Hospital), Chinese Academy of Medical Sciences Research Unit (No.2018RU006), Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences and PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Jing Zhang
- Department of Pathology, First Affiliated Hospital, Zhejiang University School of Medicine, Zhejiang, China.,National Health and Disease Human Brain Tissue Resource Center, Zhejiang University, Zhejiang, China
| | - Shaohua Hu
- Department of Psychiatry, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China.,The Key Laboratory of Mental Disorder's Management in Zhejiang Province, Hangzhou 310003, China.,Brain Research Institute of Zhejiang University, Hangzhou 310003, China.,Zhejiang Engineering Center for Mathematical Mental Health, Hangzhou 310003, China.,Department of Neurobiology, NHC and CAMS Key Laboratory of Medical Neurobiology, School of Brain Science and Brian Medicine, and MOE Frontier Science Center for Brain Science and Brain-machine Integration, Zhejiang University School of Medicine, Hangzhou 310003, China
| |
Collapse
|
5
|
Lyu Q, Zhou X, Shi LQ, Chen HY, Lu M, Ma XD, Ren L. Exosomes may be the carrier of acupuncture treatment for major depressive disorder. Front Behav Neurosci 2023; 17:1107265. [PMID: 36873772 PMCID: PMC9978012 DOI: 10.3389/fnbeh.2023.1107265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/01/2023] [Indexed: 02/18/2023] Open
Abstract
The incidence of major depressive disorder (MDD) is increasing all over the world. There is a great need for complementary or alternative therapies with high safety, few side effects, and precise efficacy to care for MDD. In China, acupuncture has significant laboratory data and clinical trials to demonstrate its antidepressant efficacy. However, there is no clear answer as to how it works. Exosomes are membranous vesicles that rely on cellular multivesicular bodies (MVBs) fused to the cell membrane for release into the extracellular matrix. Almost all cell types are capable of producing and releasing exosomes. As a result, exosomes contain complex RNAs and proteins from their relatives (Cells that secretes exosomes). They can cross biological barriers and participate in biological activities, such as cell migration, angiogenesis, and immune regulation. These properties have made them a popular research topic. Some experts have suggested that exosomes may serve as delivery vehicles for acupuncture to work. This presents both an opportunity and a new challenge for improving the protocols of acupuncture as a treatment for MDD. To better define the relationship between MDD, exosomes, and acupuncture, we reviewed the literature from the last few years. Inclusion criteria included randomized controlled trials and basic trials evaluating acupuncture in the treatment or prevention of MDD, the role of exosomes in the development and progression of MDD, and the role of exosomes in acupuncture. We believe that acupuncture may affect the distribution of exosomes in vivo, and exosomes may be a new carrier for acupuncture treatment of MDD in the future.
Collapse
Affiliation(s)
- Qin Lyu
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xin Zhou
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Liu-Qing Shi
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Hai-Yang Chen
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Mei Lu
- Department of Acupuncture and Moxibustion, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xian-De Ma
- Teaching and Experiment Center, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Lu Ren
- Graduate School, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| |
Collapse
|
6
|
Stress induces major depressive disorder by a neutral sphingomyelinase 2-mediated accumulation of ceramide-enriched exosomes in the blood plasma. J Mol Med (Berl) 2022; 100:1493-1508. [PMID: 36045177 PMCID: PMC9470690 DOI: 10.1007/s00109-022-02250-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/11/2022] [Accepted: 08/17/2022] [Indexed: 10/28/2022]
Abstract
Major depressive disorder (MDD) is a very common, severe disease with a lifetime prevalence of ~ 10%. The pathogenesis of MDD is unknown and, unfortunately, therapy is often insufficient. We have previously reported that ceramide levels are increased in the blood plasma of patients with MDD and in mice with experimental MDD. Here, we demonstrate that ceramide-enriched exosomes in the blood plasma are increased in mice with stress-induced MDD. Genetic studies reveal that neutral sphingomyelinase 2 is required for the formation of ceramide-enriched exosomes in the blood plasma. Accordingly, induced deficiency of neutral sphingomyelinase 2 prevented mice from the development of stress-induced MDD. Intravenous injection of microparticles from mice with MDD or injection of ceramide-loaded exosomes induced MDD-like behavior in untreated mice, which was abrogated by ex vivo pre-incubation of purified exosomes with anti-ceramide antibodies or ceramidase. Mechanistically, injection of exosomes from mice with MDD or injection of ex vivo ceramide-loaded microparticles inhibited phospholipase D (PLD) in endothelial cells in vitro and in the hippocampus in vivo and thereby decreased phosphatidic acid in the hippocampus, which has been previously shown to mediate MDD by plasma ceramide. In summary, our data indicate that ceramide-enriched exosomes are released by neutral sphingomyelinase 2 into the blood plasma upon stress and mediate stress-induced MDD. KEY MESSAGES: Stress induces ceramide-enriched exosomes in the blood plasma. Ceramide-enriched exosomes mediate major depressive disorder (MDD). Deficiency of neutral sphingomyelinase 2 protects from stress-induced MDD. Neutralization or digestion of ceramide in exosomes prevents stress-induced MDD. Ceramide-enriched exosomes inhibit endothelial phospholipase D in the hippocampus.
Collapse
|
7
|
Bell BJ, Hollinger KR, Deme P, Sakamoto S, Hasegawa Y, Volsky D, Kamiya A, Haughey N, Zhu X, Slusher BS. Glutamine antagonist JHU083 improves psychosocial behavior and sleep deficits in EcoHIV-infected mice. Brain Behav Immun Health 2022; 23:100478. [PMID: 35734753 PMCID: PMC9207540 DOI: 10.1016/j.bbih.2022.100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 10/31/2022] Open
Abstract
Combined antiretroviral therapy ushered an era of survivable HIV infection in which people living with HIV (PLH) conduct normal life activities and enjoy measurably extended lifespans. However, despite viral control, PLH often experience a variety of cognitive, emotional, and physical phenotypes that diminish their quality of life, including cognitive impairment, depression, and sleep disruption. Recently, accumulating evidence has linked persistent CNS immune activation to the overproduction of glutamate and upregulation of glutaminase (GLS) activity, particularly in microglial cells, driving glutamatergic imbalance with neurological consequences. Our lab has developed a brain-penetrant prodrug of the glutamine antagonist 6-diazo-5-oxo-L-norleucine (DON), JHU083, that potently inhibits brain GLS activity in mice following oral administration. To assess the therapeutic potential of JHU083, we infected mice with EcoHIV and characterized their neurobehavioral phenotypes. EcoHIV-infected mice exhibited decreased social interaction, suppressed sucrose preference, disrupted sleep during the early rest period, and increased sleep fragmentation, similar to what has been reported in PLH but not yet observed in murine models. At doses shown to inhibit microglial GLS, JHU083 treatment ameliorated all of the abnormal neurobehavioral phenotypes. To explore potential mechanisms underlying this effect, hippocampal microglia were isolated for RNA sequencing. The dysregulated genes and pathways in EcoHIV-infected hippocampal microglia pointed to disruptions in immune functions of these cells, which were partially restored by JHU083 treatment. These findings suggest that upregulation of microglial GLS may affect immune functions of these cells. Thus, brain-penetrable GLS inhibitors like JHU083 could act as a potential therapeutic modality for both glutamate excitotoxicity and aberrant immune activation in microglia in chronic HIV infection.
Collapse
|
8
|
Zhou S, Chen R, She Y, Liu X, Zhao H, Li C, Jia Y. A new perspective on depression and neuroinflammation: Non-coding RNA. J Psychiatr Res 2022; 148:293-306. [PMID: 35193033 DOI: 10.1016/j.jpsychires.2022.02.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 01/30/2022] [Accepted: 02/14/2022] [Indexed: 12/19/2022]
Abstract
The high incidence and relapse rate of depression, as well comorbidity with other diseases, has made depression one of the primary causes of years of life lived with disability. Moreover, the unknown biological mechanism of depression has made treatment difficult. Neuroinflammation is important in the pathogenesis of depression. Neuroinflammation may affect depression by regulating the production of immune factors, immune cell activation, neuron generation, synaptic plasticity, and neurotransmission. Non-coding RNAs (ncRNAs) may be a breakthrough link between depression and neuroinflammation, as ncRNAs participate in these biological changes. We summarize the functions and mechanisms of ncRNAs in neuroinflammation and depression, and predict ncRNAs that may regulate the occurrence and progression of depression through neuritis. These findings not only broaden our understanding of the genetic regulation of depression and neuroinflammation but also provide a new perspective of the underlying mechanism and aid in the design of novel prevention, diagnosis, and treatment strategies.
Collapse
Affiliation(s)
- Shanyao Zhou
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou, 510317, China
| | - Rui Chen
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou, 510317, China.
| | - Yanling She
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou, 510317, China
| | - Xuanjun Liu
- Department of Psychiatry, First Affiliated Hospital of Jinan University, 613 W. Huangpu Avenue, Guangzhou, 510630, China
| | - Hui Zhao
- Department of Psychiatry, First Affiliated Hospital of Jinan University, 613 W. Huangpu Avenue, Guangzhou, 510630, China
| | - Cheng Li
- Guangdong Traditional Medical and Sports Injury Rehabilitation Research Institute, Guangdong Second Provincial General Hospital, 466 Xin Gang Zhong Road, Guangzhou, 510317, China.
| | - Yanbin Jia
- Department of Psychiatry, First Affiliated Hospital of Jinan University, 613 W. Huangpu Avenue, Guangzhou, 510630, China.
| |
Collapse
|
9
|
Duarte-Silva E, Oriá AC, Mendonça IP, de Melo MG, Paiva IHR, Maes M, Joca SRL, Peixoto CA. TINY IN SIZE, BIG IN IMPACT: EXTRACELLULAR VESICLES AS MODULATORS OF MOOD, ANXIETY AND NEURODEVELOPMENTAL DISORDERS. Neurosci Biobehav Rev 2022; 135:104582. [PMID: 35182538 DOI: 10.1016/j.neubiorev.2022.104582] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 01/17/2022] [Accepted: 02/12/2022] [Indexed: 12/13/2022]
Abstract
Extracellular Vesicles (EVs) are tiny vesicles used by cells as means of cellular communication, through which the function and state of a given cell can be changed. A body of evidence has suggested that EVs could be culprits in the development and progression of various types of diseases, including neurodegenerative diseases such as Multiple Sclerosis (MS) and Alzheimer's Disease (AD). Unsurprisingly, EVs have also been implicate in mood, anxiety and neurodevelopmental disorders, such as Major Depressive Disorder (MDD), anxiety disorder and Autism-Spectrum Disorder (ASD), respectively. Here, we review the state-of-art regarding the roles of EVs in the aforementioned diseases and focus on the mechanisms by which they can cause and worsen disease. Harnessing the knowledge of EVs is not only important to deliver different cargos to cells in a specific manner to treat these diseases, but also to establish reliable disease biomarkers, which will aid in the early disease diagnosis and treatment, increasing the chance of successful treatment.
Collapse
Affiliation(s)
- Eduardo Duarte-Silva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil; Postgraduate Program in Biosciences and Biotechnology for Health (PPGBBS), Oswaldo Cruz Foundation (FIOCRUZ-PE)/Aggeu Magalhães Institute (IAM), Recife, PE, Brazil; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Recife, PE, Brazil; Department of Neurology, Medical Faculty, University Hospital Düsseldorf, 40255 Düsseldorf, Germany.
| | | | - Ingrid Prata Mendonça
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil; Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Michel Gomes de Melo
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil; Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Igor Henrique R Paiva
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil; Postgraduate Program in Biological Sciences (PPGCB), Federal University of Pernambuco (UFPE), Recife, PE, Brazil
| | - Michael Maes
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand; Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria; IMPACT Strategic Research Center, Deakin University, Geelong, Australia
| | - Sâmia R L Joca
- School of Pharmaceutical Sciences of Ribeirão Preto (FCFRP), University of São Paulo (USP), Ribeirão Preto, Brazil; Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark
| | - Christina Alves Peixoto
- Laboratory of Ultrastructure, Aggeu Magalhães Institute (IAM), Recife, PE, Brazil; National Institute of Science and Technology on Neuroimmunomodulation (INCT-NIM, CNPq), Oswaldo Cruz Foundation, Rio de Janeiro, Brazil.
| |
Collapse
|
10
|
Cuomo-Haymour N, Sigrist H, Ineichen C, Russo G, Nüesch U, Gantenbein F, Kulic L, Knuesel I, Bergamini G, Pryce CR. Evidence for Effects of Extracellular Vesicles on Physical, Inflammatory, Transcriptome and Reward Behaviour Status in Mice. Int J Mol Sci 2022; 23:ijms23031028. [PMID: 35162951 PMCID: PMC8835024 DOI: 10.3390/ijms23031028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 01/05/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
Immune-inflammatory activation impacts extracellular vesicles (EVs), including their miRNA cargo. There is evidence for changes in the EV miRNome in inflammation-associated neuropsychiatric disorders. This mouse study investigated: (1) effects of systemic lipopolysaccharide (LPS) and chronic social stress (CSS) on plasma EV miRNome; and (2) physiological, transcriptional, and behavioural effects of peripheral or central delivered LPS-activated EVs in recipient mice. LPS or CSS effects on the plasma EV miRNome were assessed by using microRNA sequencing. Recipient mice received plasma EVs isolated from LPS-treated or SAL-treated donor mice or vehicle only, either intravenously or into the nucleus accumbens (NAc), on three consecutive days. Bodyweight, spleen or NAc transcriptome and reward (sucrose) motivation were assessed. LPS and CSS increased the expression of 122 and decreased expression of 20 plasma EV miRNAs, respectively. Peripheral LPS-EVs reduced bodyweight, and both LPS-EVs and SAL-EVs increased spleen expression of immune-relevant genes. NAc-infused LPS-EVs increased the expression of 10 immune-inflammatory genes. Whereas motivation increased similarly across test days in all groups, the effect of test days was more pronounced in mice that received peripheral or central LPS-EVs compared with other groups. This study provides causal evidence that increased EV levels impact physiological and behavioural processes and are of potential relevance to neuropsychiatric disorders.
Collapse
Affiliation(s)
- Nagiua Cuomo-Haymour
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics Psychiatric Hospital, University of Zurich, 8008 Zurich, Switzerland; (N.C.-H.); (H.S.); (C.I.); (G.B.)
- Neuroscience Center Zurich, 8057 Zurich, Switzerland
| | - Hannes Sigrist
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics Psychiatric Hospital, University of Zurich, 8008 Zurich, Switzerland; (N.C.-H.); (H.S.); (C.I.); (G.B.)
| | - Christian Ineichen
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics Psychiatric Hospital, University of Zurich, 8008 Zurich, Switzerland; (N.C.-H.); (H.S.); (C.I.); (G.B.)
| | - Giancarlo Russo
- Functional Genomics Centre Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, 8057 Zurich, Switzerland;
| | - Ursina Nüesch
- Paediatric Immunology, University Children’s Hospital Zurich, 8032 Zurich, Switzerland;
| | - Felix Gantenbein
- Zurich Integrative Rodent Physiology, University of Zurich, 8057 Zurich, Switzerland;
| | - Luka Kulic
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland; (L.K.); (I.K.)
| | - Irene Knuesel
- Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, 4070 Basel, Switzerland; (L.K.); (I.K.)
| | - Giorgio Bergamini
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics Psychiatric Hospital, University of Zurich, 8008 Zurich, Switzerland; (N.C.-H.); (H.S.); (C.I.); (G.B.)
| | - Christopher Robert Pryce
- Preclinical Laboratory for Translational Research into Affective Disorders, Department of Psychiatry, Psychotherapy and Psychosomatics Psychiatric Hospital, University of Zurich, 8008 Zurich, Switzerland; (N.C.-H.); (H.S.); (C.I.); (G.B.)
- Neuroscience Center Zurich, 8057 Zurich, Switzerland
- Correspondence: ; Tel.: +41-(0)44-634-89-21
| |
Collapse
|
11
|
Tallon C, Sharma A, Zhang Z, Thomas AG, Ng J, Zhu X, Donoghue A, Schulte M, Joe TR, Kambhampati SP, Sharma R, Liaw K, Kannan S, Kannan RM, Slusher BS. Dendrimer-2PMPA Delays Muscle Function Loss and Denervation in a Murine Model of Amyotrophic Lateral Sclerosis. Neurotherapeutics 2022; 19:274-288. [PMID: 34984651 PMCID: PMC9130402 DOI: 10.1007/s13311-021-01159-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2021] [Indexed: 01/03/2023] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a devastating neurodegenerative disease where muscle weakness and neuromuscular junction (NMJ) denervation precede motor neuron cell death. Although acetylcholine is the canonical neurotransmitter at the mammalian NMJ synapse, glutamate has recently been identified as a critical neurotransmitter for NMJ development and maintenance. One source of glutamate is through the catabolism of N-acetyl-aspartyl-glutamate (NAAG), which is found in mM concentrations in mammalian motoneurons, where it is released upon stimulation and hydrolyzed to glutamate by the glial enzyme glutamate carboxypeptidase II (GCPII). Using the SOD1G93A model of ALS, we found an almost fourfold elevation of GCPII enzymatic activity in SOD1G93A versus WT muscle and a robust increase in GCPII expression which was specifically associated with activated macrophages infiltrating the muscle. 2-(Phosphonomethyl)pentanedioic acid (2PMPA) is a potent GCPII inhibitor which robustly blocks glutamate release from NAAG but is highly polar with limited tissue penetration. To improve this, we covalently attached 2PMPA to a hydroxyl polyamidoamine (PAMAM-G4-OH) dendrimer delivery system (D-2PMPA) which is known to target activated macrophages in affected tissues. Systemic D-2PMPA therapy (20 mg/kg 2PMPA equivalent; IP 2 × /week) was found to localize in muscle macrophages in SOD1G93A mice and completely normalize the enhanced GCPII activity. Although no changes in body weight or survival were observed, D-2PMPA significantly improved grip strength and inhibited the loss of NMJ innervation in the gastrocnemius muscles. Our finding that inhibiting elevated GCPII activity in SOD1G93A muscle can prolong muscle function and delay NMJ denervation may have early therapeutic implications for ALS patients.
Collapse
Affiliation(s)
- Carolyn Tallon
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Anjali Sharma
- Center for Nanomedicine-Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Zhi Zhang
- Center for Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Natural Sciences, University of Michigan-Dearborn, Dearborn, MI, 48128, USA
| | - Ajit G Thomas
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Justin Ng
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Xiaolei Zhu
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Amanda Donoghue
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Michael Schulte
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Tawnjerae R Joe
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Siva P Kambhampati
- Center for Nanomedicine-Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Rishi Sharma
- Center for Nanomedicine-Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Kevin Liaw
- Center for Nanomedicine-Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Sujatha Kannan
- Center for Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, USA
- Hugo W. Moser Research Institute at Kennedy-Krieger, Inc, Baltimore, USA
| | - Rangaramanujam M Kannan
- Center for Nanomedicine-Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, USA
- Hugo W. Moser Research Institute at Kennedy-Krieger, Inc, Baltimore, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University School of Medicine, Baltimore, USA
| | - Barbara S Slusher
- Johns Hopkins Drug Discovery, Johns Hopkins University School of Medicine, Baltimore, USA.
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, USA.
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, USA.
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, USA.
- Department of Psychiatry and Behavioral Science, Johns Hopkins University School of Medicine, Baltimore, USA.
- Johns Hopkins University School of Medicine, 855 N. Wolfe Street, Rangos 278, Baltimore, MD, 21205, USA.
| |
Collapse
|
12
|
Wright DE, De la Rosa MA. Entering the second decade: FEBS Open Bio in 2022. FEBS Open Bio 2022; 12:4-8. [PMID: 34927398 PMCID: PMC8727927 DOI: 10.1002/2211-5463.13343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 11/30/2021] [Indexed: 11/07/2022] Open
Abstract
FEBS Open Bio continues to go from strength to strength, with 2021 perhaps marking its most exciting year. In this Editorial, the Editor-in-Chief Miguel A. De la Rosa looks back at all the new developments of 2021 and forecasts the outlook for 2022.
Collapse
Affiliation(s)
| | - Miguel A. De la Rosa
- Institute for Chemical Research (IIQ)Scientific Research Centre Isla de la Cartuja (cicCartuja)Universidad de Sevilla‐CSICSevillaSpain
| |
Collapse
|
13
|
Bogeska R. Resilience to social stress: is it in the blood? FEBS Open Bio 2021; 11:2675-2677. [PMID: 34496161 PMCID: PMC8487048 DOI: 10.1002/2211-5463.13291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 09/07/2021] [Indexed: 12/03/2022] Open
|
14
|
Li LD, Naveed M, Du ZW, Ding H, Gu K, Wei LL, Zhou YP, Meng F, Wang C, Han F, Zhou QG, Zhang J. Abnormal expression profile of plasma-derived exosomal microRNAs in patients with treatment-resistant depression. Hum Genomics 2021; 15:55. [PMID: 34419170 PMCID: PMC8379796 DOI: 10.1186/s40246-021-00354-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 08/02/2021] [Indexed: 02/07/2023] Open
Abstract
Whether microRNAs (miRNAs) from plasma exosomes might be dysregulated in patients with depression, especially treatment-resistant depression (TRD), remains unclear, based on study of which novel biomarkers and therapeutic targets could be discovered. To this end, a small sample study was performed by isolation of plasma exosomes from patients with TRD diagnosed by Hamilton scale. In this study, 4 peripheral plasma samples from patients with TRD and 4 healthy controls were collected for extraction of plasma exosomes. Exosomal miRNAs were analyzed by miRNA sequencing, followed by image collection, expression difference analysis, target gene GO enrichment analysis, and KEGG pathway enrichment analysis. Compared with the healthy controls, 2 miRNAs in the plasma exosomes of patients with TRD showed significant differences in expression, among which has-miR-335-5p were significantly upregulated and has-miR-1292-3p were significantly downregulated. Go and KEGG analysis showed that dysregulated miRNAs affect postsynaptic density and axonogenesis as well as the signaling pathway of axon formation and cell growths. The identification of these miRNAs and their target genes may provide novel biomarkers for improving diagnosis accuracy and treatment effectiveness of TRD.
Collapse
Affiliation(s)
- Lian-Di Li
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Muhammad Naveed
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Zi-Wei Du
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Huachen Ding
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Kai Gu
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211167, Jiangsu Province, China
| | - Lu-Lu Wei
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Ya-Ping Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Fan Meng
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China
| | - Chun Wang
- Nanjing Brain Hospital Affiliated to Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China.,Functional Brain Imaging Institute of Nanjing Medical University, Nanjing, 210029, Jiangsu Province, China
| | - Feng Han
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
| | - Qi-Gang Zhou
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China. .,Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211167, Jiangsu Province, China.
| | - Jing Zhang
- Department of Clinical Pharmacology, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu Province, China.
| |
Collapse
|