1
|
He F, Liu X, Tang M, Wang H, Wu Y, Liang S. CRISETR: an efficient technology for multiplexed refactoring of biosynthetic gene clusters. Nucleic Acids Res 2024; 52:11378-11393. [PMID: 39271125 PMCID: PMC11472037 DOI: 10.1093/nar/gkae781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
The efficient refactoring of natural product biosynthetic gene clusters (BGCs) for activating silent BGCs is a central challenge for the discovery of new bioactive natural products. Herein, we have developed a simple and robust CRISETR (CRISPR/Cas9 and RecET-mediated Refactoring) technique, combining clustered regulatory interspaced short palindromic repeats (CRISPR)/Cas9 and RecET, for the multiplexed refactoring of natural product BGCs. By this approach, natural product BGCs can be refactored through the synergistic interaction between RecET-mediated efficient homologous recombination and the CRISPR/Cas9 system. We first performed a proof-of-concept validation of the ability of CRISETR, and CRISETR can achieve simultaneous replacement of four promoter sites and marker-free replacement of single promoter site in natural product BGCs. Subsequently, we applied CRISETR to the promoter engineering of the 74-kb daptomycin BGC containing a large number of direct repeat sequences for enhancing the heterologous production of daptomycin. We used combinatorial design to build multiple refactored daptomycin BGCs with diverse combinations of promoters different in transcriptional strengths, and the yield of daptomycin was improved 20.4-fold in heterologous host Streptomyces coelicolor A3(2). In general, CRISETR exhibits enhanced tolerance to repetitive sequences within gene clusters, enabling efficient refactoring of diverse and complex BGCs, which would greatly accelerate discovery of novel bioactive metabolites present in microorganism.
Collapse
Affiliation(s)
- Fuqiang He
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Xinpeng Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Min Tang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Haiyi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| | - Yun Wu
- Department of Cell Biology, College of Life Science, Sichuan Normal University, Chengdu, Sichuan, 610101, P.R. China
| | - Shufang Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, P.R. China
| |
Collapse
|
2
|
Luan J, Song C, Liu Y, He R, Guo R, Cui Q, Jiang C, Li X, Hao K, Stewart AF, Fu J, Zhang Y, Wang H. Seamless site-directed mutagenesis in complex cloned DNA sequences using the RedEx method. Nat Protoc 2024:10.1038/s41596-024-01016-9. [PMID: 39009664 DOI: 10.1038/s41596-024-01016-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/01/2024] [Indexed: 07/17/2024]
Abstract
Seamless site-directed mutagenesis is an important technique for studying protein functions, tuning enzyme catalytic activities and modifying genetic elements in multiple rounds because it can insert, delete or substitute nucleotides, DNA segments or even entire genes at the target site without introducing any unwanted change. To facilitate seamless site-directed mutagenesis in large plasmids and bacterial artificial chromosomes (BACs) with repetitive sequences, we recently developed the RedEx strategy. Compared with previous methods, our approach achieves the recovery of correct recombinants with high accuracy by circumventing unwanted recombination between repetitive sequences. RedEx readily yields more than 80% accuracy in seamless DNA insertion and deletion in large multimodular polyketide synthase gene clusters, which are among the most difficult targets due to the large number of repetitive DNA sequences in modules encoding almost identical enzymes. Here we present the RedEx method by describing in detail the seamless site-directed mutagenesis in a BAC vector. Overall, the process includes three parts: (1) insertion of the RedEx cassette containing the desired mutation together with selection-counterselection markers flanked by unique restriction sites and 20-bp overlapping sequences into the target site by recombineering, (2) removal of the selection-counterselection markers in the BAC by restriction digestion and (3) circularization of the linear BAC by exonuclease-mediated in vitro DNA annealing. This protocol can be performed within 3 weeks and will enable researchers with DNA cloning experience to master seamless site-directed mutagenesis to accelerate their research.
Collapse
Affiliation(s)
- Ji Luan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Chaoyi Song
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Yan Liu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Ruoting He
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Ruofei Guo
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Qingwen Cui
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Chanjuan Jiang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Xiaochen Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Kexin Hao
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - A Francis Stewart
- Genomics, Center for Molecular and Cellular Bioengineering, Biotechnology Center, Technische Universität Dresden, Dresden, Germany
| | - Jun Fu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Qingdao, Shandong, China.
| |
Collapse
|
3
|
Qian X, Lei H, Zhou X, Zhang L, Cui W, Zhou J, Xin F, Dong W, Jiang M, Ochsenreither K. Engineering Scheffersomyces segobiensis for palmitoleic acid-rich lipid production. Microb Biotechnol 2024; 17:e14301. [PMID: 37351580 PMCID: PMC10832558 DOI: 10.1111/1751-7915.14301] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/05/2023] [Accepted: 06/08/2023] [Indexed: 06/24/2023] Open
Abstract
Palmitoleic acid (POA; C16:1) is an essential high-value ω-7-conjugated fatty acid with beneficial bioactivities and potential applications in the nutraceutical and pharmaceutical industries. Previously, the oleaginous yeast Scheffersomyces segobiensis DSM27193 has been identified as a promising production host as an alternative for POA extraction from plant or animal sources. Here, the POA-producing capacity of this host was further expanded by optimizing the fermentation process and molecular strain engineering. Specifically, a dual fermentation strategy (O-S dynamic regulation strategy) focused on the substrate and dissolved oxygen concentration was designed to eliminate ethanol and pyruvate accumulation during fermentation. Key genes influencing POA production, such as jen, dgat, ole were identified on the transcriptional level and were subsequently over-expressed. Furthermore, the phosphoketolase (Xpk)/phosphotransacetylase (Pta) pathway was introduced to improve the yield of the precursor acetyl-CoA from glucose. The resulting cell factory SS-12 produced 7.3 g/L of POA, corresponding to an 11-fold increase compared to the wild type, presenting the highest POA titre reported using oleaginous yeast to date. An economic evaluation based on the raw materials, utilities and facility-dependent costs showed that microbial POA production using S. segobiensis can supersede the current extraction method from plant oil and marine fish. This study reports the construction of a promising cell factory and an effective microbial fermentation strategy for commercial POA production.
Collapse
Affiliation(s)
- Xiujuan Qian
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingP. R. China
| | - Huirui Lei
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingP. R. China
| | - Xinhai Zhou
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingP. R. China
| | - Lili Zhang
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingP. R. China
| | - Wenxing Cui
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingP. R. China
| | - Jie Zhou
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingP. R. China
| | - Fengxue Xin
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingP. R. China
- State Key Laboratory of Materials‐Oriented Chemical EngineeringNanjing Tech UniversityNanjingP. R. China
| | - Weiliang Dong
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingP. R. China
- State Key Laboratory of Materials‐Oriented Chemical EngineeringNanjing Tech UniversityNanjingP. R. China
| | - Min Jiang
- College of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjingP. R. China
- State Key Laboratory of Materials‐Oriented Chemical EngineeringNanjing Tech UniversityNanjingP. R. China
| | - Katrin Ochsenreither
- Institute of Process Engineering in Life Sciences, Section II: Technical BiologyKarlsruhe Institute of TechnologyKarlsruheGermany
| |
Collapse
|
4
|
Gao M, Zhao Y, Yao Z, Su Q, Van Beek P, Shao Z. Xylose and shikimate transporters facilitates microbial consortium as a chassis for benzylisoquinoline alkaloid production. Nat Commun 2023; 14:7797. [PMID: 38016984 PMCID: PMC10684500 DOI: 10.1038/s41467-023-43049-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/30/2023] [Indexed: 11/30/2023] Open
Abstract
Plant-sourced aromatic amino acid (AAA) derivatives are a vast group of compounds with broad applications. Here, we present the development of a yeast consortium for efficient production of (S)-norcoclaurine, the key precursor for benzylisoquinoline alkaloid biosynthesis. A xylose transporter enables the concurrent mixed-sugar utilization in Scheffersomyces stipitis, which plays a crucial role in enhancing the flux entering the highly regulated shikimate pathway located upstream of AAA biosynthesis. Two quinate permeases isolated from Aspergillus niger facilitates shikimate translocation to the co-cultured Saccharomyces cerevisiae that converts shikimate to (S)-norcoclaurine, resulting in the maximal titer (11.5 mg/L), nearly 110-fold higher than the titer reported for an S. cerevisiae monoculture. Our findings magnify the potential of microbial consortium platforms for the economical de novo synthesis of complex compounds, where pathway modularization and compartmentalization in distinct specialty strains enable effective fine-tuning of long biosynthetic pathways and diminish intermediate buildup, thereby leading to increases in production.
Collapse
Affiliation(s)
- Meirong Gao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA
| | - Yuxin Zhao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA
| | - Zhanyi Yao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA
| | - Qianhe Su
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Payton Van Beek
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, USA.
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, USA.
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA, USA.
- Bioeconomy Institute, Iowa State University, Ames, IA, USA.
- The Ames Laboratory, Ames, IA, USA.
- DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
5
|
Wu ZY, Sun W, Shen Y, Pratas J, Suthers PF, Hsieh PH, Dwaraknath S, Rabinowitz JD, Maranas CD, Shao Z, Yoshikuni Y. Metabolic engineering of low-pH-tolerant non-model yeast, Issatchenkia orientalis, for production of citramalate. Metab Eng Commun 2023; 16:e00220. [PMID: 36860699 PMCID: PMC9969067 DOI: 10.1016/j.mec.2023.e00220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023] Open
Abstract
Methyl methacrylate (MMA) is an important petrochemical with many applications. However, its manufacture has a large environmental footprint. Combined biological and chemical synthesis (semisynthesis) may be a promising alternative to reduce both cost and environmental impact, but strains that can produce the MMA precursor (citramalate) at low pH are required. A non-conventional yeast, Issatchenkia orientalis, may prove ideal, as it can survive extremely low pH. Here, we demonstrate the engineering of I. orientalis for citramalate production. Using sequence similarity network analysis and subsequent DNA synthesis, we selected a more active citramalate synthase gene (cimA) variant for expression in I. orientalis. We then adapted a piggyBac transposon system for I. orientalis that allowed us to simultaneously explore the effects of different cimA gene copy numbers and integration locations. A batch fermentation showed the genome-integrated-cimA strains produced 2.0 g/L citramalate in 48 h and a yield of up to 7% mol citramalate/mol consumed glucose. These results demonstrate the potential of I. orientalis as a chassis for citramalate production.
Collapse
Affiliation(s)
- Zong-Yen Wu
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Wan Sun
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA, 50011-1027, USA,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yihui Shen
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA,Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Jimmy Pratas
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA,Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Patrick F. Suthers
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA,Center for Advanced Bioenergy and Bioproducts Innovation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Ping-Hung Hsieh
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Sudharsan Dwaraknath
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Joshua D. Rabinowitz
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA,Lewis Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08540, USA
| | - Costas D. Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA,Center for Advanced Bioenergy and Bioproducts Innovation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Zengyi Shao
- Interdepartmental Microbiology Program, Iowa State University, Ames, IA, 50011-1027, USA,Department of Chemical and Biological Engineering, Iowa State University, Ames, IA, 50011, USA,NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, IA, 50011, USA,Bioeconomy Institute, Iowa State University, Ames, IA, 50011, USA,The Ames Laboratory, Ames, IA, 50011, USA,DOE Center for Advanced Bioenergy and Bioproducts Innovation, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA,Corresponding author. Interdepartmental Microbiology Program, Iowa State University, Ames, IA, 50011-1027, USA.
| | - Yasuo Yoshikuni
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA,Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA,Center for Advanced Bioenergy and Bioproducts Innovation, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA,Global Center for Food, Land, and Water Resources, Hokkaido University, Hokkaido, 060-8589, Japan,Corresponding author. Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| |
Collapse
|
6
|
Exploring the Use of Cold Atmospheric Plasma to Overcome Drug Resistance in Cancer. Biomedicines 2023; 11:biomedicines11010208. [PMID: 36672716 PMCID: PMC9855365 DOI: 10.3390/biomedicines11010208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/17/2023] Open
Abstract
Drug resistance is a major problem in cancer treatment, as it limits the effectiveness of pharmacological agents and can lead to disease progression. Cold atmospheric plasma (CAP) is a technology that uses ionized gas (plasma) to generate reactive oxygen and nitrogen species (RONS) that can kill cancer cells. CAP is a novel approach for overcoming drug resistance in cancer. In recent years, there has been a growing interest in using CAP to enhance the effectiveness of chemotherapy drugs. In this review, we discuss the mechanisms behind this phenomenon and explore its potential applications in cancer treatment. Going through the existing literature on CAP and drug resistance in cancer, we highlight the challenges and opportunities for further research in this field. Our review suggests that CAP could be a promising option for overcoming drug resistance in cancer and warrants further investigation.
Collapse
|
7
|
Zhao M, Gao M, Xiong L, Liu Y, Tao X, Gao B, Liu M, Wang FQ, Wei DZ. CRISPR-Cas Assisted Shotgun Mutagenesis Method for Evolutionary Genome Engineering. ACS Synth Biol 2022; 11:1958-1970. [PMID: 35500195 DOI: 10.1021/acssynbio.2c00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Genome mutagenesis drives the evolution of organisms. Here, we developed a CRISPR-Cas assisted random mutation (CARM) technique for whole-genome mutagenesis. The method leverages an entirely random gRNA library and SpCas9-NG to randomly damage genomes in a controllable shotgunlike manner that then triggers diverse and abundant mutations via low-fidelity repair. As a proof of principle, CARM was applied to evolve the capacity of Saccharomyces cerevisiae BY4741 to produce β-carotene. After seven rounds of iterative evolution over two months, a β-carotene hyperproducing strain, C7-143, was isolated with a 10.5-fold increase in β-carotene production and 857 diverse genomic mutations that comprised indels, duplications, inversions, and chromosomal rearrangements. Transcriptomic analysis revealed that the expression of 2541 genes of strain C7-143 was significantly altered, suggesting that the metabolic landscape of the strain was deeply reconstructed. In addition, CARM was applied to evolve industrially relevant S. cerevisiae CEN.PK2-1C for S-adenosyl-L-methionine production, which was increased 2.28 times after just one round. Thus, CARM can contribute to increasing genetic diversity to identify new phenotypes that could further be investigated by reverse engineering.
Collapse
Affiliation(s)
- Ming Zhao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Anhui Engineering Laboratory for Industrial Microbiology Molecular Breeding, College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu 241000, China
| | - Miaomiao Gao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Liangbin Xiong
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai 201318, China
| | - Yongjun Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xinyi Tao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Bei Gao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Min Liu
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Dong-Zhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
8
|
An Z, Tao H, Wang Y, Xia B, Zou Y, Fu S, Fang F, Sun X, Huang R, Xia Y, Deng Z, Liu R, Liu T. Increasing the heterologous production of spinosad in Streptomyces albus J1074 by regulating biosynthesis of its polyketide skeleton. Synth Syst Biotechnol 2021; 6:292-301. [PMID: 34584996 PMCID: PMC8453208 DOI: 10.1016/j.synbio.2021.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/27/2021] [Accepted: 09/13/2021] [Indexed: 11/18/2022] Open
Abstract
Spinosyns are natural broad-spectrum biological insecticides with a double glycosylated polyketide structure that are produced by aerobic fermentation of the actinomycete, Saccharopolyspora spinosa. However, their large-scale overproduction is hindered by poorly understood bottlenecks in optimizing the original strain, and poor adaptability of the heterologous strain to the production of spinosyn. In this study, we genetically engineered heterologous spinosyn-producer Streptomyces albus J1074 and optimized the fermentation to improve the production of spinosad (spinosyn A and spinosyn D) based on our previous work. We systematically investigated the result of overexpressing polyketide synthase genes (spnA, B, C, D, E) using a constitutive promoter on the spinosad titer in S. albus J1074. The supply of polyketide synthase precursors was then increased to further improve spinosad production. Finally, increasing or replacing the carbon source of the culture medium resulted in a final spinosad titer of ∼70 mg/L, which is the highest titer of spinosad achieved in heterologous Streptomyces species. This research provides useful strategies for efficient heterologous production of natural products.
Collapse
Key Words
- 2-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl)amino]ethanesulfonic acid, (TES)
- HPLC-high resolution mass spectrometer, (HPLC-HRMS)
- Heterologous production
- Luria−Bertani, (LB)
- Polyketide
- Polyketide synthase
- Spinosad
- Spinosyn
- Streptomyces
- acetyl-CoA carboxylase, (ACC)
- acetyl-CoA synthetase, (AcsA)
- biosynthetic gene cluster, (BGC)
- high-performance liquid chromatography, (HPLC)
- limit of detection, (LoD)
- overlap extension-polymerase chain reaction, (OE-PCR)
- polyketide synthase, (PKS)
- propionyl-CoA carboxylase, (PCC)
- soya flour mannitol, (SFM)
- β and ε subunits of Acc, (AccBE)
- β and ε subunits of PCC, (PccBE)
Collapse
Affiliation(s)
- Ziheng An
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
| | - Hui Tao
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
| | - Yong Wang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
| | - Bingqing Xia
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
| | - Yang Zou
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
| | - Shuai Fu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
| | - Fang Fang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
| | - Xiao Sun
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
| | - Renqiong Huang
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
| | - Yao Xia
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
| | - Ran Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Tiangang Liu
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and Wuhan University School of Pharmaceutical Sciences, Wuhan, 430071, PR China
- Hubei Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan, 430075, PR China
| |
Collapse
|
9
|
Wu M, Gong DC, Yang Q, Zhang MQ, Mei YZ, Dai CC. Activation of Naringenin and Kaempferol through Pathway Refactoring in the Endophyte Phomopsis Liquidambaris. ACS Synth Biol 2021; 10:2030-2039. [PMID: 34251173 DOI: 10.1021/acssynbio.1c00205] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Abundant gene clusters of natural products are observed in the endophytic fungus Phomopsis liquidambaris; however, most of them are silent. Herein, a plug-and-play DNA assembly tool has been applied for flavonoid synthesis in P. liquidambaris. A shuttle plasmid was constructed based on S. cerevisiae, E. coli, and P. liquidambaris with screening markers URA, Amp, and hygR, respectively. Each fragment or cassette was successively assembled by overlap extension PCR with at least 40-50 bp homologous arms in S. cerevisiae for generating a new vector. Seven native promoters were screened by the DNA assembly based on the fluorescence intensity of the mCherry reporter gene in P. liquidambaris, and two of them were new promoters. The key enzyme chalcone synthase was the limiting step of the pathway. The naringenin and kaempferol pathways were refactored and activated with the titers of naringenin and kaempferol of 121.53 mg/L and 75.38 mg/L in P. liquidambaris using fed-batch fermentation, respectively. This study will be efficient and helpful for the biosynthesis of secondary metabolites.
Collapse
Affiliation(s)
- Mei Wu
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu Province China
| | - Da-Chun Gong
- China Key Laboratory of Light Industry Functional Yeast, Three Gorges University, Yichang, 443000, Hubei Province China
| | - Qian Yang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu Province China
| | - Meng-Qian Zhang
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu Province China
| | - Yan-Zhen Mei
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu Province China
| | - Chuan-Chao Dai
- Jiangsu Key Laboratory for Microbes and Functional Genomics, Jiangsu Engineering and Technology Research Center for Industrialization of Microbial Resources, College of Life Sciences, Nanjing Normal University, Nanjing 210023, Jiangsu Province China
| |
Collapse
|
10
|
Sharma V, Kaur R, Salwan R. Streptomyces: host for refactoring of diverse bioactive secondary metabolites. 3 Biotech 2021; 11:340. [PMID: 34221811 DOI: 10.1007/s13205-021-02872-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 05/31/2021] [Indexed: 12/22/2022] Open
Abstract
Microbial secondary metabolites are intensively explored due to their demands in pharmaceutical, agricultural and food industries. Streptomyces are one of the largest sources of secondary metabolites having diverse applications. In particular, the abundance of secondary metabolites encoding biosynthetic gene clusters and presence of wobble position in Streptomyces strains make it potential candidate as a native or heterologous host for secondary metabolite production including several cryptic gene clusters expression. Here, we have discussed the developments in Streptomyces strains genome mining, its exploration as a suitable host and application of synthetic biology for refactoring genetic systems for developing chassis for enhanced as well as novel secondary metabolites with reduced genome and cleaned background.
Collapse
Affiliation(s)
- Vivek Sharma
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Randhir Kaur
- University Centre for Research and Development, Chandigarh University, Gharuan, Mohali, Punjab 140413 India
| | - Richa Salwan
- College of Horticulture and Forestry, Dr YS Parmar University of Horticulture and Forestry, Neri, Hamirpur, Himachal Pradesh 177001 India
| |
Collapse
|
11
|
Zhao Y, Che Y, Zhang F, Wang J, Gao W, Zhang T, Yang C. Development of an efficient pathway construction strategy for rapid evolution of the biodegradation capacity of Pseudomonas putida KT2440 and its application in bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143239. [PMID: 33158512 DOI: 10.1016/j.scitotenv.2020.143239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/11/2020] [Accepted: 10/16/2020] [Indexed: 06/11/2023]
Abstract
In this work, we developed an efficient pathway construction strategy, consisting of DNA assembler-assisted pathway assembly and counterselection system-based chromosomal integration, for the rapid and efficient integration of synthetic biodegradation pathways into the chromosome of Pseudomonas putida KT2440. Using this strategy, we created a novel degrader capable of complete mineralization of γ-hexachlorocyclohexane (γ-HCH) and 1,2,3-trichloropropane (TCP) by integrating γ-HCH and TCP biodegradation pathways into the chromosome of P. putida KT2440. Furthermore, the chromosomal integration efficiencies of γ-HCH and TCP biodegradation pathways were improved to 50% and 41.6% in P. putida KT2440, respectively, by the inactivation of a type I DNA restriction-modification system. The currently developed pathway construction strategy coupled with the mutant KTUΔhsdRMS will facilitate implantation of heterologous catabolic pathways into the chromosome for rapid evolution of the biodegradation capacity of P. putida. More importantly, the successful removal of γ-HCH (10 mg/kg soil) and TCP (0.2 mM) from soil and wastewater within 14 days, respectively, highlighted the potential of the novel degrader for in situ bioremediation of γ-HCH- and TCP-contaminated sites. Moreover, chromosomal integration of gfp made the degrader to be monitored easily during bioremediation. In the future, this strategy can be expanded to a broad range of bacterial species for widespread applications in bioremediation.
Collapse
Affiliation(s)
- Yuxin Zhao
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - You Che
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong
| | - Fang Zhang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiacheng Wang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Weixia Gao
- MOE Key Laboratory of Industrial Fermentation Microbiology, College of Life Sciences, Tianjin University of Science and Technology, Tianjin, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Laboratory, The University of Hong Kong, Hong Kong
| | - Chao Yang
- Key Laboratory of Molecular Microbiology and Technology for Ministry of Education, College of Life Sciences, Nankai University, Tianjin 300071, China.
| |
Collapse
|
12
|
Zhao Y, Yao Z, Ploessl D, Ghosh S, Monti M, Schindler D, Gao M, Cai Y, Qiao M, Yang C, Cao M, Shao Z. Leveraging the Hermes Transposon to Accelerate the Development of Nonconventional Yeast-based Microbial Cell Factories. ACS Synth Biol 2020; 9:1736-1752. [PMID: 32396718 DOI: 10.1021/acssynbio.0c00123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We broadened the usage of DNA transposon technology by demonstrating its capacity for the rapid creation of expression libraries for long biochemical pathways, which is beyond the classical application of building genome-scale knockout libraries in yeasts. This strategy efficiently leverages the readily available fine-tuning impact provided by the diverse transcriptional environment surrounding each random integration locus. We benchmark the transposon-mediated integration against the nonhomologous end joining-mediated strategy. The latter strategy was demonstrated for achieving pathway random integration in other yeasts but is associated with a high false-positive rate in the absence of a high-throughput screening method. Our key innovation of a nonreplicable circular DNA platform increased the possibility of identifying top-producing variants to 97%. Compared to the classical DNA transposition protocol, the design of a nonreplicable circular DNA skipped the step of counter-selection for plasmid removal and thus not only reduced the time required for the step of library creation from 10 to 5 d but also efficiently removed the "transposition escapers", which undesirably represented almost 80% of the entire population as false positives. Using one endogenous product (i.e., shikimate) and one heterologous product (i.e., (S)-norcoclaurine) as examples, we presented a streamlined procedure to rapidly identify high-producing variants with titers significantly higher than the reported data in the literature. We selected Scheffersomyces stipitis, a representative nonconventional yeast, as a demo, but the strategy can be generalized to other nonconventional yeasts. This new exploration of transposon technology, therefore, adds a highly versatile tool to accelerate the development of novel species as microbial cell factories for producing value-added chemicals.
Collapse
Affiliation(s)
- Yuxin Zhao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Zhanyi Yao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Deon Ploessl
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Saptarshi Ghosh
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Marco Monti
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, U.K
| | - Daniel Schindler
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, U.K
| | - Meirong Gao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Yizhi Cai
- Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester, U.K
| | - Mingqiang Qiao
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Chao Yang
- The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Mingfeng Cao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
| | - Zengyi Shao
- Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa, United States
- NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, Iowa, United States
- Bioeconomy Institute, Iowa State University, Ames, Iowa, United States
- Interdepartmental Microbiology Program, Iowa State University, Ames, Iowa, United States
- The Ames Laboratory, Ames, Iowa, United States
| |
Collapse
|
13
|
Rainha J, Gomes D, Rodrigues LR, Rodrigues JL. Synthetic Biology Approaches to Engineer Saccharomyces cerevisiae towards the Industrial Production of Valuable Polyphenolic Compounds. Life (Basel) 2020; 10:life10050056. [PMID: 32370107 PMCID: PMC7281501 DOI: 10.3390/life10050056] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/22/2020] [Accepted: 04/30/2020] [Indexed: 12/27/2022] Open
Abstract
Polyphenols are plant secondary metabolites with diverse biological and potential therapeutic activities such as antioxidant, anti-inflammatory and anticancer, among others. However, their extraction from the native plants is not enough to satisfy the increasing demand for this type of compounds. The development of microbial cell factories to effectively produce polyphenols may represent the most attractive solution to overcome this limitation and produce high amounts of these bioactive molecules. With the advances in the synthetic biology field, the development of efficient microbial cell factories has become easier, largely due to the development of the molecular biology techniques and by the identification of novel isoenzymes in plants or simpler organisms to construct the heterologous pathways. Furthermore, efforts have been made to make the process more profitable through improvements in the host chassis. In this review, advances in the production of polyphenols by genetically engineered Saccharomyces cerevisiae as well as by synthetic biology and metabolic engineering approaches to improve the production of these compounds at industrial settings are discussed.
Collapse
|
14
|
Sun W, Vila-Santa A, Liu N, Prozorov T, Xie D, Faria NT, Ferreira FC, Mira NP, Shao Z. Metabolic engineering of an acid-tolerant yeast strain Pichia kudriavzevii for itaconic acid production. Metab Eng Commun 2020; 10:e00124. [PMID: 32346511 PMCID: PMC7178482 DOI: 10.1016/j.mec.2020.e00124] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 01/06/2020] [Accepted: 01/27/2020] [Indexed: 12/14/2022] Open
Abstract
Itaconic acid (IA), or 2-methylenesuccinic acid, has a broad spectrum of applications in the biopolymer industry owing to the presence of one vinyl bond and two acid groups in the structure. Its polymerization can follow a similar mechanism as acrylic acid but additional functionality can be incorporated into the extra beta acid group. Currently, the bio-based production of IA in industry relies on the fermentation of the filamentous fungus Aspergillus terreus. However, the difficulties associated with the fermentation undertaken by filamentous fungi together with the pathogenic potential of A. terreus pose a serious challenge for industrial-scale production. In recent years, there has been increasing interest in developing alternative production hosts for fermentation processes that are more homogenous in the production of organic acids. Pichia kudriavzevii is a non-conventional yeast with high acid tolerance to organic acids at low pH, which is a highly desirable trait by easing downstream processing. We introduced cis-aconitic acid decarboxylase gene (cad) from A. terreus (designated At_cad) into this yeast and established the initial titer of IA at 135 ± 5 mg/L. Subsequent overexpression of a native mitochondrial tricarboxylate transporter (herein designated Pk_mttA) presumably delivered cis-aconitate efficiently to the cytosol and doubled the IA production. By introducing the newly invented CRISPR-Cas9 system into P. kudriavzevii, we successfully knocked out both copies of the gene encoding isocitrate dehydrogenase (ICD), aiming to increase the availability of cis-aconitate. The resulting P. kudriavzevii strain, devoid of ICD and overexpressing Pk_mttA and At_cad on its genome produced IA at 505 ± 17.7 mg/L in shake flasks, and 1232 ± 64 mg/L in fed-batch fermentation. Because the usage of an acid-tolerant species does not require pH adjustment during fermentation, this work demonstrates the great potential of engineering P. kudriavzevii as an industrial chassis for the production of organic acid. Pichia kudriavzevii is a non-conventional yeast with high acid tolerance to organic acids at low pH. Engineering P. kudriavzevii to produce itaconic acid, a highly sought after biopolymer precursor. First description of a cis-aconitic acid transporter identified from a host besides the native producer of itaconic acid. Discussion on the potential of P. kudriavzevii as an industrial chassis for the production of organic acids.
Collapse
Affiliation(s)
- Wan Sun
- Interdepartmental Microbiology Program, Iowa State University, Ames, USA
| | - Ana Vila-Santa
- Department of Bioengineering, Instituto Superior Técnico, Lisbon, Portugal
| | - Na Liu
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, USA
| | - Tanya Prozorov
- Ames Laboratory, U.S. Department of Energy, Ames, Iowa, USA
| | - Dongming Xie
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, USA
| | - Nuno Torres Faria
- Department of Bioengineering, Instituto Superior Técnico, Lisbon, Portugal
| | | | - Nuno Pereira Mira
- Department of Bioengineering, Instituto Superior Técnico, Lisbon, Portugal
| | - Zengyi Shao
- Interdepartmental Microbiology Program, Iowa State University, Ames, USA.,Ames Laboratory, U.S. Department of Energy, Ames, Iowa, USA.,Department of Chemical and Biological Engineering, Iowa State University, Ames, USA.,NSF Engineering Research Center for Biorenewable Chemicals, Iowa State University, Ames, USA
| |
Collapse
|
15
|
Park S, Kim H, Ji HW, Kim HW, Yun SH, Choi EH, Kim SJ. Cold Atmospheric Plasma Restores Paclitaxel Sensitivity to Paclitaxel-Resistant Breast Cancer Cells by Reversing Expression of Resistance-Related Genes. Cancers (Basel) 2019; 11:cancers11122011. [PMID: 31847101 PMCID: PMC6966695 DOI: 10.3390/cancers11122011] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/05/2019] [Accepted: 12/10/2019] [Indexed: 12/19/2022] Open
Abstract
Paclitaxel (Tx) is a widely used therapeutic chemical for breast cancer treatment; however, cancer recurrence remains an obstacle for improved prognosis of cancer patients. In this study, cold atmospheric plasma (CAP) was tested for its potential to overcome the drug resistance. After developing Tx-resistant MCF-7 (MCF-7/TxR) breast cancer cells, CAP was applied to the cells, and its effect on the recovery of drug sensitivity was assessed in both cellular and molecular aspects. Sensitivity to Tx in the MCF-7/TxR cells was restored up to 73% by CAP. A comparison of genome-wide expression profiles between the TxR cells and the CAP-treated cells identified 49 genes that commonly appeared with significant changes. Notably, 20 genes, such as KIF13B, GOLM1, and TLE4, showed opposite expression profiles. The protein expression levels of selected genes, DAGLA and CEACAM1, were recovered to those of their parental cells by CAP. Taken together, CAP inhibited the growth of MCF-7/TxR cancer cells and recovered Tx sensitivity by resetting the expression of multiple drug resistance–related genes. These findings may contribute to extending the application of CAP to the treatment of TxR cancer.
Collapse
Affiliation(s)
- Sungbin Park
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Korea; (S.P.); (H.K.); (H.W.J.); (H.W.K.); (S.H.Y.)
| | - Heejoo Kim
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Korea; (S.P.); (H.K.); (H.W.J.); (H.W.K.); (S.H.Y.)
| | - Hwee Won Ji
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Korea; (S.P.); (H.K.); (H.W.J.); (H.W.K.); (S.H.Y.)
| | - Hyeon Woo Kim
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Korea; (S.P.); (H.K.); (H.W.J.); (H.W.K.); (S.H.Y.)
| | - Sung Hwan Yun
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Korea; (S.P.); (H.K.); (H.W.J.); (H.W.K.); (S.H.Y.)
| | - Eun Ha Choi
- Plasma Bioscience Research Center, Kwangwoon University, Seoul 01897, Korea;
| | - Sun Jung Kim
- Department of Life Science, Dongguk University-Seoul, Goyang 10326, Korea; (S.P.); (H.K.); (H.W.J.); (H.W.K.); (S.H.Y.)
- Correspondence: ; Tel.: +82-31-961-5129
| |
Collapse
|
16
|
Zhang JJ, Tang X, Moore BS. Genetic platforms for heterologous expression of microbial natural products. Nat Prod Rep 2019; 36:1313-1332. [PMID: 31197291 PMCID: PMC6750982 DOI: 10.1039/c9np00025a] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Covering: 2005 up to 2019Natural products are of paramount importance in human medicine. Not only are most antibacterial and anticancer drugs derived directly from or inspired by natural products, many other branches of medicine, such as immunology, neurology, and cardiology, have similarly benefited from natural product-based drugs. Typically, the genetic material required to synthesize a microbial specialized product is arranged in a multigene biosynthetic gene cluster (BGC), which codes for proteins associated with molecule construction, regulation, and transport. The ability to connect natural product compounds to BGCs and vice versa, along with ever-increasing knowledge of biosynthetic machineries, has spawned the field of genomics-guided natural product genome mining for the rational discovery of new chemical entities. One significant challenge in the field of natural product genome mining is how to rapidly link orphan biosynthetic genes to their associated chemical products. This review highlights state-of-the-art genetic platforms to identify, interrogate, and engineer BGCs from diverse microbial sources, which can be broken into three stages: (1) cloning and isolation of genomic loci, (2) heterologous expression in a host organism, and (3) genetic manipulation of cloned pathways. In the future, we envision natural product genome mining will be rapidly accelerated by de novo DNA synthesis and refactoring of whole biosynthetic pathways in combination with systematic heterologous expression methodologies.
Collapse
Affiliation(s)
- Jia Jia Zhang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA.
| | - Xiaoyu Tang
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA.
| | - Bradley S Moore
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California at San Diego, La Jolla, California, USA. and Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
17
|
Weihmann R, Domröse A, Drepper T, Jaeger KE, Loeschcke A. Protocols for yTREX/Tn5-based gene cluster expression in Pseudomonas putida. Microb Biotechnol 2019; 13:250-262. [PMID: 31162833 PMCID: PMC6922528 DOI: 10.1111/1751-7915.13402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/25/2019] [Accepted: 03/08/2019] [Indexed: 11/30/2022] Open
Abstract
Bacterial gene clusters, which represent a genetic treasure trove for secondary metabolite pathways, often need to be activated in a heterologous host to access the valuable biosynthetic products. We provide here a detailed protocol for the application of the yTREX ‘gene cluster transplantation tool’: Via yeast recombinational cloning, a gene cluster of interest can be cloned in the yTREX vector, which enables the robust conjugational transfer of the gene cluster to bacteria like Pseudomonas putida, and their subsequent transposon Tn5‐based insertion into the host chromosome. Depending on the gene cluster architecture and chromosomal insertion site, the respective pathway genes can be transcribed effectively from a chromosomal promoter, thereby enabling the biosynthesis of a natural product. We describe workflows for the design of a gene cluster expression cassette, cloning of the cassette in the yTREX vector by yeast recombineering, and subsequent transfer and expression in P. putida. As an example for yTREX‐based transplantation of a natural product biosynthesis, we provide details on the cloning and activation of the phenazine‐1‐carboxylic acid biosynthetic genes from Pseudomonas aeruginosa in P. putidaKT2440 as well as the use of β‐galactosidase‐encoding lacZ as a reporter of production levels.
Collapse
Affiliation(s)
- Robin Weihmann
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Andreas Domröse
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich-Heine-University, Düsseldorf, Germany
| | - Thomas Drepper
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| | - Anita Loeschcke
- Institute of Molecular Enzyme Technology, Heinrich-Heine-University Düsseldorf, Forschungszentrum Jülich, Jülich, Germany
| |
Collapse
|
18
|
Song C, Luan J, Cui Q, Duan Q, Li Z, Gao Y, Li R, Li A, Shen Y, Li Y, Stewart AF, Zhang Y, Fu J, Wang H. Enhanced Heterologous Spinosad Production from a 79-kb Synthetic Multioperon Assembly. ACS Synth Biol 2019; 8:137-147. [PMID: 30590919 DOI: 10.1021/acssynbio.8b00402] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Refactoring biosynthetic pathways for enhanced secondary metabolite production is a central challenge for synthetic biology. Here we applied advanced DNA assembly methods and a uniform overexpression logic using constitutive promoters to achieve efficient heterologous production of the complex insecticidal macrolide spinosad. We constructed a 79-kb artificial gene cluster in which 23 biosynthetic genes were grouped into 7 operons, each with a strong constitutive promoter. Compared with the original gene cluster, the artificial gene cluster resulted in a 328-fold enhanced spinosad production in Streptomyces albus J1074. To achieve this goal, we applied the ExoCET DNA assembly method to build a plasmid from 13 GC-rich fragments with high efficiency in one step. Together with our previous direct cloning and recombineering tools, we present new synthetic biology options for refactoring large gene clusters for diverse applications.
Collapse
Affiliation(s)
- Chaoyi Song
- Shandong University−Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Binhai Road 72, 266237 Qingdao, People’s Republic of China
| | - Ji Luan
- Shandong University−Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Binhai Road 72, 266237 Qingdao, People’s Republic of China
| | - Qingwen Cui
- Shandong University−Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Binhai Road 72, 266237 Qingdao, People’s Republic of China
| | - Qiuyue Duan
- Shandong University−Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Binhai Road 72, 266237 Qingdao, People’s Republic of China
| | - Zhen Li
- Shandong University−Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Binhai Road 72, 266237 Qingdao, People’s Republic of China
| | - Yunsheng Gao
- Shandong University−Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Binhai Road 72, 266237 Qingdao, People’s Republic of China
| | - Ruijuan Li
- Shandong University−Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Binhai Road 72, 266237 Qingdao, People’s Republic of China
| | - Aiying Li
- Shandong University−Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Binhai Road 72, 266237 Qingdao, People’s Republic of China
| | - Yuemao Shen
- Shandong University−Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Binhai Road 72, 266237 Qingdao, People’s Republic of China
| | - Yuezhong Li
- Shandong University−Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Binhai Road 72, 266237 Qingdao, People’s Republic of China
| | - A. Francis Stewart
- Genomics, Biotechnology Center, Technische Universität Dresden, Tatzberg 47-51, Dresden 01307, Germany
- GenArc GmbH, BioInnovationsZentrum, Tatzberg 47, Dresden 01307, Germany
| | - Youming Zhang
- Shandong University−Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Binhai Road 72, 266237 Qingdao, People’s Republic of China
| | - Jun Fu
- Shandong University−Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Binhai Road 72, 266237 Qingdao, People’s Republic of China
| | - Hailong Wang
- Shandong University−Helmholtz Institute of Biotechnology, State Key Laboratory of Microbial Technology, School of Life Science, Shandong University, Binhai Road 72, 266237 Qingdao, People’s Republic of China
| |
Collapse
|
19
|
Heterologous expression-facilitated natural products' discovery in actinomycetes. J Ind Microbiol Biotechnol 2018; 46:415-431. [PMID: 30446891 DOI: 10.1007/s10295-018-2097-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 10/21/2018] [Indexed: 12/22/2022]
Abstract
Actinomycetes produce many of the drugs essential for human and animal health as well as crop protection. Genome sequencing projects launched over the past two decades reveal dozens of cryptic natural product biosynthetic gene clusters in each actinomycete genome that are not expressed under regular laboratory conditions. This so-called 'chemical dark matter' represents a potentially rich untapped resource for drug discovery in the genomic era. Through improved understanding of natural product biosynthetic logic coupled with the development of bioinformatic and genetic tools, we are increasingly able to access this 'dark matter' using a wide variety of strategies with downstream potential application in drug development. In this review, we discuss recent research progress in the field of cloning of natural product biosynthetic gene clusters and their heterologous expression in validating the potential of this methodology to drive next-generation drug discovery.
Collapse
|
20
|
Garcia-Ruiz E, HamediRad M, Zhao H. Pathway Design, Engineering, and Optimization. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 162:77-116. [PMID: 27629378 DOI: 10.1007/10_2016_12] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
The microbial metabolic versatility found in nature has inspired scientists to create microorganisms capable of producing value-added compounds. Many endeavors have been made to transfer and/or combine pathways, existing or even engineered enzymes with new function to tractable microorganisms to generate new metabolic routes for drug, biofuel, and specialty chemical production. However, the success of these pathways can be impeded by different complications from an inherent failure of the pathway to cell perturbations. Pursuing ways to overcome these shortcomings, a wide variety of strategies have been developed. This chapter will review the computational algorithms and experimental tools used to design efficient metabolic routes, and construct and optimize biochemical pathways to produce chemicals of high interest.
Collapse
Affiliation(s)
- Eva Garcia-Ruiz
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Mohammad HamediRad
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
- Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
21
|
Cao M, Seetharam AS, Severin AJ, Shao Z. Rapid Isolation of Centromeres from Scheffersomyces stipitis. ACS Synth Biol 2017; 6:2028-2034. [PMID: 28837318 DOI: 10.1021/acssynbio.7b00166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Centromeres (CENs) are the chromosomal regions promoting kinetochore formation for faithful chromosome segregation. In yeasts, CENs have been recognized as the essential elements for extra-chromosomal DNA stabilization. However, the epigeneticity of CENs makes their localization on individual chromosomes very challenging, especially in many not well-studied nonconventional yeast species. Previously, we applied a stepwise method to identify a 500-bp CEN5 from Scheffersomyces stipitis chromosome 5 and experimentally confirmed its critical role on improving plasmid stability. Here we report a library-based strategy that integrates in silico GC3 chromosome scanning and high-throughput functional screening, which enabled the isolation of all eight S. stipitis centromeres with a 16 000-fold reduction in sequence very efficiently. Further identification of a 125-bp CEN core sequence that appears multiple times on each chromosome but all in the unique signature GC3-valley indicates that CEN location might be accurately discerned by their local GC3 percentages in a subgroup of yeasts.
Collapse
Affiliation(s)
- Mingfeng Cao
- Department
of Chemical and Biological Engineering, ‡NSF Engineering Research Center for
Biorenewable Chemicals (CBiRC), §Genome Informatics Facility, Office of Biotechnology, ∥Interdepartmental
Microbiology Program, and ⊥The Ames Laboratory, 4140 Biorenewables Research
Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Arun Somwarpet Seetharam
- Department
of Chemical and Biological Engineering, ‡NSF Engineering Research Center for
Biorenewable Chemicals (CBiRC), §Genome Informatics Facility, Office of Biotechnology, ∥Interdepartmental
Microbiology Program, and ⊥The Ames Laboratory, 4140 Biorenewables Research
Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Andrew Josef Severin
- Department
of Chemical and Biological Engineering, ‡NSF Engineering Research Center for
Biorenewable Chemicals (CBiRC), §Genome Informatics Facility, Office of Biotechnology, ∥Interdepartmental
Microbiology Program, and ⊥The Ames Laboratory, 4140 Biorenewables Research
Laboratory, Iowa State University, Ames, Iowa 50011, United States
| | - Zengyi Shao
- Department
of Chemical and Biological Engineering, ‡NSF Engineering Research Center for
Biorenewable Chemicals (CBiRC), §Genome Informatics Facility, Office of Biotechnology, ∥Interdepartmental
Microbiology Program, and ⊥The Ames Laboratory, 4140 Biorenewables Research
Laboratory, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
22
|
Huang F, Spangler JR, Huang AY. In vivo cloning of up to 16 kb plasmids in E. coli is as simple as PCR. PLoS One 2017; 12:e0183974. [PMID: 28837659 PMCID: PMC5570364 DOI: 10.1371/journal.pone.0183974] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/15/2017] [Indexed: 02/04/2023] Open
Abstract
The precise assembly of defined DNA sequences into plasmids is an essential task in bioscience research. While a number of molecular cloning techniques have been developed, many methods require specialized expensive reagents or laborious experimental procedure. Not surprisingly, conventional cloning techniques based on restriction digestion and ligation are still commonly used in routine DNA cloning. Here, we describe a simple, fast, and economical cloning method based on RecA- and RecET-independent in vivo recombination of DNA fragments with overlapping ends using E. coli. All DNA fragments were prepared by a 2-consecutive PCR procedure with Q5 DNA polymerase and used directly for transformation resulting in 95% cloning accuracy and zero background from parental template plasmids. Quantitative relationships were established between cloning efficiency and three factors–the length of overlapping nucleotides, the number of DNA fragments, and the size of target plasmids–which can provide general guidance for selecting in vivo cloning parameters. The method may be used to accurately assemble up to 5 DNA fragments with 25 nt overlapping ends into relatively small plasmids, and 3 DNA fragments into plasmids up to 16 kb in size. The whole cloning procedure may be completed within 2 days by a researcher with little training in cloning. The combination of high accuracy and zero background eliminates the need for screening a large number of colonies. The method requires no enzymes other than Q5 DNA polymerase, has no sequence restriction, is highly reliable, and represents one of the simplest, fastest, and cheapest cloning techniques available. Our method is particularly suitable for common cloning tasks in the lab where the primary goal is to quickly generate a plasmid with a pre-defined sequence at low costs.
Collapse
Affiliation(s)
- Faqing Huang
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Joseph Rankin Spangler
- Department of Chemistry and Biochemistry, University of Southern Mississippi, Hattiesburg, Mississippi, United States of America
| | - Allen Yang Huang
- Oak Grove High School, Hattiesburg, Mississippi, United States of America
| |
Collapse
|
23
|
Cao M, Gao M, Lopez-Garcia CL, Wu Y, Seetharam AS, Severin AJ, Shao Z. Centromeric DNA Facilitates Nonconventional Yeast Genetic Engineering. ACS Synth Biol 2017; 6:1545-1553. [PMID: 28391682 DOI: 10.1021/acssynbio.7b00046] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Many nonconventional yeast species have highly desirable features that are not possessed by model yeasts, despite that significant technology hurdles to effectively manipulate them lay in front. Scheffersomyces stipitis is one of the most important exemplary nonconventional yeasts in biorenewables industry, which has a high native xylose utilization capacity. Recent study suggested its much better potential than Saccharomyces cerevisiae as a well-suited microbial biomanufacturing platform for producing high-value compounds derived from shikimate pathway, many of which are associated with potent nutraceutical or pharmaceutical properties. However, the broad application of S. stipitis is hampered by the lack of stable episomal expression platforms and precise genome-editing tools. Here we report the success in pinpointing the centromeric DNA as the partitioning element to guarantee stable extra-chromosomal DNA segregation. The identified centromeric sequence not only stabilized episomal plasmid, enabled homogeneous gene expression, increased the titer of a commercially relevant compound by 3-fold, and also dramatically increased gene knockout efficiency from <1% to more than 80% with the expression of CRISPR components on the new stable plasmid. This study elucidated that establishment of a stable minichromosome-like expression platform is key to achieving functional modifications of nonconventional yeast species in order to expand the current collection of microbial factories.
Collapse
Affiliation(s)
- Mingfeng Cao
- Department
of Chemical and Biological Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Genome Informatics Facility, Office of Biotechnology, ∥Interdepartmental
Microbiology Program, and ⊥The Ames Laboratory, Iowa State University, 4140 Biorenewables Research Laboratory, Ames, Iowa 50011, United States
| | - Meirong Gao
- Department
of Chemical and Biological Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Genome Informatics Facility, Office of Biotechnology, ∥Interdepartmental
Microbiology Program, and ⊥The Ames Laboratory, Iowa State University, 4140 Biorenewables Research Laboratory, Ames, Iowa 50011, United States
| | - Carmen Lorena Lopez-Garcia
- Department
of Chemical and Biological Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Genome Informatics Facility, Office of Biotechnology, ∥Interdepartmental
Microbiology Program, and ⊥The Ames Laboratory, Iowa State University, 4140 Biorenewables Research Laboratory, Ames, Iowa 50011, United States
| | - Yutong Wu
- Department
of Chemical and Biological Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Genome Informatics Facility, Office of Biotechnology, ∥Interdepartmental
Microbiology Program, and ⊥The Ames Laboratory, Iowa State University, 4140 Biorenewables Research Laboratory, Ames, Iowa 50011, United States
| | - Arun Somwarpet Seetharam
- Department
of Chemical and Biological Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Genome Informatics Facility, Office of Biotechnology, ∥Interdepartmental
Microbiology Program, and ⊥The Ames Laboratory, Iowa State University, 4140 Biorenewables Research Laboratory, Ames, Iowa 50011, United States
| | - Andrew Josef Severin
- Department
of Chemical and Biological Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Genome Informatics Facility, Office of Biotechnology, ∥Interdepartmental
Microbiology Program, and ⊥The Ames Laboratory, Iowa State University, 4140 Biorenewables Research Laboratory, Ames, Iowa 50011, United States
| | - Zengyi Shao
- Department
of Chemical and Biological Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Genome Informatics Facility, Office of Biotechnology, ∥Interdepartmental
Microbiology Program, and ⊥The Ames Laboratory, Iowa State University, 4140 Biorenewables Research Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
24
|
Suástegui M, Yu Ng C, Chowdhury A, Sun W, Cao M, House E, Maranas CD, Shao Z. Multilevel engineering of the upstream module of aromatic amino acid biosynthesis in Saccharomyces cerevisiae for high production of polymer and drug precursors. Metab Eng 2017. [DOI: 10.1016/j.ymben.2017.06.008] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
25
|
Gao M, Cao M, Suástegui M, Walker J, Rodriguez Quiroz N, Wu Y, Tribby D, Okerlund A, Stanley L, Shanks JV, Shao Z. Innovating a Nonconventional Yeast Platform for Producing Shikimate as the Building Block of High-Value Aromatics. ACS Synth Biol 2017; 6:29-38. [PMID: 27600996 DOI: 10.1021/acssynbio.6b00132] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The shikimate pathway serves an essential role in many organisms. Not only are the three aromatic amino acids synthesized through this pathway, but many secondary metabolites also derive from it. Decades of effort have been invested into engineering Saccharomyces cerevisiae to produce shikimate and its derivatives. In addition to the ability to express cytochrome P450, S. cerevisiae is generally recognized as safe for producing compounds with nutraceutical and pharmaceutical applications. However, the intrinsically complicated regulations involved in central metabolism and the low precursor availability in S. cerevisiae has limited production levels. Here we report the development of a new platform based on Scheffersomyces stipitis, whose superior xylose utilization efficiency makes it particularly suited to produce the shikimate group of compounds. Shikimate was produced at 3.11 g/L, representing the highest level among shikimate pathway products in yeasts. Our work represents a new exploration toward expanding the current collection of microbial factories.
Collapse
Affiliation(s)
- Meirong Gao
- Department of Chemical and Biological
Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Department of Chemistry, ∥Interdepartmental Microbiology
Program, Iowa State University, Ames, Iowa 50011, United States
| | - Mingfeng Cao
- Department of Chemical and Biological
Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Department of Chemistry, ∥Interdepartmental Microbiology
Program, Iowa State University, Ames, Iowa 50011, United States
| | - Miguel Suástegui
- Department of Chemical and Biological
Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Department of Chemistry, ∥Interdepartmental Microbiology
Program, Iowa State University, Ames, Iowa 50011, United States
| | - James Walker
- Department of Chemical and Biological
Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Department of Chemistry, ∥Interdepartmental Microbiology
Program, Iowa State University, Ames, Iowa 50011, United States
| | - Natalia Rodriguez Quiroz
- Department of Chemical and Biological
Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Department of Chemistry, ∥Interdepartmental Microbiology
Program, Iowa State University, Ames, Iowa 50011, United States
| | - Yutong Wu
- Department of Chemical and Biological
Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Department of Chemistry, ∥Interdepartmental Microbiology
Program, Iowa State University, Ames, Iowa 50011, United States
| | - Dana Tribby
- Department of Chemical and Biological
Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Department of Chemistry, ∥Interdepartmental Microbiology
Program, Iowa State University, Ames, Iowa 50011, United States
| | - Adam Okerlund
- Department of Chemical and Biological
Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Department of Chemistry, ∥Interdepartmental Microbiology
Program, Iowa State University, Ames, Iowa 50011, United States
| | - Levi Stanley
- Department of Chemical and Biological
Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Department of Chemistry, ∥Interdepartmental Microbiology
Program, Iowa State University, Ames, Iowa 50011, United States
| | - Jacqueline V. Shanks
- Department of Chemical and Biological
Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Department of Chemistry, ∥Interdepartmental Microbiology
Program, Iowa State University, Ames, Iowa 50011, United States
| | - Zengyi Shao
- Department of Chemical and Biological
Engineering, ‡NSF Engineering Research Center
for Biorenewable Chemicals (CBiRC), §Department of Chemistry, ∥Interdepartmental Microbiology
Program, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
26
|
References. Antibiotics (Basel) 2015. [DOI: 10.1128/9781555819316.refs] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
27
|
A strategy for seamless cloning of large DNA fragments from Streptomyces. Biotechniques 2015; 59:193-4, 196, 198-200. [PMID: 26458547 DOI: 10.2144/000114338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 07/06/2015] [Indexed: 11/23/2022] Open
Abstract
We report a novel method for the seamless cloning of large DNA fragments (SCLF) of up to 44 kb or larger from Streptomyces chromosomal DNA. SCLF is based on homologous recombination in Streptomyces and is easy to perform. The strategy of SCLF is to flank the target sequence in the chromosomal DNA with two identical restriction sites by the insertion of plasmids containing that site at either end of the fragment, which is then isolated by plasmid rescue through the self-ligation of restriction digested genomic DNA. The method involves three steps: (i) placing a certain restriction site (CRS) at the 3'-end of the target sequence by insertion through homologous recombination of a plasmid containing the CRS; (ii) inserting through homologous recombination at the 5'-end of the target sequence a linearized self-suicide vector with the identical CRS; (iii) digesting the genomic DNA with the certain restriction enzyme followed by self-ligation in order to plasmid rescue the target fragment. SCLF can be applied to other Actinomycetales, and further optimizations may reduce the amount of time required to perform this technique.
Collapse
|
28
|
Discovery of microbial natural products by activation of silent biosynthetic gene clusters. Nat Rev Microbiol 2015; 13:509-23. [PMID: 26119570 DOI: 10.1038/nrmicro3496] [Citation(s) in RCA: 615] [Impact Index Per Article: 68.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Microorganisms produce a wealth of structurally diverse specialized metabolites with a remarkable range of biological activities and a wide variety of applications in medicine and agriculture, such as the treatment of infectious diseases and cancer, and the prevention of crop damage. Genomics has revealed that many microorganisms have far greater potential to produce specialized metabolites than was thought from classic bioactivity screens; however, realizing this potential has been hampered by the fact that many specialized metabolite biosynthetic gene clusters (BGCs) are not expressed in laboratory cultures. In this Review, we discuss the strategies that have been developed in bacteria and fungi to identify and induce the expression of such silent BGCs, and we briefly summarize methods for the isolation and structural characterization of their metabolic products.
Collapse
|