1
|
Lu S, Hu Y, Du L, Xu Y, Xu Z, Wan J, Lin H, Zheng Y, Liu G, Li X. Eukaryotic expression of chitinase from dark sleeper (Odontobutis potamophila) and its effects on growth and immunity. Int J Biol Macromol 2024; 282:137196. [PMID: 39505191 DOI: 10.1016/j.ijbiomac.2024.137196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/12/2024] [Accepted: 10/31/2024] [Indexed: 11/08/2024]
Abstract
Chitinase, an enzyme that hydrolyzes β-1,4-glycosidic bonds to degrade chitin, is essential for the digestion of chitin in fish. In this study, the chitinase OpCht from Odontobutis potamophila was expressed in Pichia pastoris, and its enzymatic properties and functional effects were evaluated. The findings revealed that OpCht exhibited optimal activity at pH 6.0 and 50 °C, with stability in the pH range of 4-8 and temperatures from 4 to 40 °C. K+, Na+, Ca2+, Mg2+, Mn2+, Hg2+, and Al3+ showed varying degrees of activation on the enzyme. At the end of the 8-week trial, the addition of OpCht significantly increased the height of intestinal villi and the thickness of the muscular layer, leading to significantly weight in the treated groups. The alleviation of intestinal inflammation also resulted in an increased survival rate (SR) of O. potamophila. High concentration treatment groups (2, 4 μg/g) showed significantly elevated digestive enzyme activities, as well as increased antioxidant enzyme activities and immune parameters. These results demonstrate that the P. pastoris expression system has successfully produced the chitinase OpCht from O. potamophila, and the addition of a certain concentration of OpCht can promote fish growth and enhance immune functions, offering a promising enzyme preparation for the aquaculture industry.
Collapse
Affiliation(s)
- Siyu Lu
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yuning Hu
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Lin Du
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; Jiangsu Key Laboratory for Aquatic Crustacean Diseases, College of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yu Xu
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Zhiqiang Xu
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Jinjuan Wan
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - Hai Lin
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China
| | - You Zheng
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing, China
| | - Guoxing Liu
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China; Low-temperature Germplasm Bank of Important Economic Fish (Freshwater Fisheries Research Institute of Jiangsu Province) of Jiangsu Provincial Science and Technology Resources (Agricultural Germplasm Resources) Coordination Service Platform, Nanjing, China.
| | - Xuguang Li
- Key Laboratory of Genetic Breeding and Cultivation for Freshwater Crustacean, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing 210017, China.
| |
Collapse
|
2
|
Khiari Z. Enzymes from Fishery and Aquaculture Waste: Research Trends in the Era of Artificial Intelligence and Circular Bio-Economy. Mar Drugs 2024; 22:411. [PMID: 39330292 PMCID: PMC11433245 DOI: 10.3390/md22090411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/06/2024] [Accepted: 09/07/2024] [Indexed: 09/28/2024] Open
Abstract
In the era of the blue bio-economy, which promotes the sustainable utilization and exploitation of marine resources for economic growth and development, the fisheries and aquaculture industries still face huge sustainability issues. One of the major challenges of these industries is associated with the generation and management of wastes, which pose a serious threat to human health and the environment if not properly treated. In the best-case scenario, fishery and aquaculture waste is processed into low-value commodities such as fishmeal and fish oil. However, this renewable organic biomass contains a number of highly valuable bioproducts, including enzymes, bioactive peptides, as well as functional proteins and polysaccharides. Marine-derived enzymes are known to have unique physical, chemical and catalytic characteristics and are reported to be superior to those from plant and animal origins. Moreover, it has been established that enzymes from marine species possess cold-adapted properties, which makes them interesting from technological, economic and sustainability points of view. Therefore, this review centers around enzymes from fishery and aquaculture waste, with a special focus on proteases, lipases, carbohydrases, chitinases and transglutaminases. Additionally, the use of fishery and aquaculture waste as a substrate for the production of industrially relevant microbial enzymes is discussed. The application of emerging technologies (i.e., artificial intelligence and machine learning) in microbial enzyme production is also presented.
Collapse
Affiliation(s)
- Zied Khiari
- National Research Council of Canada, Aquatic and Crop Resource Development Research Centre, 1411 Oxford Street, Halifax, NS B3H 3Z1, Canada
| |
Collapse
|
3
|
Subramani AK, Ramachandra R, Thote S, Govindaraj V, Vanzara P, Raval R, Raval K. Engineering a recombinant chitinase from the marine bacterium Bacillus aryabhattai with targeted activity on insoluble crystalline chitin for chitin oligomer production. Int J Biol Macromol 2024; 264:130499. [PMID: 38462115 DOI: 10.1016/j.ijbiomac.2024.130499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/10/2024] [Accepted: 02/20/2024] [Indexed: 03/12/2024]
Abstract
Chitin, an abundant polysaccharide in India, is primary by-product of the seafood industry. Efficiently converting chitin into valuable products is crucial. Chitinase, transforms chitin into chitin oligomers, holds significant industrial potential. However, the crystalline and insoluble nature of chitin makes the conversion process challenging. In this study, a recombinant chitinase from marine bacteria Bacillus aryabhattai was developed. This enzyme exhibits activity against insoluble chitin substrates, chitin powder and flakes. The chitinase gene was cloned into the pET 23a plasmid and transformed into E. coli Rosetta pLysS. IPTG induction was employed to express chitinase, and purification using Ni-NTA affinity chromatography. Optimal chitinase activity against colloidal chitin was observed in Tris buffer at pH 8, temperature 55°C, with the presence of 400 mM sodium chloride. Enzyme kinetics studies revealed a Vmax of 2000 μmole min-1 and a Km of 4.6 mg mL-1. The highest chitinase activity against insoluble chitin powder and flakes reached 875 U mg-1 and 625 U mg-1, respectively. The chitinase demonstrated inhibition of Candida albicans, Fusarium solani, and Penicillium chrysogenum growth. Thin Layer Chromatography (TLC) and LC-MS analysis confirmed the production of chitin oligomers, chitin trimer, tetramer, pentamer, and hexamer, from chitin powder and flakes using recombinant chitinase.
Collapse
Affiliation(s)
- Arun Kumar Subramani
- Department of Chemical Engineering, National Institute of Technology, Karnataka 575025, India
| | - Reshma Ramachandra
- Department of Chemical Engineering, National Institute of Technology, Karnataka 575025, India
| | - Sachin Thote
- Department of Chemical Engineering, National Institute of Technology, Karnataka 575025, India
| | - Vishnupriya Govindaraj
- Department of Chemical Engineering, National Institute of Technology, Karnataka 575025, India
| | - Piyush Vanzara
- Department of Chemical Engineering, Vyavasayi Vidya Pratishthan Engineering College, Rajkot, Gujarat 360005, India
| | - Ritu Raval
- Department of Biotechnology, Manipal Academy of Higher Education (MAHE), Karnataka 576104, India.
| | - Keyur Raval
- Department of Chemical Engineering, National Institute of Technology, Karnataka 575025, India.
| |
Collapse
|