1
|
Srivastava R. Nucleobase Pair-Metal Dimer/Dinuclear Metal Cation Interaction: A Theoretical Study. ACS OMEGA 2020; 5:18808-18817. [PMID: 32775882 PMCID: PMC7408194 DOI: 10.1021/acsomega.0c01931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Nucleobase pair-metal dimer/dinuclear metal cation interactions play an important role in biological applications because of their highly symmetrical structures and high stabilities. In this work, we have selected five adenine-adenine hydrogen bonding, adenine-thymine (AT), adenine-uracil, adenine-adenine stacking pairs, and Watson-Crick AT stacking pairs and studied their interaction with the coinage metal dimer M2 and M2 2+ metal cations, where M = Ag, Au, and Cu. Quantum chemical calculations have been carried out with density functional theory (DFT) and time-dependent DFT (TDDFT) methods. Electronic structures were analyzed by the partial density of states method. During interactions, we find that M-M distances are shorter than the sum of van der Waals radii of the corresponding two homocoinage metal atoms, which show the existence of significant metallophilic interactions. Results indicated that nucleobase-M2 2+ complexes are stronger as compared to nucleobase-M2 complexes. Also, the replacement of the hydrogen bond by the dinuclear metal cation-coordinated bond forms more stable alternative metallo-DNA sequences in AAST base pairs. TDDFT calculations reveal that nucleobase-Cu2 complexes and nucleobase-Ag2 2+/Au2 2+ complexes can be used for fluorescent markers and logic gate applications. Atom-in-molecules analysis predicted the noncovalent interaction in these complexes.
Collapse
Affiliation(s)
- Ruby Srivastava
- Bioinformatics, CSIR-Centre
for Cellular and Molecular Biology, Hyderabad 500607, India
| |
Collapse
|
2
|
Jayarathna DR, Stout HD, Achim C. Metal Coordination to Ligand-Modified Peptide Nucleic Acid Triplexes. Inorg Chem 2018; 57:6865-6872. [PMID: 29845860 DOI: 10.1021/acs.inorgchem.8b00442] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A challenging goal in nanotechnology is the precise and programmable arrangement of specific elements in nanosystems in the three-dimensional space. The use of ligand-modified nucleic acids represents an accurate and selective tool to achieve this goal when it comes to metal ion organization. The synthesis of peptide nucleic acid (PNA) monomers that contain ligands instead of nucleobases makes possible the creation of metal-mediated alternative base pairs and triplets at specific locations in PNA duplexes and triplexes, respectively. We report the formation of four- and six-coordinate metal complexes between PNA triplexes modified with 2,2'-bipyridine (Bpy) or 8-hydroxyquinoline (Q) ligands and 3d metal ions. These metal complexes function as alternative base triplets or pairs in that they increase the thermal stability of the triplexes if the stability constants of the metal complexes are relatively high. The increase in the triplex melting temperature correlates with the stability constants of the metal complexes with ligand-containing PNA determined by UV-vis titrations. The metal complexes coordinate two or three ligands although three bidentate ligands are in close proximity of each other within a triplex. Metal coordination to ligand-modified PNA triplexes was further studied by electron paramagnetic resonance (EPR) spectroscopy and circular dichrosim (CD) spectroscopy. EPR spectroscopy indicated the formation of a square planar [CuQ2] complex between Cu2+ and Q-containing PNA triplex. Taken together, the spectroscopic results indicate that in the presence of 1 equiv of Fe2+ or Ni2+ the majority, but not all, of the Bpy-containing PNA triplexes contain [MBpy3] complexes, with a minority of them being metal free. We attribute this behavior to a supramolecular chelate effect exerted by the triplex, which favors the formation of tris-ligand complexes, that is balanced by the steric interactions between the metal complex and the adjacent nucleobase triplets, which decrease the stability of the complex and triplex. In contrast, the very high stability of square planar [MQ2] complexes of Cu2+ and Ni2+ leads to formation of bis-ligand complexes instead of tris-ligand complexes with Q3-containing PNA triplexes. The metal-containing PNA triplexes have a terminal l-lysine and adopt a left-handed chiral structure in solution. The handedness of the PNA triplex determines that of the metal complexes formed with the Bpy-containing PNA triplexes.
Collapse
Affiliation(s)
- Dilhara R Jayarathna
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Heather D Stout
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| | - Catalina Achim
- Department of Chemistry , Carnegie Mellon University , 4400 Fifth Avenue , Pittsburgh , Pennsylvania 15213 , United States
| |
Collapse
|
3
|
Cao GJ. Dinuclear Metal-Mediated Homo Base Pairs with Metallophilic Interactions: Theoretical Studies of G 2M 22+ (M = Cu, Ag, and Au) Ions. Sci Rep 2017; 7:14896. [PMID: 29097669 PMCID: PMC5668421 DOI: 10.1038/s41598-017-14259-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 10/09/2017] [Indexed: 12/16/2022] Open
Abstract
Dinuclear metal-mediated homo base pairs are interesting clusters with highly symmetric structures and significant stabilities. The geometric and electronic structures of G2M22+ (G = Guanine, M = Cu, Ag or Au) cluster ions were studied with quantum chemical calculations. The lowest-energy isomers of G2M22+ cluster ions have C2h symmetries with an approximately antiparallel alignment of two sets of N-M∙∙∙O groups being formed in the planar structures. The M-M distances are shorter than the sum of van der Waals radii of corresponding two homo coinage metal atoms, showing that metallophilic interactions significantly exist in these complexes. They have the large HOMO−LUMO gaps of about 5.80 eV at the DFT level and the bond dissociation energies of more than 5.60 eV at the DFT/B3LYP level, indicating that these cluster dications are highly stable. The second lowest-energy isomers stabilized by an approximately parallel alignment of one set of O-M-O group and one set of N-M-N group are found to be close to the lowest-energy isomers in energy. The barrier between the two isomers of G2M22+ cluster ions is significantly large, also showing that these lowest-energy isomers are very stable.
Collapse
Affiliation(s)
- Guo-Jin Cao
- Institute of Molecular Science, Shanxi University, Taiyuan, 030006, China.
| |
Collapse
|
4
|
Takezawa Y, Müller J, Shionoya M. Artificial DNA Base Pairing Mediated by Diverse Metal Ions. CHEM LETT 2017. [DOI: 10.1246/cl.160985] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yusuke Takezawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| | - Jens Müller
- Westfälische Wilhelms-Universität Münster, Institut für Anorganische und Analytische Chemie, Corrensstraße 28/30, 48149 Münster, Germany
| | - Mitsuhiko Shionoya
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033
| |
Collapse
|
5
|
Albertí FM, Rodríguez-Santiago L, Sodupe M, Mirats A, Kaitsiotou H, Sanz Miguel PJ, Lippert B. Mixed adenine/guanine quartets with three trans-a2 Pt(II) (a=NH(3) or MeNH(2)) cross-links: linkage and rotational isomerism, base pairing, and loss of NH(3). Chemistry 2014; 20:3394-407. [PMID: 24532472 DOI: 10.1002/chem.201304686] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Indexed: 11/12/2022]
Abstract
Of the numerous ways in which two adenine and two guanines (N9 positions blocked in each) can be cross-linked by three linear metal moieties such as trans-a2 Pt(II) (with a=NH3 or MeNH2 ) to produce open metalated purine quartets with exclusive metal coordination through N1 and N7 sites, one linkage isomer was studied in detail. The isomer trans,trans,trans-[{Pt(NH3 )2 (N7-9-EtA-N1)2 }{Pt(MeNH2 )2 (N7-9-MeGH)}2 ][(ClO4 )6 ]⋅3H2 O (1) (with 9-EtA=9-ethyladenine and 9-MeGH=9-methylguanine) was crystallized from water and found to adopt a flat Z-shape in the solid state as far as the trinuclear cation is concerned. In the presence of excess 9-MeGH, a meander-like construct, trans,trans,trans-[{Pt(NH3 )2 (N7-9-EtA-N1)2 }{Pt(MeNH2 )2 (N7-9-MeGH)2 }][(ClO4 )6 ]⋅[(9-MeGH)2 ]⋅7 H2 O (2) is formed, in which the two extra 9-MeGH nucleobases are hydrogen bonded to the two terminal platinated guanine ligands of 1. Compound 1, and likewise the analogous complex 1 a (with NH3 ligands only), undergo loss of an ammonia ligand and formation of NH4 (+) when dissolved in [D6 ]DMSO. From the analogy between the behavior of 1 and 1 a it is concluded that a NH3 ligand from the central Pt atom is lost. Addition of 1-methylcytosine (1-MeC) to such a DMSO solution reveals coordination of 1-MeC to the central Pt. In an analogous manner, 9-MeGH can coordinate to the central Pt in [D6 ]DMSO. It is proposed that the proton responsible for formation of NH4 (+) is from one of the exocyclic amino groups of the two adenine bases, and furthermore, that this process is accompanied by a conformational change of the cation from Z-form to U-form. DFT calculations confirm the proposed mechanism and shed light on possible pathways of this process. Calculations show that rotational isomerism is not kinetically hindered and that it would preferably occur previous to the displacement of NH3 by DMSO. This displacement is the most energetically costly step, but it is compensated by the proton transfer to NH3 and formation of U(-H(+) ) species, which exhibits an intramolecular hydrogen bond between the deprotonated N6H(-) of one adenine and the N6H2 group of the other adenine. Finally the question is examined, how metal cross-linking patterns in closed metallacyclic quartets containing two adenine and two guanine nucleobases influence the overall shape (square, rectangle, trapezoid) and the planarity of a metalated purine quartet.
Collapse
Affiliation(s)
- Francisca M Albertí
- Fakultät Chemie und Chemische Biologie, Technische Universität Dortmund, Otto-Hahn-Strasse 6, 44221 Dortmund (Germany), Fax: (+49) 231-755-3797
| | | | | | | | | | | | | |
Collapse
|
6
|
Kumbhar S, Johannsen S, Sigel RK, Waller MP, Müller J. A QM/MM refinement of an experimental DNA structure with metal-mediated base pairs. J Inorg Biochem 2013; 127:203-10. [DOI: 10.1016/j.jinorgbio.2013.03.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 02/18/2013] [Accepted: 03/18/2013] [Indexed: 01/04/2023]
|
7
|
Ding W, Xu M, Zhu H, Liang H. Mechanism of the hairpin folding transformation of thymine-cytosine-rich oligonucleotides induced by Hg(II) and Ag(I) ions. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2013; 36:101. [PMID: 24045985 DOI: 10.1140/epje/i2013-13101-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 07/10/2013] [Accepted: 08/12/2013] [Indexed: 06/02/2023]
Abstract
The metal-induced folding of thymine-cytosine-rich oligonucleotides into hairpin-like structures was characterised by isothermal titration calorimetry, secondary structure analysis, equilibrium titrations, and fluorescence study. We find that designed thymine-cytosine-rich oligonucleotides can specifically bind with Hg(II) or Ag(I) ions to generate metal-mediated base pairs in a hairpin-like structure from a random coil structure. Isothermal titration calorimetry experiments were performed to reveal the detail of the whole binding process. The thermodynamic result exhibits two possible pathways of significant change upon the addition of Hg(II) ions. Furthermore, this transformation can be enhanced by the presence of Ag(I) ions. The fluorescence decreases through fluorescence resonance energy transfer (FRET) between the fluorophore and quencher confirms the process of formation of the hairpin-like structure. The analysis of optical titration data demonstrates that the saturated binding stoichiometries are 12:1 and 4:1 for Hg(II) and Ag(I) ions, respectively. Our result provides a promising strategy for the investigation of the mechanism of structural transformation of oligonucleotides influenced by metal-mediated base pairs, which may eventually lead to progress in constructing a metal-triggered DNA origami system and metal-containing DNA nanotechnology.
Collapse
Affiliation(s)
- Wei Ding
- CAS Key Laboratory of Soft Matter Chemistry, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Polymer Science and Engineering, University of Science and Technology of China, 230026, Hefei, Anhui, P. R. China
| | | | | | | |
Collapse
|
8
|
Fusch G, Zangrando E, Randaccio L, Lippert B. A Unique Helicate Comprised of Four Cytosine Nucleobases and Four Metal Entities (PtII, PtII, AuIII, AuI). Implications for the Interactions of Linearly Coordinated Metal Ions with Nucleotide Duplexes. Z Anorg Allg Chem 2013. [DOI: 10.1002/zaac.201300038] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
9
|
Samanta PK, Manna AK, Pati SK. Structural, Electronic, and Optical Properties of Metallo Base Pairs in Duplex DNA: A Theoretical Insight. Chem Asian J 2012; 7:2718-28. [DOI: 10.1002/asia.201200630] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Indexed: 12/23/2022]
Affiliation(s)
- Pralok K. Samanta
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064 (India), Fax: (+91) 80‐2208‐2766/2767
| | - Arun K. Manna
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064 (India), Fax: (+91) 80‐2208‐2766/2767
| | - Swapan K. Pati
- Theoretical Sciences Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064 (India), Fax: (+91) 80‐2208‐2766/2767
- New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur P. O., Bangalore 560064 (India), Fax: (+91) 80‐2208‐2766/2767
| |
Collapse
|
10
|
Impact of histidine residue on chelating ability of 2'-deoxyriboadenosine. J Inorg Biochem 2011; 105:1212-9. [PMID: 21723807 DOI: 10.1016/j.jinorgbio.2011.05.016] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2011] [Revised: 05/20/2011] [Accepted: 05/20/2011] [Indexed: 11/22/2022]
Abstract
Copper(II) complexes with a new chelator-type nucleoside-histidine modified 2'-deoxyriboadenosine (N-[(9-β-D-2'-deoxyribofuranosylpurin-6-yl)-carbamoyl]histidine) were studied by potentiometric and spectroscopic (UV-visible, CD, EPR) techniques, in conjunction with computer modeling optimization. The ligand can act as bidentate or tridentate depending on pH range. In acidic pH a very stable dimeric complex Cu(2)L(2) predominates with coordination spheres of both metal ions composed of oxygen atoms from carboxylic groups, one oxygen atom from ureido group and two nitrogen atoms derived from purine base and histidine ring. Above pH 5, deprotonation of carbamoyl nitrogens leads to the formation of CuL(2), Cu(2)L(2)H(-1) and Cu(2)L(2)H(-2) species. The CuL(2)H(-1) and CuL(2)H(-2) complexes with three or four nitrogens in Cu(II) coordination sphere have been detected in alkaline medium. Our findings suggest that N-[(9-beta-D-2'-deoxyribofuranosylpurin-6-yl)-carbamoyl]histidine chelates copper(II) ions very efficiently. The resulting complex might be used as an alternative base-pairing mode in which hydrogen-bonded base pairs present in natural DNA are replaced by metal-mediated ones.
Collapse
|
11
|
Megger DA, Fonseca Guerra C, Hoffmann J, Brutschy B, Bickelhaupt FM, Müller J. Contiguous Metal‐Mediated Base Pairs Comprising Two Ag
I
Ions. Chemistry 2011; 17:6533-44. [DOI: 10.1002/chem.201002944] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2010] [Revised: 02/12/2011] [Indexed: 12/28/2022]
Affiliation(s)
- Dominik A. Megger
- Institute for Inorganic and Analytical Chemistry, University of Muenster, Corrensstr. 28/30, 48149 Münster (Germany), Fax: (+49) 251‐83‐36007
| | - Célia Fonseca Guerra
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), Scheikundig Laboratorium der Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam (The Netherlands), Fax: (+31) 20‐59‐87629
| | - Jan Hoffmann
- Institut für Physikalische and Theoretische Chemie, Goethe‐Universität Frankfurt, Max‐von‐Laue‐Str. 7, 60438 Frankfurt (Germany)
| | - Bernhard Brutschy
- Institut für Physikalische and Theoretische Chemie, Goethe‐Universität Frankfurt, Max‐von‐Laue‐Str. 7, 60438 Frankfurt (Germany)
| | - F. Matthias Bickelhaupt
- Department of Theoretical Chemistry and Amsterdam Center for Multiscale Modeling (ACMM), Scheikundig Laboratorium der Vrije Universiteit, De Boelelaan 1083, 1081 HV Amsterdam (The Netherlands), Fax: (+31) 20‐59‐87629
| | - Jens Müller
- Institute for Inorganic and Analytical Chemistry, University of Muenster, Corrensstr. 28/30, 48149 Münster (Germany), Fax: (+49) 251‐83‐36007
| |
Collapse
|
12
|
Ono A, Torigoe H, Tanaka Y, Okamoto I. Binding of metal ions by pyrimidine base pairs in DNA duplexes. Chem Soc Rev 2011; 40:5855-66. [DOI: 10.1039/c1cs15149e] [Citation(s) in RCA: 272] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Yeh JI, Pohl E, Truan D, He W, Sheldrick GM, Du S, Achim C. The crystal structure of non-modified and bipyridine-modified PNA duplexes. Chemistry 2010; 16:11867-75. [PMID: 20859960 PMCID: PMC3194003 DOI: 10.1002/chem.201000392] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Peptide nucleic acid (PNA) is a synthetic analogue of DNA that commonly has an N-aminoethyl glycine backbone. The crystal structures of two PNA duplexes, one containing eight standard nucleobase pairs (GGCATGCC)(2), and the other containing the same nucleobase pairs and a central pair of bipyridine ligands, have been solved with a resolution of 1.22 and 1.10 Å, respectively. The non-modified PNA duplex adopts a P-type helical structure similar to that of previously characterized PNAs. The atomic-level resolution of the structures allowed us to observe for the first time specific modes of interaction between the terminal lysines of the PNA and the backbone and the nucleobases situated in the vicinity of the lysines, which are considered an important factor in the induction of a preferred handedness in PNA duplexes. Our results support the notion that whereas PNA typically adopts a P-type helical structure, its flexibility is relatively high. For example, the base-pair rise in the bipyridine-containing PNA is the largest measured to date in a PNA homoduplex. The two bipyridines bulge out of the duplex and are aligned parallel to the major groove of the PNA. In addition, two bipyridines from adjacent PNA duplexes form a π-stacked pair that relates the duplexes within the crystal. The bulging out of the bipyridines causes bending of the PNA duplex, which is in contrast to the structure previously reported for biphenyl-modified DNA duplexes in solution, where the biphenyls are π stacked with adjacent nucleobase pairs and adopt an intrahelical geometry. This difference shows that relatively small perturbations can significantly impact the relative position of nucleobase analogues in nucleic acid duplexes.
Collapse
Affiliation(s)
- Joanne I. Yeh
- Department of Structural Biology University of Pittsburgh Medical School Pittsburgh, PA 15260 (USA)
| | - Ehmke Pohl
- Department of Chemistry and School of Biological and Biomedical Sciences Durham University South Road, Durham DH1 3LE (UK)
| | - Daphne Truan
- Swiss Light Source Paul Scherrer Institute, CH-52323 Villigen, PSI (Switzerland)
| | - Wei He
- Department of Chemistry Carnegie Mellon University 4400 5 Ave., Pittsburgh, PA 15213 (USA)
| | - George M. Sheldrick
- Institut of Inorganic Chemistry University of GöttingenTammanstr. 4, 37077 Göttingen (Germany)
| | - Shoucheng Du
- Department of Structural Biology University of Pittsburgh Medical School Pittsburgh, PA 15260 (USA)
| | - Catalina Achim
- Department of Chemistry Carnegie Mellon University 4400 5 Ave., Pittsburgh, PA 15213 (USA)
| |
Collapse
|
14
|
Megger DA, Muller J. Silver(I)-mediated cytosine self-pairing is preferred over hoogsteen-type base pairs with the artificial nucleobase 1,3-dideaza-6-nitropurine. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2010; 29:27-38. [PMID: 20391190 DOI: 10.1080/15257770903451579] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
A 2'-deoxyribonucleoside containing 1,3-dideaza-6-nitropurine was synthesized and incorporated into oligonucleotides. The acid-base properties of this nucleoside and the corresponding N9-methylated derivative were investigated by pD-dependent (1)H NMR spectroscopy. A possible formation of Hoogsteen-type base pairs with cytosine was studied by ultraviolet (UV) and circular dichroism (CD) spectroscopy in the presence and absence of Ag(I) and under neutral and acidic conditions, respectively. In each case, no indication for the formation of Hoogsteen-type base pairs was obtained, which is attributed to the higher affinity of cytosine to form self-complementary hemi-protonated base pairs under acidic conditions and metal-mediated homo base pairs in presence of Ag(I), respectively.
Collapse
Affiliation(s)
- Dominik A Megger
- Westfalische Wilhelms-Universitat Munster, Institut fur Anorganische und Analytische Chemie, Munster, Germany
| | | |
Collapse
|
15
|
|
16
|
Affiliation(s)
- Jens Müller
- Faculty of Chemistry, Dortmund University of Technology, Otto‐Hahn‐Str. 6, 44227 Dortmund, Germany, Fax: +49 231 755 3797
| |
Collapse
|
17
|
Müller J, Polonius FA, Freisinger E, Gil Bardají E. X-ray crystallographic study of several 2'-deoxy-beta-D-ribonucleosides with 1-deazapurine-derived aglycones. Carbohydr Res 2008; 343:397-403. [PMID: 18045576 DOI: 10.1016/j.carres.2007.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 10/19/2007] [Accepted: 11/05/2007] [Indexed: 11/25/2022]
Abstract
The 2'-deoxy-beta-D-ribonucleosides of 1,3-deazapurine (benzimidazole (1)), 1-deazapurine (both 1H-imidazo[4,5-b]pyridine (2) and 3H-imidazo[4,5-b]pyridine (3)), and 6-benzoylamino-1-deazapurine (7-benzoylamino-3H-imidazo[4,5-b]pyridine (4)) have been prepared and structurally characterized by X-ray crystallography. Especially compounds 1-3 can serve as artificial nucleosides that may substitute 2'-deoxy adenosine because they lack the exocyclic amino group and one or two of the endocyclic nitrogen atoms and hence have a much smaller potential to engage in hydrogen bonds. In the latter respect, they are candidates for nucleosides in metal-ion mediated base pairs. The unit cell of compound 3 contains two crystallographically independent molecules. Compound 4 was crystallized from methanol and water, respectively, giving rise to two different solvates. Despite the closely related aglycones, the sugar conformations in 1-4 are found to be highly variable (1: (2)T(1); 2: (3)T(2); 3: (3)E and E(4); 4: (2)E and (2)T(3)). The structures reported here confirm that there is no simple correlation between the sugar conformation and the character of the nucleoside, and they will hopefully contribute to a better understanding of the complex interplay of different effects that are in control of the conformational equilibrium.
Collapse
Affiliation(s)
- Jens Müller
- University of Dortmund, Department of Chemistry, Otto-Hahn-Strasse 6, D-44227 Dortmund, Germany.
| | | | | | | |
Collapse
|
18
|
Johannsen S, Paulus S, Düpre N, Müller J, Sigel RKO. Using in vitro transcription to construct scaffolds for one-dimensional arrays of mercuric ions. J Inorg Biochem 2008; 102:1141-51. [PMID: 18289686 DOI: 10.1016/j.jinorgbio.2007.12.023] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2007] [Revised: 12/22/2007] [Accepted: 12/23/2007] [Indexed: 10/22/2022]
Abstract
In vitro transcription by T7 RNA polymerase can be used to construct scaffolds for the one-dimensional arrangement of mercury(II) ions. In these constructs, the metal ions are located inside of RNA double helices. By replacing the amide protons of two oppositely located uracil residues of complementary strands, mercury(II) becomes coordinated in a linear fashion to form metal-ion mediated base pairs, analogous to the well-known thymine-Hg-thymine base pair in DNA. This is shown here by a combination of various experimental techniques, including NMR spectroscopy, dynamic light scattering, as well as UV and CD spectroscopy. A total of five different double helices, including both palindromic and non-palindromic RNA sequences and between two and twenty consecutive uracil residues, have been synthesized and shown to be able to incorporate mercury(II). The synthesis of r(GGAGU 20CUCC) demonstrates that T7 polymerase is capable of handling long continuous stretches of identical nucleotides, albeit at the cost of an increasing number of abortion products and longer oligonucleotide strands that need to be separated by polyacrylamide gel electrophoresis. This work introduces RNA into the group of nucleic acids that can form metal ion mediated base pairs. The use of such metal-modified nucleic acids has been envisaged in various fields of research, including the generation of molecular wires.
Collapse
Affiliation(s)
- Silke Johannsen
- Institute of Inorganic Chemistry, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
| | | | | | | | | |
Collapse
|