1
|
Mechanisms of Hydroxyurea-Induced Cellular Senescence: An Oxidative Stress Connection? OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:7753857. [PMID: 34707779 PMCID: PMC8545575 DOI: 10.1155/2021/7753857] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 08/09/2021] [Accepted: 09/25/2021] [Indexed: 01/10/2023]
Abstract
Hydroxyurea (HU) is a water-soluble antiproliferative agent used for decades in neoplastic and nonneoplastic conditions. HU is considered an essential medicine because of its cytoreduction functions. HU is an antimetabolite that inhibits ribonucleotide reductase, which causes a depletion of the deoxyribonucleotide pool and dramatically reduces cell proliferation. The proliferation arrest, depending on drug concentration and exposure, may promote a cellular senescence phenotype associated with cancer cell therapy resistance and inflammation, influencing neighboring cell functions, immunosuppression, and potential cancer relapse. HU can induce cellular senescence in both healthy and transformed cells in vitro, in part, because of increased reactive oxygen species (ROS). Here, we analyze the main molecular mechanisms involved in cytotoxic/genotoxic HU function, the potential to increase intracellular ROS levels, and the principal features of cellular senescence induction. Understanding the mechanisms involved in HU's ability to induce cellular senescence may help to improve current chemotherapy strategies and control undesirable treatment effects in cancer patients and other diseases.
Collapse
|
2
|
Nucleoside Diphosphate Kinase Escalates A-to-C Mutations in MutT-Deficient Strains of Escherichia coli. J Bacteriol 2019; 202:JB.00567-19. [PMID: 31591275 DOI: 10.1128/jb.00567-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 10/01/2019] [Indexed: 11/20/2022] Open
Abstract
The chemical integrity of the nucleotide pool and its homeostasis are crucial for genome stability. Nucleoside diphosphate kinase (NDK) is a crucial enzyme that carries out reversible conversions from nucleoside diphosphate (NDP) to nucleoside triphosphate (NTP) and deoxynucleoside diphosphate (dNDP) to deoxynucleoside triphosphate (dNTP). Guanosine nucleotides (GDP, GTP, dGDP, and dGTP) are highly susceptible to oxidative damage to 8-oxo-GDP (8-O-GDP), 8-O-dGTP, 8-O-GTP, and 8-O-dGTP. MutT proteins in cells hydrolyze 8-O-GTP to 8-O-GMP or 8-O-dGTP to 8-O-dGMP to avoid its incorporation in nucleic acids. In Escherichia coli, 8-O-dGTP is also known to be hydrolyzed by RibA (GTP cyclohydrolase II). In this study, we show that E. coli NDK catalyzes the conversion of 8-O-dGDP to 8-O-dGTP or vice versa. However, the rate of NDK-mediated phosphorylation of 8-O-dGDP to 8-O-dGTP is about thrice as efficient as the rate of dephosphorylation of 8-O-dGTP to 8-O-dGDP, suggesting an additive role of NDK in net production of 8-O-dGTP in cells. Consistent with this observation, the depletion of NDK (Δndk) in E. coli ΔmutT or ΔmutT ΔribA strains results in a decrease of A-to-C mutations. These observations suggest that NDK contributes to the physiological load of MutT in E. coli IMPORTANCE Nucleoside diphosphate kinase (NDK), a ubiquitous enzyme, is known for its critical role in homeostasis of cellular nucleotide pools. However, NDK has now emerged as a molecule with pleiotropic effects in DNA repair, protein phosphorylation, gene expression, tumor metastasis, development, and pathogen virulence and persistence inside the host. In this study, we reveal an unexpected role of NDK in genome instability because of its activity in converting 8-O-dGDP to 8-O-dGTP. This observation has important consequences in escalating A-to-C mutations in Escherichia coli The severity of NDK in enhancing these mutations may be higher in the organisms challenged with high oxidative stress, which promotes 8-O-dGDP/8-O-dGTP production.
Collapse
|
3
|
Abstract
Cancer was recognized as a genetic disease at least four decades ago, with the realization that the spontaneous mutation rate must increase early in tumorigenesis to account for the many mutations in tumour cells compared with their progenitor pre-malignant cells. Abnormalities in the deoxyribonucleotide pool have long been recognized as determinants of DNA replication fidelity, and hence may contribute to mutagenic processes that are involved in carcinogenesis. In addition, many anticancer agents antagonize deoxyribonucleotide metabolism. Here, we consider the extent to which aspects of deoxyribonucleotide metabolism contribute to our understanding of both carcinogenesis and to the effective use of anticancer agents.
Collapse
Affiliation(s)
- Christopher K Mathews
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon 97331-7305, USA
| |
Collapse
|
4
|
Lyons CT, Stack TDP. Recent advances in phenoxyl radical complexes of salen-type ligands as mixed-valent galactose oxidase models. Coord Chem Rev 2013; 257:528-540. [PMID: 23264696 PMCID: PMC3524984 DOI: 10.1016/j.ccr.2012.06.003] [Citation(s) in RCA: 160] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The interplay between redox-active transition metal ions and redox-active ligands in metalloenzyme sites is an area of considerable research interest. Galactose oxidase (GO) is the archetypical example, catalyzing the aerobic oxidation of primary alcohols to aldehydes via two one-electron cofactors: a copper atom and a cysteine-modified tyrosine residue. The electronic structure of the oxidized form of the enzyme (GO(ox)) has been investigated extensively through small molecule analogues including metal-salen phenoxyl radical complexes. Similar to GO(ox), one-electron oxidized metal-salen complexes are mixed-valent species, in which molecular orbitals (MOs) with predominantly phenolate and phenoxyl π-character act as redox-active centers bridged by mixing with metal d-orbitals. A detailed evaluation of the electronic distribution in these odd electron species using a variety of spectroscopic, electrochemical, and theoretical techniques has led to keen insights into the electronic structure of GO(ox).
Collapse
Affiliation(s)
| | - T. Daniel P. Stack
- Department of Chemistry, Stanford University, Sanford, CA 94305, United States
| |
Collapse
|
5
|
Ahmad MF, Dealwis CG. The structural basis for the allosteric regulation of ribonucleotide reductase. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2013; 117:389-410. [PMID: 23663976 PMCID: PMC4059395 DOI: 10.1016/b978-0-12-386931-9.00014-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ribonucleotide reductases (RRs) catalyze a crucial step of de novo DNA synthesis by converting ribonucleoside diphosphates to deoxyribonucleoside diphosphates. Tight control of the dNTP pool is essential for cellular homeostasis. The activity of the enzyme is tightly regulated at the S-phase by allosteric regulation. Recent structural studies by our group and others provided the molecular basis for understanding how RR recognizes substrates, how it interacts with chemotherapeutic agents, and how it is regulated by its allosteric regulators ATP and dATP. This review discusses the molecular basis of allosteric regulation and substrate recognition of RR, and particularly the discovery that subunit oligomerization is an important prerequisite step in enzyme inhibition.
Collapse
Affiliation(s)
- Md Faiz Ahmad
- Department of Pharmacology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
| | | |
Collapse
|
6
|
Affiliation(s)
- Christopher K Mathews
- Department of Biochemistry and Biophysics, 2011 ALS, Oregon State University, Corvallis, OR 97331-7305, USA.
| |
Collapse
|
7
|
Li N, Nørgaard H, Warui DM, Booker SJ, Krebs C, Bollinger JM. Conversion of fatty aldehydes to alka(e)nes and formate by a cyanobacterial aldehyde decarbonylase: cryptic redox by an unusual dimetal oxygenase. J Am Chem Soc 2011; 133:6158-61. [PMID: 21462983 DOI: 10.1021/ja2013517] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Cyanobacterial aldehyde decarbonylase (AD) catalyzes conversion of fatty aldehydes (R-CHO) to alka(e)nes (R-H) and formate. Curiously, although this reaction appears to be redox-neutral and formally hydrolytic, AD has a ferritin-like protein architecture and a carboxylate-bridged dimetal cofactor that are both structurally similar to those found in di-iron oxidases and oxygenases. In addition, the in vitro activity of the AD from Nostoc punctiforme (Np) was shown to require a reducing system similar to the systems employed by these O(2)-utilizing di-iron enzymes. Here, we resolve this conundrum by showing that aldehyde cleavage by the Np AD also requires dioxygen and results in incorporation of (18)O from (18)O(2) into the formate product. AD thus oxygenates, without oxidizing, its substrate. We posit that (i) O(2) adds to the reduced cofactor to generate a metal-bound peroxide nucleophile that attacks the substrate carbonyl and initiates a radical scission of the C1-C2 bond, and (ii) the reducing system delivers two electrons during aldehyde cleavage, ensuring a redox-neutral outcome, and two additional electrons to return an oxidized form of the cofactor back to the reduced, O(2)-reactive form.
Collapse
Affiliation(s)
- Ning Li
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | |
Collapse
|
8
|
Fairman JW, Wijerathna SR, Ahmad MF, Xu H, Nakano R, Jha S, Prendergast J, Welin RM, Flodin S, Roos A, Nordlund P, Li Z, Walz T, Dealwis CG. Structural basis for allosteric regulation of human ribonucleotide reductase by nucleotide-induced oligomerization. Nat Struct Mol Biol 2011; 18:316-22. [PMID: 21336276 PMCID: PMC3101628 DOI: 10.1038/nsmb.2007] [Citation(s) in RCA: 131] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 11/30/2010] [Indexed: 12/22/2022]
Abstract
Ribonucleotide reductase (RR) is an α(n)β(n) (RR1-RR2) complex that maintains balanced dNTP pools by reducing NDPs to dNDPs. RR1 is the catalytic subunit, and RR2 houses the free radical required for catalysis. RR is allosterically regulated by its activator ATP and its inhibitor dATP, which regulate RR activity by inducing oligomerization of RR1. Here, we report the first X-ray structures of human RR1 bound to TTP alone, dATP alone, TTP-GDP, TTP-ATP, and TTP-dATP. These structures provide insights into regulation of RR by ATP or dATP. At physiological dATP concentrations, RR1 forms inactive hexamers. We determined the first X-ray structure of the RR1-dATP hexamer and used single-particle electron microscopy to visualize the α(6)-ββ'-dATP holocomplex. Site-directed mutagenesis and functional assays confirm that hexamerization is a prerequisite for inhibition by dATP. Our data indicate a mechanism for regulating RR activity by dATP-induced oligomerization.
Collapse
|
9
|
Jiang W, Xie J, Varano PT, Krebs C, Bollinger JM. Two distinct mechanisms of inactivation of the class Ic ribonucleotide reductase from Chlamydia trachomatis by hydroxyurea: implications for the protein gating of intersubunit electron transfer. Biochemistry 2010; 49:5340-9. [PMID: 20462199 DOI: 10.1021/bi100037b] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Catalysis by a class I ribonucleotide reductase (RNR) begins when a cysteine (C) residue in the alpha(2) subunit is oxidized to a thiyl radical (C(*)) by a cofactor approximately 35 A away in the beta(2) subunit. In a class Ia or Ib RNR, a stable tyrosyl radical (Y(*)) is the C oxidant, whereas a Mn(IV)/Fe(III) cluster serves this function in the class Ic enzyme from Chlamydia trachomatis (Ct). It is thought that, in either case, a chain of Y residues spanning the two subunits mediates C oxidation by forming transient "pathway" Y(*)s in a multistep electron transfer (ET) process that is "gated" by the protein so that it occurs only in the ready holoenzyme complex. The drug hydroxyurea (HU) inactivates both Ia/b and Ic beta(2) subunits by reducing their C oxidants. Reduction of the stable cofactor Y(*) (Y122(*)) in Escherichia coli class Ia beta(2) is faster in the presence of alpha(2) and a substrate (CDP), leading to speculation that HU might intercept a transient ET pathway Y(*) under these turnover conditions. Here we show that this mechanism is one of two that are operant in HU inactivation of the Ct enzyme. HU reacts with the Mn(IV)/Fe(III) cofactor to give two distinct products: the previously described homogeneous Mn(III)/Fe(III)-beta(2) complex, which forms only under turnover conditions (in the presence of alpha(2) and the substrate), and a distinct, diamagnetic Mn/Fe cluster, which forms approximately 900-fold less rapidly as a second phase in the reaction under turnover conditions and as the sole outcome in the reaction of Mn(IV)/Fe(III)-beta(2) only. Formation of Mn(III)/Fe(III)-beta(2) also requires (i) either Y338, the subunit-interfacial ET pathway residue of beta(2), or Y222, the surface residue that relays the "extra electron" to the Mn(IV)/Fe(IV) intermediate during activation of beta(2) but is not part of the catalytic ET pathway, and (ii) W51, the cofactor-proximal residue required for efficient ET between either Y222 or Y338 and the cofactor. The combined requirements for the catalytic subunit, the substrate, and, most importantly, a functional surface-to-cofactor electron relay system imply that HU effects the Mn(IV)/Fe(III) --> Mn(III)/Fe(III) reduction by intercepting a Y(*) that forms when the ready holoenzyme complex is assembled, the ET gate is opened, and the Mn(IV) oxidizes either Y222 or Y338.
Collapse
Affiliation(s)
- Wei Jiang
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | |
Collapse
|
10
|
Odom MR, Hendrickson RC, Lefkowitz EJ. Poxvirus protein evolution: family wide assessment of possible horizontal gene transfer events. Virus Res 2009; 144:233-49. [PMID: 19464330 PMCID: PMC2779260 DOI: 10.1016/j.virusres.2009.05.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 05/12/2009] [Accepted: 05/12/2009] [Indexed: 02/03/2023]
Abstract
To investigate the evolutionary origins of proteins encoded by the Poxviridae family of viruses, we examined all poxvirus protein coding genes using a method of characterizing and visualizing the similarity between these proteins and taxonomic subsets of proteins in GenBank. Our analysis divides poxvirus proteins into categories based on their relative degree of similarity to two different taxonomic subsets of proteins such as all eukaryote vs. all virus (except poxvirus) proteins. As an example, this allows us to identify, based on high similarity to only eukaryote proteins, poxvirus proteins that may have been obtained by horizontal transfer from their hosts. Although this method alone does not definitively prove horizontal gene transfer, it allows us to provide an assessment of the possibility of horizontal gene transfer for every poxvirus protein. Potential candidates can then be individually studied in more detail during subsequent investigation. Results of our analysis demonstrate that in general, proteins encoded by members of the subfamily Chordopoxvirinae exhibit greater similarity to eukaryote proteins than to proteins of other virus families. In addition, our results reiterate the important role played by host gene capture in poxvirus evolution; highlight the functions of many genes poxviruses share with their hosts; and illustrate which host-like genes are present uniquely in poxviruses and which are also present in other virus families.
Collapse
Affiliation(s)
- Mary R Odom
- Department of Microbiology, University of Alabama Birmingham, Birmingham, AL 35294-2170, USA
| | | | | |
Collapse
|
11
|
Abstract
✓ Meningiomas are slow growing, extraaxial tumors that derive from the arachnoidal cap cells of the meninges. Resection remains the main modality of treatment and can be curative in some cases. External-beam radiotherapy and radiosurgery can benefit selected patients. The role of chemotherapy continues to be defined, but should be considered for patients with inoperable or frequently recurring meningiomas. Hydroxyurea, an inhibitor of ribonucleotide reductase, is one of the most active agents and is known to induce apoptosis in meningioma cells in vitro and in mouse xenografts. Results of preliminary clinical studies suggest that hydroxyurea has modest activity against recurrent and inoperable meningiomas, and can induce long term stabilization in some patients. However, the results are conflicting and a few clinical trials did not show positive results. Further clinical trials with larger patient cohorts and longer follow-up periods will be necessary to confirm the activity of hydroxyurea.
Collapse
|
12
|
Cerqueira NMFSA, Fernandes PA, Eriksson LA, Ramos MJ. Dehydration of ribonucleotides catalyzed by ribonucleotide reductase: the role of the enzyme. Biophys J 2005; 90:2109-19. [PMID: 16361339 PMCID: PMC1386789 DOI: 10.1529/biophysj.104.054627] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This article focuses on the second step of the catalytic mechanism for the reduction of ribonucleotides catalyzed by the enzyme Ribonucleotide Reductase (RNR). This step corresponds to the protonation/elimination of the substrate's C-2' hydroxyl group. Protonation is accomplished by the neighbor Cys-225, leading to the formation of one water molecule. This is a very relevant step since most of the known inhibitors of this enzyme, which are already used in the fight against certain forms of cancer, are 2'-substituted substrate analogs. Even though some theoretical studies have been performed in the past, they have modeled the enzyme with minimal gas-phase models, basically represented by a part of the side chain of the relevant amino acids, disconnected from the protein backbone. This procedure resulted in a limited accuracy in the position and/or orientation of the participating residues, which can result in erroneous energetics and even mistakes in the choice of the correct mechanism for this step. To overcome these limitations we have used a very large model, including a whole R1 model with 733 residues plus the substrate and 10 A thick shell of water molecules, instead of the minimal gas-phase models used in previous works. The ONIOM method was employed to deal with such a large system. This model can efficiently account for the restrained mobility of the reactive residues, as well as the long-range enzyme-substrate interactions. The results gave additional information about this step, which previous small models could not provide, allowing a much clearer evaluation of the role of the enzyme. The interaction energy between the enzyme and the substrate along the reaction coordinate and the substrate steric strain energy have been obtained. The conclusion was that the barrier obtained with the present model was very similar to the one previously determined with minimal gas-phase models. Therefore, the role of the enzyme in this step was concluded to be mainly entropic, rather than energetic, by placing the substrate and the two reactive residues in a position that allows for the highly favorable concerted trimolecular reaction, and to protect the enzyme radical from the solvent.
Collapse
Affiliation(s)
- Nuno M F S A Cerqueira
- Rede de Química e Techologia, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | | | | | | |
Collapse
|
13
|
Abstract
Two classes of enzymatic mechanisms that proceed by free radical chemistry initiated by the 5'-deoxyadenosyl radical are discussed. In the first class, the mechanism of the interconversion of L-lysine and L-beta-lysine catalyzed by lysine 2,3-aminomutase (LAM) involves four radicals, three of which have been spectroscopically characterized. The reversible formation of the 5'-deoxyadenosyl radical takes place by the chemical cleavage of S-adenosylmethionine (SAM) reacting with the [4Fe-4S]+ center in LAM. In other reactions of SAM with iron-sulfur proteins, SAM is irreversibly consumed to generate the 5'-deoxyadenosyl radical, which activates an enzyme by abstracting a hydrogen atom from an enzymatic glycyl residue to form a glycyl radical. The glycyl radical enzymes include pyruvate formate-lyase, anaerobic ribonucleotide reductase from Escherichia coli, and benzylsuccinate synthase. Biotin synthase and lipoate synthase are SAM-dependent [4Fe-4S] proteins that catalyze the insertion of sulfur into unactivated C-H bonds, which are cleaved by the 5'-deoxyadenosyl radical from SAM. In the second class of enzymatic mechanisms using free radicals, adenosylcobalamin-dependent reactions, the 5'-deoxyadenosyl radical arises from homolytic cleavage of the cobalt-carbon bond, and it initiates radical reactions by abstracting hydrogen atoms from substrates. Three examples are described of suicide inactivation through the formation of exceptionally stable free radicals at enzymatic active sites.
Collapse
Affiliation(s)
- P A Frey
- Department of Biochemistry, University of Wisconsin-Madison, 1710 University Avenue, Madison, Wisconsin 53705, USA.
| |
Collapse
|
14
|
Lawrence CC, Bennati M, Obias HV, Bar G, Griffin RG, Stubbe J. High-field EPR detection of a disulfide radical anion in the reduction of cytidine 5'-diphosphate by the E441Q R1 mutant of Escherichia coli ribonucleotide reductase. Proc Natl Acad Sci U S A 1999; 96:8979-84. [PMID: 10430881 PMCID: PMC17718 DOI: 10.1073/pnas.96.16.8979] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Class I ribonucleotide reductases (RNRs) are composed of two subunits, R1 and R2. The R2 subunit contains the essential diferric cluster-tyrosyl radical (Y.) cofactor and R1 is the site of the conversion of nucleoside diphosphates to 2'-deoxynucleoside diphosphates. A mutant in the R1 subunit of Escherichia coli RNR, E441Q, was generated in an effort to define the function of E441 in the nucleotide-reduction process. Cytidine 5'-diphosphate was incubated with E441Q RNR, and the reaction was monitored by using stopped-flow UV-vis spectroscopy and high-frequency (140 GHz) time-domain EPR spectroscopy. These studies revealed loss of the Y. and formation of a disulfide radical anion and present experimental mechanistic insight into the reductive half-reaction catalyzed by RNR. These results support the proposal that the protonated E441 is required for reduction of a 3'-ketodeoxynucleotide by a disulfide radical anion. On the minute time scale, a second radical species was also detected by high-frequency EPR. Its g values suggest that this species may be a 4'-ketyl radical and is not on the normal reduction pathway. These experiments demonstrate that high-field time-domain EPR spectroscopy is a powerful new tool for deconvolution of a mixture of radical species.
Collapse
Affiliation(s)
- C C Lawrence
- Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
Ribonucleotide reductases provide the building blocks for DNA replication in all living cells. Three different classes of enzymes use protein free radicals to activate the substrate. Aerobic class I enzymes generate a tyrosyl radical with an iron-oxygen center and dioxygen, class II enzymes employ adenosylcobalamin, and the anaerobic class III enzymes generate a glycyl radical from S-adenosylmethionine and an iron-sulfur cluster. The X-ray structure of the class I Escherichia coli enzyme, including forms that bind substrate and allosteric effectors, confirms previous models of catalytic and allosteric mechanisms. This structure suggests considerable mobility of the protein during catalysis and, together with experiments involving site-directed mutants, suggests a mechanism for radical transfer from one subunit to the other. Despite large differences between the classes, common catalytic and allosteric mechanisms, as well as retention of critical residues in the protein sequence, suggest a similar tertiary structure and a common origin during evolution. One puzzling aspect is that some organisms contain the genes for several different reductases.
Collapse
Affiliation(s)
- A Jordan
- Department of Genetics and Microbiology, Faculty of Sciences, Autonomous University of Barcelona, Bellaterra, Spain
| | | |
Collapse
|
16
|
Abstract
Hydroxyurea is used in the treatment of various forms of cancer, sickle-cell anaemia and HIV infection. Oral absorption of the drug is virtually complete, the volume of distribution is equivalent to total body water and elimination is through both renal and nonrenal mechanisms. Nonrenal elimination of hydroxyurea is characterised by Michaelis-Menten kinetics. Further studies are necessary to clarify several aspects of the pharmacokinetics and pharmacodynamics of hydroxyurea: the effect of age and disease state, concentration-effect relationship, the role of therapeutic drug monitoring, and the mechanisms of renal and nonrenal elimination. The recent development of improved assays for hydroxyurea should have benefits for future pharmacokinetic studies.
Collapse
Affiliation(s)
- P R Gwilt
- Department of Pharmaceutical Sciences, University of Nebraska Medical Center, Omaha, USA
| | | |
Collapse
|
17
|
Affiliation(s)
- J Stubbe
- Departments of Chemistry and Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
18
|
Willoughby K, Bennett M, Williams RA, McCracken C, Gaskell RM. Sequences of the ribonucleotide reductase-encoding genes of felid herpesvirus 1 and molecular phylogenetic analysis. Virus Genes 1998; 15:203-18. [PMID: 9482586 DOI: 10.1023/a:1007924419113] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The felid herpesvirus 1 (FHV-1) genes encoding the two ribonucleotide reductase (RR) subunits (RR1, large subunit and RR2, small subunit) were cloned and their nucleotide (nt) sequence determined. The RR1 open reading frame (ORF) is 2358 nts long and is predicted to encode a protein of 786 amino acids (aa). In common with herpesviruses in the Varicellovirus genus of the alphaherpesvirus subfamily, FHV-1 RR1 lacks the N-terminal serine threonine protein kinase region present in herpes simplex virus (HSV)-1 and -2. FHV-1 RR1 has a predicted aa identity of 47-64% with other alphaherpesvirus RR1 peptides, falling to 26-29% for gammaherpesviruses. The RR2 ORF is 996 nts long, predicted to encode a protein of 332 aa and has aa identities of 64-70% with alphaherpesviruses and 38-39% with gammaherpesviruses. Molecular phylogenetic analysis groups FHV-1 with equid herpesviruses 1 and 4 (EHV 1 and 4), pseudorabies virus (PRV) and bovid herpesvirus 1 (BHV 1) within the genus Varicellovirus.
Collapse
Affiliation(s)
- K Willoughby
- Department of Veterinary Pathology, University of Liverpool Veterinary Field Station, Neston, South Wirral, UK
| | | | | | | | | |
Collapse
|
19
|
Wang PJ, Chabes A, Casagrande R, Tian XC, Thelander L, Huffaker TC. Rnr4p, a novel ribonucleotide reductase small-subunit protein. Mol Cell Biol 1997; 17:6114-21. [PMID: 9315671 PMCID: PMC232461 DOI: 10.1128/mcb.17.10.6114] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Ribonucleotide reductases catalyze the formation of deoxyribonucleotides by the reduction of the corresponding ribonucleotides. Eukaryotic ribonucleotide reductases are alpha2beta2 tetramers; each of the larger, alpha subunits possesses binding sites for substrate and allosteric effectors, and each of the smaller, beta subunits contains a binuclear iron complex. The iron complex interacts with a specific tyrosine residue to form a tyrosyl free radical which is essential for activity. Previous work has identified two genes in the yeast Saccharomyces cerevisiae, RNR1 and RNR3, that encode alpha subunits and one gene, RNR2, that encodes a beta subunit. Here we report the identification of a second gene from this yeast, RNR4, that encodes a protein with significant similarity to the beta-subunit proteins. The phenotype of rnr4 mutants is consistent with that expected for a defect in ribonucleotide reductase; rnr4 mutants are supersensitive to the ribonucleotide reductase inhibitor hydroxyurea and display an S-phase arrest at their restrictive temperature. rnr4 mutant extracts are deficient in ribonucleotide reductase activity, and this deficiency can be remedied by the addition of exogenous Rnr4p. As is the case for the other RNR genes, RNR4 is induced by agents that damage DNA. However, Rnr4p lacks a number of sequence elements thought to be essential for iron binding, and mutation of the critical tyrosine residue does not affect Rnr4p function. These results suggest that Rnr4p is catalytically inactive but, nonetheless, does play a role in the ribonucleotide reductase complex.
Collapse
Affiliation(s)
- P J Wang
- Section of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
20
|
Abstract
Two X-ray structures of cobalamin (B12) bound to proteins have now been determined. These structures reveal that the B12 cofactor undergoes a major conformational change on binding to the apoenzymes of methionine synthase and methylmalonyl-coenzyme A mutase: The dimethylbenzimidazole ligand to the cobalt is displaced by a histidine residue from the protein. Two methyltransferases from archaebacteria that catalyze methylation of mercaptoethanesulfonate (coenzyme M) during methanogenesis have also been shown to contain histidine-ligated cobamides. In corrinoid iron-sulfur methyltransferases from acetogenic and methanogenic organisms, benzimidazole is dissociated from cobalt, but without replacement by histidine. Thus, dimethylbenzimidazole displacement appears to be an emerging theme in cobamide-containing methyltransferases. In methionine synthase, the best studied of the methyltransferases, the histidine ligand appears to be required for competent methyl transfer between methyl-tetrahydrofolate and homocysteine but dissociates for reductive reactivation of the inactive oxidized enzyme. Replacement of dimethylbenzimidazole by histidine may allow switching between the catalytic and activation cycles. The best-characterized B12-dependent mutases that catalyze carbon skeleton rearrangement, for which methylmalonyl-coenzyme A mutase is the prototype, also bind cobalamin cofactors with histidine as the cobalt ligand, although other cobalamin-dependent mutases do not appear to utilize histidine ligation. It is intriguing to find that mutases, which catalyze homolytic rather than heterolytic cleavage of the carbon-cobalt bond, can use this structural motif. In methylmalonylCoA mutase a significant feature, which may be important in facilitating homolytic cleavage, is the long cobalt-nitrogen bond linking histidine to the co-factor. The intermediate radical species generated in catalysis are sequestered in the relatively hydrophilic core of an alpha/beta barrel domain of the mutase.
Collapse
Affiliation(s)
- M L Ludwig
- Biophysics Research Division, University of Michigan, Ann Arbor 48109-1055, USA
| | | |
Collapse
|
21
|
Lamarche N, Matton G, Massie B, Fontecave M, Atta M, Dumas F, Gaudreau P, Langelier Y. Production of the R2 subunit of ribonucleotide reductase from herpes simplex virus with prokaryotic and eukaryotic expression systems: higher activity of R2 produced by eukaryotic cells related to higher iron-binding capacity. Biochem J 1996; 320 ( Pt 1):129-35. [PMID: 8947477 PMCID: PMC1217907 DOI: 10.1042/bj3200129] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The R2 subunit of ribonucleotide reductase from herpes simplex virus type 2 was overproduced with prokaryotic and eukaryotic expression systems. The recombinant R2 purified by a two-step procedure exhibited a 3-fold higher activity when produced in eukaryotic cells. Precise quantification of the R2 concentration at each step of the purification indicated that the activity was not altered during the purification procedure. Moreover, we have observed that the level of R2 expression, in eukaryotic cells as well as in prokaryotic cells, did not influence R2 activity. Extensive characterization of the recombinant R2 purified from eukaryotic and prokaryotic expression systems has shown that both types of pure R2 preparations were similar in their 76 kDa dimer contents (more than 95%) and in their ability to bind the R1 subunit. However, we have found that the higher activity of R2 produced in eukaryotic cells is more probably related to a higher capability of binding the iron cofactor as well as a 3-fold greater ability to generate the tyrosyl free radical.
Collapse
Affiliation(s)
- N Lamarche
- Institut du cancer de Montréal, Hôpital Notre-Dame, Canada
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Gemcitabine is a nucleoside analogue with excellent clinical activity against solid tumors. Within the cell, gemcitabine is rapidly phosphorylated to its active di- and triphosphate metabolites. Cytotoxicity with gemcitabine appears to be related to multiple effects on DNA replication, where gemcitabine triphosphate can serve as both an inhibitor and substrate for DNA synthesis. Gemcitabine diphosphate inhibits ribonucleotide reductase, producing decreases in cellular dNTP pool levels in a cell-specific manner. These two major characteristics of gemcitabine, reduction in cellular dNTP pools and incorporation into DNA, are features of other antimetabolites antitumor agents which also exhibit radiosensitizing properties. Based on these favorable metabolic characteristics and the clinical activity of gemcitabine in tumor types which are commonly treated with radiation, the ability of gemcitabine to enhance X-radiation induced cytotoxicity was evaluated. Gemcitabine has been shown to be a potent radiosensitizer in a variety of tumor cell lines, including HT-29 colorectal carcinoma, pancreatic cancer, breast, non-small cell lung and head and neck cancer cell lines. Gemcitabine was most effective as a radiosensitizer when administered at least 2 hours prior to irradiation. For most cell lines, radiosensitization was evident at non-cytotoxic concentrations. The extent of radiosensitization increased with both increasing gemcitabine concentration and duration of exposure. Radiosensitization did not require redistribution of cells into a more radiosensitive phase of the cell cycle. The major metabolic effects observed under radiosensitizing conditions were the accumulation of high levels of gemcitabine triphosphate, and a selective decrease in the cellular dATP pool. The pattern of dATP decrease paralleled the increase in radiosensitization, whereas the level of gemcitabine triphosphate was not associated with the enhanced sensitivity to radiation. Compared to other radiosensitizers, the advantage of gemcitabine is that is can induce radiosensitization at concentrations that are 1000 times lower than typical plasma levels obtained with this drug. These studies will be used as guidelines for developing clinical trials of gemcitabine with radiation.
Collapse
Affiliation(s)
- D S Shewach
- Department of Pharmacology, University of Michigan Medical Center, Ann Arbor 48109-0504, USA
| | | |
Collapse
|
23
|
Mulliez E, Ollagnier S, Fontecave M, Eliasson R, Reichard P. Formate is the hydrogen donor for the anaerobic ribonucleotide reductase from Escherichia coli. Proc Natl Acad Sci U S A 1995; 92:8759-62. [PMID: 7568012 PMCID: PMC41046 DOI: 10.1073/pnas.92.19.8759] [Citation(s) in RCA: 70] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
During anaerobic growth Escherichia coli uses a specific ribonucleoside-triphosphate reductase (class III enzyme) for the production of deoxyribonucleoside triphosphates. In its active form, the enzyme contains an iron-sulfur center and an oxygen-sensitive glycyl radical (Gly-681). The radical is generated in the inactive protein from S-adenosylmethionine by an auxiliary enzyme system present in E. coli. By modification of the previous purification procedure, we now prepared a glycyl radical-containing reductase, active in the absence of the auxiliary reducing enzyme system. This reductase uses formate as hydrogen donor in the reaction. During catalysis, formate is stoichiometrically oxidized to CO2, and isotope from [3H]formate appears in water. Thus E. coli uses completely different hydrogen donors for the reduction of ribonucleotides during anaerobic and aerobic growth. The aerobic class I reductase employs redox-active thiols from thioredoxin or glutaredoxin to this purpose. The present results strengthen speculations that class III enzymes arose early during the evolution of DNA.
Collapse
Affiliation(s)
- E Mulliez
- Laboratoire d'Etudes Dynamiques et Structurales de la Sélectivité, Centre National de la Recherche Scientifique 332, Université Joseph Fourier, Grenoble, France
| | | | | | | | | |
Collapse
|
24
|
Chakrabarti D, Schuster SM, Chakrabarti R. Cloning and characterization of subunit genes of ribonucleotide reductase, a cell-cycle-regulated enzyme, from Plasmodium falciparum. Proc Natl Acad Sci U S A 1993; 90:12020-4. [PMID: 8265664 PMCID: PMC48117 DOI: 10.1073/pnas.90.24.12020] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Ribonucleotide reductase (EC 1.17.4.1; RNR), a cell-cycle-regulated enzyme, catalyzes the rate-limiting step in the de novo synthesis of deoxyribonucleotides by the reduction of the corresponding ribonucleotides. The important role of the RNR in DNA synthesis and cell division makes this enzyme an excellent target for chemotherapy. However, nothing is known about this enzyme from the malaria parasite Plasmodium falciparum. We have isolated cDNA clones encoding both the large and small RNR subunits. The sequences of full-length clones of the large and small RNR subunits revealed an open reading frame encoding 806 and 349 amino acids, respectively, and showed significant identity with other RNR sequences in the data base. RNA blot analysis showed that the size of the large and small RNR subunit transcripts are 5.4 kb and 2.2 kb, respectively. Both the RNR subunit transcripts fluctuate in level during the cell cycle, reaching a peak preceding maximal DNA synthesis activity. An oligodeoxynucleotide phosphorothioate that is complementary to sequences around the translational initiation codon of the small RNR subunit showed significant inhibition of growth, as measured by the inhibition in DNA synthesis.
Collapse
Affiliation(s)
- D Chakrabarti
- Department of Infectious Diseases, University of Florida, Gainesville 32611-0880
| | | | | |
Collapse
|
25
|
Rubin H, Salem JS, Li LS, Yang FD, Mama S, Wang ZM, Fisher A, Hamann CS, Cooperman BS. Cloning, sequence determination, and regulation of the ribonucleotide reductase subunits from Plasmodium falciparum: a target for antimalarial therapy. Proc Natl Acad Sci U S A 1993; 90:9280-4. [PMID: 8415692 PMCID: PMC47551 DOI: 10.1073/pnas.90.20.9280] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Malaria remains a leading cause of morbidity and mortality worldwide, accounting for more than one million deaths annually. We have focused on the reduction of ribonucleotides to 2'-deoxyribonucleotides, catalyzed by ribonucleotide reductase, which represents the rate-determining step in DNA replication as a target for antimalarial agents. We report the full-length DNA sequence corresponding to the large (PfR1) and small (PfR2) subunits of Plasmodium falciparum ribonucleotide reductase. The small subunit (PfR2) contains the major catalytic motif consisting of a tyrosyl radical and a dinuclear Fe site. Whereas PfR2 shares 59% amino acid identity with human R2, a striking sequence divergence between human R2 and PfR2 at the C terminus may provide a selective target for inhibition of the malarial enzyme. A synthetic oligopeptide corresponding to the C-terminal 7 residues of PfR2 inhibits mammalian ribonucleotide reductase at concentrations approximately 10-fold higher than that predicted to inhibit malarial R2. The gene encoding the large subunit (PfR1) contains a single intron. The cysteines thought to be involved in the reduction mechanism are conserved. In contrast to mammalian ribonucleotide reductase, the genes for PfR1 and PfR2 are located on the same chromosome and the accumulation of mRNAs for the two subunits follow different temporal patterns during the cell cycle.
Collapse
Affiliation(s)
- H Rubin
- Department of Medicine, University of Pennsylvania, Philadelphia 19104
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Booker S, Stubbe J. Cloning, sequencing, and expression of the adenosylcobalamin-dependent ribonucleotide reductase from Lactobacillus leichmannii. Proc Natl Acad Sci U S A 1993; 90:8352-6. [PMID: 8397403 PMCID: PMC47354 DOI: 10.1073/pnas.90.18.8352] [Citation(s) in RCA: 79] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Ribonucleoside-triphosphate reductase (RTPR, EC 1.17.4.2) from Lactobacillus leichmannii, a monomeric adenosylcobalamin-requiring enzyme, catalyzes the conversion of nucleoside triphosphates to deoxynucleoside triphosphates. The gene for this enzyme has been cloned and sequenced. In contrast to expectations based on mechanistic considerations, there is no statistically significant sequence homology with the Escherichia coli reductase that requires a dinuclear-iron center and tyrosyl radical cofactor. The RTPR has been overexpressed and purified to homogeneity, yielding 90 mg of protein from 2.5 g of bacteria. Initial characterization of the recombinant RTPR indicates that its properties are identical to those of the RTPR isolated from L. leichmannii.
Collapse
Affiliation(s)
- S Booker
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139
| | | |
Collapse
|
27
|
Sun X, Harder J, Krook M, Jörnvall H, Sjöberg BM, Reichard P. A possible glycine radical in anaerobic ribonucleotide reductase from Escherichia coli: nucleotide sequence of the cloned nrdD gene. Proc Natl Acad Sci U S A 1993; 90:577-81. [PMID: 8421692 PMCID: PMC45706 DOI: 10.1073/pnas.90.2.577] [Citation(s) in RCA: 82] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
During anaerobic growth of Escherichia coli an oxygen-sensitive ribonucleoside-triphosphate reductase, different from the aerobic ribonucleoside diphosphate-reductase (EC 1.17.4.1), produces the deoxyribonucleoside triphosphates required for DNA replication. The gene for the anaerobic enzyme has now been cloned and was found to contain a 2136-nucleotide coding region, corresponding to 712 amino acid residues, and an Fnr binding site 228 base pairs upstream of the initiator ATG. The deduced amino acid sequence shows 72% identity to a gene of coliphage T4, sunY, hitherto of unknown function, suggesting that the virus codes for its own anaerobic reductase. The location of an organic free radical formed during activation of the bacterial anaerobic reductase is proposed to be on Gly-681, since the pentapeptide RVCGY at positions 678-682 shows a striking similarity to the C-terminal sequence. RVSGY, of pyruvate formate-lyase. During activation of the anaerobically induced pyruvate formate-lyase, the glycine residue of the pentapeptide becomes an organic radical [Wagner, A. F. V., Frey, M., Neugebauer, F. A., Schäfer, W. & Knappe, J. (1992) Proc. Natl. Acad. Sci. USA 89, 996-1000]. The gene for the anaerobic reductase is located at a position around 96 min on the E. coli genomic map.
Collapse
Affiliation(s)
- X Sun
- Department of Biochemistry I, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
28
|
Fan HZ, McClarty G, Brunham RC. Biochemical evidence for the existence of thymidylate synthase in the obligate intracellular parasite Chlamydia trachomatis. J Bacteriol 1991; 173:6670-7. [PMID: 1938873 PMCID: PMC209014 DOI: 10.1128/jb.173.21.6670-6677.1991] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Since eucaryotic cell-derived thymidine or thymidine nucleotides are not incorporated into Chlamydia trachomatis DNA, we hypothesized that C. trachomatis must obtain dTTP for DNA synthesis by converting dUMP to dTMP. In most cells, this reaction is catalyzed by thymidylate synthase (TS) and requires 5,10-methylenetetrahydrofolate as a cofactor. We used C. trachomatis serovar L2 and a mutant CHO K1 cell line with a genetic deficiency in folate metabolism as a host for chlamydial growth. This cell line lacks a functional dihydrofolate reductase (DHFR) gene and, as a result, is unable to carry out de novo synthesis of dTTP. C. trachomatis inclusions form normally when DHFR- cells are starved for thymidine 24 h prior to and during the course of infection. When [6-3H]uridine is used as a precursor to label C. trachomatis-infected CHO DHFR- cells, radiolabel is readily incorporated into chlamydia-specific DNA. When DNA from [6-3H]uridine-labelled infected cultures is acid hydrolyzed and subjected to high-performance liquid chromatography analysis, radiolabel is detected in thymine and cytosine nucleobases. By using the DHFR- cell line as a host and [5-3H]uridine as a precursor, we could monitor intracellular C. trachomatis TS activity simply by following the formation of tritiated water. There is a good correlation between in situ TS activity and DNA synthesis activity during the chlamydial growth cycle. In addition, both C. trachomatis-specific DNA synthesis and 3H2O release are inhibited by exogenously added 5-fluorouridine but not by 5-fluorodeoxyuridine. Finally, we demonstrated in vitro TS activity in crude extracts prepared from highly purified C. trachomatis reticulate bodies. The activity is dependent on the presence of methylenetetrahydrofolic acid and can be inhibited with 5-fluoro-dUMP. Taken together, these results indicate that C. trachomatis contains a TS for the synthesis of dTMP.
Collapse
Affiliation(s)
- H Z Fan
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | | | | |
Collapse
|
29
|
Tipples G, McClarty G. Isolation and initial characterization of a series of Chlamydia trachomatis isolates selected for hydroxyurea resistance by a stepwise procedure. J Bacteriol 1991; 173:4932-40. [PMID: 1860812 PMCID: PMC208181 DOI: 10.1128/jb.173.16.4932-4940.1991] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Chlamydiae are obligate intracellular bacteria that are dependent on eukaryotic host cells for ribonucleoside triphosphates but not deoxyribonucleotide triphosphates. Ribonucleotide reductase is the only enzyme known to catalyze the direct conversion of a ribonucleotide to a deoxyribonucleotide. Hydroxyurea inhibits ribonucleotide reductase by inactivating the tyrosine free radical present in the small subunit of the enzyme. In this report, we show that Chlamydia trachomatis growth is inhibited by hydroxyurea in both wild-type mouse L cells and hydroxyurea-resistant mouse L cells. Hydroxyurea was used as a selective agent in culture to isolate, by a stepwise procedure, a series of C. trachomatis isolates with increasing levels of resistance to the cytotoxic effects of the drug. One of the drug-resistant C. trachomatis isolates (L2HR-10.0) was studied in more detail. L2HR-10.0 retained its drug resistance phenotype even after passage in the absence of hydroxyurea for 10 growth cycles. In addition, L2HR-10.0 was cross resistant to guanazole, another inhibitor of ribonucleotide reductase. Results obtained from hydroxyurea inhibition studies using various host cell-parasite combinations indicated that inhibition of host cell and C. trachomatis DNA synthesis by hydroxyurea can occur but need not occur simultaneously. Crude extract prepared from highly purified C. trachomatis reticulate bodies was capable of reducing CDP to dCDP. The CDP reductase activity was not inhibited by monoclonal antibodies to the large and small subunits of mammalian ribonucleotide reductase, suggesting that the activity is chlamydia specific. The CDP reductase activity was inhibited by hydroxyurea. Crude extract prepared from drug-resistant L2HR-10.0 reticulate bodies contained an elevation in ribonucleotide reductase activity. In total, our results indicate that C. trachomatis obtains the precursors for DNA synthesis as ribonucleotides with subsequent conversion to deoxyribonucleotides catalyzed by a chlamydia-specific ribonucleotide reductase.
Collapse
Affiliation(s)
- G Tipples
- Department of Medical Microbiology, University of Manitoba, Winnipeg, Canada
| | | |
Collapse
|