1
|
Schuchman RM, Vancini R, Piper A, Breuer D, Ribeiro M, Ferreira D, Magliocca J, Emmerich V, Hernandez R, Brown DT. Role of the vacuolar ATPase in the Alphavirus replication cycle. Heliyon 2018; 4:e00701. [PMID: 30094371 PMCID: PMC6074608 DOI: 10.1016/j.heliyon.2018.e00701] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/07/2018] [Accepted: 07/18/2018] [Indexed: 02/06/2023] Open
Abstract
We have shown that Alphaviruses can enter cells by direct penetration at the plasma membrane (R. Vancini, G. Wang, D. Ferreira, R. Hernandez, and D. Brown, J Virol, 87:4352–4359, 2013). Direct penetration removes the requirement for receptor-mediated endocytosis exposure to low pH and membrane fusion in the process of RNA entry. Endosomal pH as well as the pH of the cell cytoplasm is maintained by the activity of the vacuolar ATPase (V-ATPase). Bafilomycin is a specific inhibitor of V-ATPase. To characterize the roll of the V-ATPase in viral replication we generated a Bafilomycin A1(BAF) resistant mutant of Sindbis virus (BRSV). BRSV produced mature virus and virus RNA in greater amounts than parent virus in BAF-treated cells. Sequence analysis revealed mutations in the E2 glycoprotein, T15I/Y18H, were responsible for the phenotype. These results show that a functional V-ATPase is required for efficient virus RNA synthesis and virus maturation in Alphavirus infection.
Collapse
Affiliation(s)
- Ryan M Schuchman
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Ricardo Vancini
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Amanda Piper
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Denitra Breuer
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Mariana Ribeiro
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Davis Ferreira
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA.,Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Joseph Magliocca
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Veronica Emmerich
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Raquel Hernandez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| | - Dennis T Brown
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
2
|
Vancini R, Wang G, Ferreira D, Hernandez R, Brown DT. Alphavirus genome delivery occurs directly at the plasma membrane in a time- and temperature-dependent process. J Virol 2013; 87:4352-9. [PMID: 23388718 PMCID: PMC3624389 DOI: 10.1128/jvi.03412-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Accepted: 01/19/2013] [Indexed: 12/14/2022] Open
Abstract
It is widely held that arboviruses such as the alphavirus Sindbis virus gain entry into cells by a process of receptor-mediated endocytosis followed by membrane fusion in the acid environment of the endosome. We have used an approach of direct observation of Sindbis virus entry into cells by electron microscopy and immunolabeling of virus proteins with antibodies conjugated to gold beads. We found that upon attaching to the cell surface, intact RNA-containing viruses became empty shells that could be identified only by antibody labeling. We found that the rate at which full particles were converted to empty particles increased with time and temperature. We found that this entry event takes place at temperatures that inhibit both endosome formation and membrane fusion. We conclude that entry of alphaviruses is by direct penetration of cell plasma membranes through a pore structure formed by virus and, possibly, host proteins.
Collapse
Affiliation(s)
- Ricardo Vancini
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Gongbo Wang
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Davis Ferreira
- Instituto de Microbiologia and Instituto Nacional de Ciência e Tecnologia em Biologia Estrutural e Bioimagem (INCTBEB), Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Raquel Hernandez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| | - Dennis T. Brown
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina, USA
| |
Collapse
|
3
|
Ritchie M, Tchistiakova L, Scott N. Implications of receptor-mediated endocytosis and intracellular trafficking dynamics in the development of antibody drug conjugates. MAbs 2012; 5:13-21. [PMID: 23221464 PMCID: PMC3564878 DOI: 10.4161/mabs.22854] [Citation(s) in RCA: 204] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The use of antibody-drug conjugates (ADCs) as a therapeutic platform to treat cancer has recently gained substantial momentum. This therapeutic modality has the potential to increase the efficacy and reduce the systemic toxicity associated with current therapeutic regimens. The efficacy of ADCs, however, relies on the proper exploitation of intracellular sorting dynamics of the antigen as well as the specificity, selectivity and pharmacokinetic properties of the antibody itself. Our understanding of endocytosis and endosomal trafficking of receptors has appreciably increased in recent years, as improvements in the assays used to study these events have resolved many of the molecular mechanisms regulating these processes. As a result, we now have the knowledge necessary to exploit these pathways efficiently to improve the efficacy of antibody-based therapy. This review discusses some recent studies that have explored how endo/lysosomal dynamics can affect the efficacy of engineered therapeutic antibodies, including ADCs.
Collapse
Affiliation(s)
- Michael Ritchie
- Global Biotherapeutic Technologies, Pfizer Global Research and Development, Cambridge, MA, USA
| | | | | |
Collapse
|
4
|
Hunt SR, Hernandez R, Brown DT. Role of the vacuolar-ATPase in Sindbis virus infection. J Virol 2011; 85:1257-66. [PMID: 21084471 PMCID: PMC3020509 DOI: 10.1128/jvi.01864-10] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2010] [Accepted: 11/03/2010] [Indexed: 11/20/2022] Open
Abstract
Bafilomycin A(1) is a specific inhibitor of the vacuolar-ATPase (V-ATPase), which is responsible for pH homeostasis of the cell and for the acidification of endosomes. Bafilomycin A(1) has been commonly used as a method of inhibition of infection by viruses known or suspected to follow the path of receptor-mediated endocytosis and low-pH-mediated membrane fusion. The exact method of entry for Sindbis virus, the prototype alphavirus, remains undetermined. To further investigate the role of the V-ATPase in Sindbis virus infection, the effects of bafilomycin A(1) on the infection of BHK and insect cells by Sindbis virus were studied. Bafilomycin A(1) was found to block the expression of a virus-encoded reporter gene in both infection and transfection of BHK cells. The inhibitory effects of bafilomycin A(1) were found to be reversible. The results suggest that in BHK cells in the presence of bafilomycin A(1), virus RNA enters the cell and is translated, but replication and proper folding of the product proteins requires the function of the V-ATPase. Bafilomycin A(1) had no significant effect on the outcome of infection in insect cells.
Collapse
Affiliation(s)
- Sabrina R. Hunt
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Raquel Hernandez
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695
| | - Dennis T. Brown
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, North Carolina 27695
| |
Collapse
|
5
|
Host cell factors and functions involved in vesicular stomatitis virus entry. J Virol 2008; 83:440-53. [PMID: 18971266 DOI: 10.1128/jvi.01864-08] [Citation(s) in RCA: 155] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Vesicular stomatitis virus (VSV) is an animal virus that based on electron microscopy and its dependence on acidic cellular compartments for infection is thought to enter its host cells in a clathrin-dependent manner. The exact cellular mechanism, however, is largely unknown. In this study, we characterized the entry kinetics of VSV and elucidated viral requirements for host cell factors during infection in HeLa cells. We found that endocytosis of VSV was a fast process with a half time of 2.5 to 3 min and that acid activation occurred within 1 to 2 min after internalization in early endosomes. The majority of viral particles were endocytosed in a clathrin-based, dynamin-2-dependent manner. Although associated with some of the surface-bound viruses, the classical adaptor protein complex AP-2 was not required for infection. Time-lapse microscopy revealed that the virus either entered preformed clathrin-coated pits or induced de novo formation of pits. Dynamin-2 was recruited to plasma membrane-confined virus particles. Thus, VSV can induce productive internalization by exploiting a specific combination of the clathrin-associated proteins and cellular functions.
Collapse
|
6
|
Vonderheit A, Helenius A. Rab7 associates with early endosomes to mediate sorting and transport of Semliki forest virus to late endosomes. PLoS Biol 2005; 3:e233. [PMID: 15954801 PMCID: PMC1151600 DOI: 10.1371/journal.pbio.0030233] [Citation(s) in RCA: 337] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2004] [Accepted: 04/29/2005] [Indexed: 12/18/2022] Open
Abstract
Semliki forest virus (SFV) is internalized by clathrin-mediated endocytosis, and transported via early endosomes to late endosomes and lysosomes. The intracellular pathway taken by individual fluorescently labeled SFV particles was followed using immunofluorescence in untransfected cells, and by video-enhanced, triple-color fluorescence microscopy in live cells transfected with GFP- and RFP-tagged Rab5, Rab7, Rab4, and Arf1. The viruses progressed from Rab5-positive early endosomes to a population of early endosomes (about 10% of total) that contained both Rab5 and Rab7. SFV were sequestered in the Rab7 domains, and they were sorted away from the early endosomes when these domains detached as separate transport carriers devoid of Rab5, Rab4, EEA1, Arf1, and transferrin. The process was independent of Arf1 and the acidic pH in early endosomes. Nocodazole treatment showed that the release of transport carriers was assisted by microtubules. Expression of constitutively inactive Rab7T22N resulted in accumulation of SFV in early endosomes. We concluded that Rab7 is recruited to early endosomes, where it forms distinct domains that mediate cargo sorting as well as the formation of late-endosome-targeted transport vesicles.
Collapse
Affiliation(s)
- Andreas Vonderheit
- 1Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Ari Helenius
- 1Institute of Biochemistry, Swiss Federal Institute of Technology, Zurich, Switzerland
| |
Collapse
|
7
|
Schlehuber LD, Rose JK. Prediction and identification of a permissive epitope insertion site in the vesicular stomatitis virus glycoprotein. J Virol 2004; 78:5079-87. [PMID: 15113889 PMCID: PMC400361 DOI: 10.1128/jvi.78.10.5079-5087.2004] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2003] [Accepted: 12/29/2003] [Indexed: 11/20/2022] Open
Abstract
We developed a rational approach to identify a site in the vesicular stomatitis virus (VSV) glycoprotein (G) that is exposed on the protein surface and tolerant of foreign epitope insertion. The foreign epitope inserted was the six-amino-acid sequence ELDKWA, a sequence in a neutralizing epitope from human immunodeficiency virus type 1. This sequence was inserted into six sites within the VSV G protein (Indiana serotype). Four sites were selected based on hydrophilicity and high sequence variability identified by sequence comparison with other vesiculovirus G proteins. The site showing the highest variability was fully tolerant of the foreign peptide insertion. G protein containing the insertion at this site folded correctly, was transported normally to the cell surface, had normal membrane fusion activity, and could reconstitute fully infectious VSV. The virus was neutralized by the human 2F5 monoclonal antibody that binds the ELDKWA epitope. Additional studies showed that this site in G protein tolerated insertion of at least 16 amino acids while retaining full infectivity. The three other insertions in somewhat less variable sequences interfered with VSV G folding and transport to the cell surface. Two additional insertions were made in a conserved sequence adjacent to a glycosylation site and near the transmembrane domain. The former blocked G-protein transport, while the latter allowed transport to the cell surface but blocked membrane fusion activity of G protein. Identification of an insertion-tolerant site in VSV G could be important in future vaccine and targeting studies, and the general principle might also be useful in other systems.
Collapse
Affiliation(s)
- Lisa D Schlehuber
- Section of Microbial Pathogenesis, Yale University School of Medicine, 310 Cedar Street, New Haven, CT 06510, USA
| | | |
Collapse
|
8
|
Law LMJ, Everitt JC, Beatch MD, Holmes CFB, Hobman TC. Phosphorylation of rubella virus capsid regulates its RNA binding activity and virus replication. J Virol 2003; 77:1764-71. [PMID: 12525610 PMCID: PMC140988 DOI: 10.1128/jvi.77.3.1764-1771.2003] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Rubella virus is an enveloped positive-strand RNA virus of the family TOGAVIRIDAE: Virions are composed of three structural proteins: a capsid and two membrane-spanning glycoproteins, E2 and E1. During virus assembly, the capsid interacts with genomic RNA to form nucleocapsids. In the present study, we have investigated the role of capsid phosphorylation in virus replication. We have identified a single serine residue within the RNA binding region that is required for normal phosphorylation of this protein. The importance of capsid phosphorylation in virus replication was demonstrated by the fact that recombinant viruses encoding hypophosphorylated capsids replicated at much lower titers and were less cytopathic than wild-type virus. Nonphosphorylated mutant capsid proteins exhibited higher affinities for viral RNA than wild-type phosphorylated capsids. Capsid protein isolated from wild-type strain virions bound viral RNA more efficiently than cell-associated capsid. However, the RNA-binding activity of cell-associated capsids increased dramatically after treatment with phosphatase, suggesting that the capsid is dephosphorylated during virus assembly. In vitro assays indicate that the capsid may be a substrate for protein phosphatase 1A. As capsid is heavily phosphorylated under conditions where virus assembly does not occur, we propose that phosphorylation serves to negatively regulate binding of viral genomic RNA. This may delay the initiation of nucleocapsid assembly until sufficient amounts of virus glycoproteins accumulate at the budding site and/or prevent nonspecific binding to cellular RNA when levels of genomic RNA are low. It follows that at a late stage in replication, the capsid may undergo dephosphorylation before nucleocapsid assembly occurs.
Collapse
Affiliation(s)
- Lok Man J Law
- Departments of Cell Biology. Biochemistry. Signal Transduction Research Group, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | | | | | | | |
Collapse
|
9
|
Diaz-Griffero F, Hoschander SA, Brojatsch J. Endocytosis is a critical step in entry of subgroup B avian leukosis viruses. J Virol 2002; 76:12866-76. [PMID: 12438612 PMCID: PMC136682 DOI: 10.1128/jvi.76.24.12866-12876.2002] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The avian leukosis virus (ALV) entry mechanism is controversial, with evidence for and against a low-pH requirement for viral fusion. To further address this question, we tested the entry of human immunodeficiency virus type 1 (HIV-1) pseudotyped with the envelope protein of subgroup B ALV (ALV-B) in the presence of three different lysosomotropic agents. These lysosomotropic agents were able to block the entry of wild-type and pseudotyped ALV-B in two different cell lines, strongly suggesting that ALV-B requires a low-pH step for entry. ALV-B and pH-dependent Semliki Forest virus (SFV) entered cells with slower uptake kinetics than HIV-1, which is pH independent. These slow uptake rates support the theory that ALV-B utilizes endocytic pathways to enter cells. Using immunofluorescence and electron microscopy analysis, we visualized the colocalization of virus particles with the endosomal marker transferrin and demonstrated virus particles in clathrin-coated vesicles and endosome-like structures. Surprisingly, a low-pH treatment did not overcome the inhibition of ALV-B entry by lysosomotropic agents. This indicates that, in contrast to SFV, ALV-B is unable to fuse at the cellular surface, even at a low pH. Taken together, our findings suggest that endocytosis and a subsequent low-pH step are critical for successful ALV-B infection.
Collapse
Affiliation(s)
- Felipe Diaz-Griffero
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | |
Collapse
|
10
|
Okumura H, Arashima M, Ohuchi J, Kasai Y, Tsukumo K, Kakishima H, Kotani M, Kojima H, Kurishita A, Hayashi M, Miyajima A, Sunouchi M, Ohno Y. Interlaboratory validation of the in vitro eye irritation tests for cosmetic ingredients. (10) Evaluation of cytotoxicity test on CHL cells. Toxicol In Vitro 1999; 13:199-208. [DOI: 10.1016/s0887-2333(98)00074-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/1998] [Indexed: 11/29/2022]
|
11
|
Wickham TJ, Granados RR, Wood HA, Hammer DA, Shuler ML. General analysis of receptor-mediated viral attachment to cell surfaces. Biophys J 1990; 58:1501-16. [PMID: 2177356 PMCID: PMC1281102 DOI: 10.1016/s0006-3495(90)82495-4] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Viruses are multivalent particles that attach to cells through one or more bonds between viral attachment proteins (VAP) and specific cellular receptors. Three modes of virus binding are presented that can explain the diversity in binding data observed among viruses. They are based on multivalency of attachment and spatial versus receptor saturation effects which are easily distinguished based upon simple criteria. Mode 1 involves only monovalent virus/receptor binding. Modes 2 and 3 involve multivalent bonds between the virus and cell; however, in mode 3 space on the cell surface becomes saturated before receptors. A model is developed for viral attachment that accounts for nonspecific binding, receptor/virus interactions, and spatial saturation effects. The model can describe each mode in different limits and can be applied to virus binding data to extract key physical information such as receptor number and affinity. These values are used to postulate the type of VAP/receptor interaction involved and to predict binding at different parameter values. For the mode 2 binding of Adenovirus 2, the model predicts a receptor number of 4-15 x 10(3) on HeLa cells and an affinity of 2-6 x 10(7) M-1 which closely approximate experimental estimates. For the binding of three, broad-host-range, enveloped viruses, Semliki Forest virus, Vesicular Stomatitis virus, and the baculovirus, Autographa californica nuclear polyhedrosis virus, the model predicts receptor numbers of 10(5) or greater and affinities in the range of 10(4) to 10(5) M-1. These values are indicative of a VAP/oligosaccharide interaction which has been documented for a number of other viruses. Experimental evidence is presented that is the first to demonstrate that baculovirus binding is mediated by a cell surface receptor.
Collapse
Affiliation(s)
- T J Wickham
- School of Chemical Engineering, Cornell University, Ithaca, New York 14853
| | | | | | | | | |
Collapse
|
12
|
Abstract
We previously showed that liposomes composed of dioleoylphosphatidyl-ethanolamine and palmitoyl-homocysteine (8:2) are highly fusion competent when exposed to an acidic environment of pH less than 6.5. (Connor, J., M. B. Yatvin, and L. Huang, 1984, Proc. Natl. Acad. Sci. USA. 81:1715-1718). Palmitoyl anti-H2Kk was incorporated into these pH-sensitive liposomes by a modified reserve-phase evaporation method. Mouse L929 cells (k haplotype) treated with immunoliposomes composed of dioleoylphosphatidylethanolamine/palmitoyl-homocysteine (8:2) with an entrapped fluorescent dye, calcein, showed diffused fluorescence throughout the cytoplasm. Measurements by use of a microscope-associated photometer gave an approximate value of 50 microM for the cytoplasmic calcein concentration. This concentration represents an efficient delivery of the aqueous content of the immunoliposome. Cells treated with immunoliposomes composed of dioleoylphosphatidylcholine (pH-insensitive liposomes) showed only punctate fluorescence. The cytoplasmic delivery of calcein by the pH-sensitive immunoliposomes could be inhibited by chloroquine or by incubation at 20 degrees C. These results suggest that the efficient cytoplasmic delivery involves the endocytic pathway, particularly the acidic organelles such as the endosomes and/or lysosomes. One possibility is that the immunoliposomes fuse with the endosome membranes from within the endosomes, thus releasing the contents into the cytoplasm. This nontoxic method should be widely applicable to the intracellular delivery of biomolecules into living cells.
Collapse
|
13
|
Monoclonal antibodies detect different forms of influenza virus hemagglutinin during viral penetration and biosynthesis. J Virol 1985; 55:307-13. [PMID: 2410628 PMCID: PMC254934 DOI: 10.1128/jvi.55.2.307-313.1985] [Citation(s) in RCA: 32] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Monoclonal antibodies specific for the influenza virus A/PR/8/34 hemagglutinin (HA) were used to examine the structure of the HA glycoprotein by immunofluorescence techniques during infection of MDCK cells. One antibody (Y8-10C2), shown previously to detect conformational alterations in the HA coinciding with the acid induction of viral fusion activity, bound to internalized virus but not to virus adsorbed to the cell surface. The binding of Y8-10C2 was completely inhibited by ammonium chloride treatment of the cells. These findings are consistent with the idea that Y8-10C2 detects conformational changes in the HA which accompany the acid-induced fusion of viral and endosomal membranes. The same antibody also bound to newly synthesized HA but not to later forms of cytoplasmic HA or to HA incorporated into the cell membrane during virus maturation. A possible common denominator of the antigenic changes detected by antibody Y8-10C2 during virus entry and replication may be alterations in the structural relationship among the three HA monomers which form the mature HA molecule.
Collapse
|
14
|
Gonzalez-Scarano F, Janssen RS, Najjar JA, Pobjecky N, Nathanson N. An avirulent G1 glycoprotein variant of La Crosse bunyavirus with defective fusion function. J Virol 1985; 54:757-63. [PMID: 3889368 PMCID: PMC254862 DOI: 10.1128/jvi.54.3.757-763.1985] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
La Crosse virus, a member of the California serogroup of the family Bunyaviridae, causes encephalitis in humans and laboratory rodents. A variant virus (V22) selected with a monoclonal antibody against the large (G1) glycoprotein showed diminished neuroinvasiveness after peripheral inoculation. This variant has an alteration in its fusion function, requiring a lower pH for the activation of fusion and demonstrating reduced efficiency of cell-to-cell fusion of BHK-21 cultures. V22 was studied in detail following the infection by intraperitoneal or intracerebral routes in suckling, weanling, or adult CD-1 mice. It exhibited a marked reduction in its ability to replicate in striated muscle and to produce viremia; however, after intracerebral injection V22 virus replicated almost as rapidly in brain as its parent, La Crosse virus. V22 virus thus represents an example of reduced neuroinvasiveness associated with an alteration at a specific epitope of the G1 glycoprotein. This same epitope also influences the fusion activity of the glycoprotein.
Collapse
|
15
|
Abstract
Ammonium chloride at a concentration of 20 mM delayed by 4-5 hr the production of virus progeny in mouse L-2 cells infected at high multiplicity with mouse hepatitis virus (MHV). This delay was seen in the production of both intracellular and extracellular virus. However, the final titers were similar to those produced by MHV-infected cells maintained in normal medium. The manifestation of virus-induced cell fusion was similarly found to be delayed, but not otherwise decreased in severity, when ammonium chloride was present in the culture medium. Ammonium chloride caused similar delays in production of virus-specific, positive-sense RNAs and of viral polypeptides. The relative proportions and apparent molecular weights of viral RNAs and polypeptides were similar to those found in MHV-infected cells cultured in normal medium. In vitro translation of endogenously produced viral RNAs in cell extracts, prepared from MHV-infected cells, was not inhibited by ammonium chloride. Thus, ammonium chloride has no specific, inhibitory effect on viral protein synthesis. Ammonium chloride did not reduce the number of virus-infected cells in culture, as monitored by infectious center assay. Analysis of early events in MHV infection showed that ammonium chloride did not affect adsorption or internalization of MHV by L-2 cells. However, the subsequent eclipse phase, as monitored by decline in infectivity of internalized virus inoculum proceeded less efficiently in the presence of ammonium chloride. On the basis of the known inhibitory effects of ammonium chloride on lysosomal/endosomal functions, the results suggest an endosomal mechanism of MHV uncoating. Thus the primary effect of ammonium chloride on MHV infection of L-2 cells is to attenuate virus uncoating, thereby chronologically displacing all subsequent virus-encoded functions.
Collapse
|
16
|
Gonnella PA, Neutra MR. Membrane-bound and fluid-phase macromolecules enter separate prelysosomal compartments in absorptive cells of suckling rat ileum. J Cell Biol 1984; 99:909-17. [PMID: 6470044 PMCID: PMC2113398 DOI: 10.1083/jcb.99.3.909] [Citation(s) in RCA: 101] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The absorptive cell of the suckling rat ileum is specialized for the uptake and digestion of milk macromolecules from the intestinal lumen. The apical cytoplasm contains an extensive tubulocisternal system, a variety of vesicles and multivesicular bodies (MVB), and a giant phagolysosomal vacuole where digestion is completed. To determine if sorting of membrane-bound and fluid-phase macromolecules occurs in this elaborate endocytic system, we infused adsorptive and soluble tracers into ligated intestinal loops in vivo and examined their fates. Lysosomal compartments were identified by acid phosphatase histochemistry. Native ferritin and two ferritin-lectin conjugates that do not bind to ileal membranes (Con A, UEAI) served as soluble tracers. Horseradish peroxidase binds to ileal membranes and thus was not useful as a fluid-phase tracer in this system. Cationized ferritin and a lectin that binds to terminal B-D-galactosyl sites on ileal membranes (Ricinus communis agglutinin [RCAI]-ferritin) were used as tracer ligands. All tracers entered the wide apical invaginations of the luminal cell surface and were transported intracellularly. Membrane-bound tracers were found in coated pits and vesicles, and throughout the tubulocisternal system (where cationized ferritin is released from the membrane) and later, in large clear vesicles and MVB. In contrast, fluid-phase tracers appeared within 5 min in vesicles of various sizes and were not transported through the tubulocisternae, rather, they were concentrated in a separate population of vesicles of increasing size that contained amorphous dense material. Large clear vesicles, large dense vesicles, and MVB eventually fused with the giant supranuclear vacuole. Acid phosphatase activity was present in MVB and in the giant vacuole but was not present in most large vesicles or in the tubulocisternae. These results demonstrate that membrane-bound and soluble protein are transported to a common lysosomal destination via separate intracellular routes involving several distinct prelysosomal compartments.
Collapse
|
17
|
Nemerow GR, Cooper NR. Infection of B lymphocytes by a human herpesvirus, Epstein-Barr virus, is blocked by calmodulin antagonists. Proc Natl Acad Sci U S A 1984; 81:4955-9. [PMID: 6087356 PMCID: PMC391611 DOI: 10.1073/pnas.81.15.4955] [Citation(s) in RCA: 31] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Epstein-Barr virus (EBV) is a human herpesvirus that selectively binds to and infects human B lymphocytes (B cells). In the studies presented here, we found that several phenothiazines, including trifluoperazine, chlorpromazine, prochlorpromazine, and promethazine, blocked EBV infectivity of isolated adult human B cells as measured either by outgrowth of transformed cell colonies or by [3H]thymidine incorporation. Trifluoperazine, chlorpromazine, and prochlorpromazine were equally effective with 20 microM fully inhibiting infectivity, whereas 100 microM promethazine was required for a comparable effect. Inhibition by trifluoperazine was partially reversible. Studies with radiolabeled EBV demonstrated that the inhibitors did not impair virus binding to B cells. Electron microscopic examination of B lymphocytes revealed that trifluoperazine reduced the number of large uncoated cell vacuoles and the number of membrane microvilli, indicating that this agent interfered with cell pinocytosis. This process was accompanied by inhibition of EBV endocytosis into B cells. Phenothiazines bind to and inhibit calmodulin, an intracellular calcium-binding protein that regulates several key enzymes, some of which directly affect cytoskeletal elements, although they also may interact nonspecifically with other cellular constituents. In this regard, haloperidol, a non-phenothiazine calmodulin antagonist, and R24571, a derivative of the antimycotic miconazole, which is a potent and highly specific calmodulin inhibitor, also blocked EBV infection. These studies suggest that calmodulin or a calmodulin-regulated cellular enzyme(s) is involved in normal cellular endocytic processes in B lymphocytes and thereby in the early stages of EBV infection.
Collapse
|
18
|
|
19
|
Dean RT, Jessup W, Roberts CR. Effects of exogenous amines on mammalian cells, with particular reference to membrane flow. Biochem J 1984; 217:27-40. [PMID: 6365083 PMCID: PMC1153178 DOI: 10.1042/bj2170027] [Citation(s) in RCA: 216] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have reviewed the evidence that amines accumulate in intracellular vesicles of low pH, such as lysosomes and endosomes. There is consequent elevation of intravesicular pH, and inhibition of receptor-ligand dissociation often results from this pH change. We have argued that the capacity for fusion of such vesicles is also reduced by the high pH. We suggest that the variety of effects of amines on membrane flow and macromolecular transport we describe are at least partly due to such reduced fusion (Figs. 1 and 2). We propose that an internal low pH may facilitate heterologous vesicle-vesicle and vesicle-plasma membrane fusion. There is some evidence that clathrin can accelerate phospholipid vesicle fusion in vitro at low pH (Blumenthal et al., 1983) but no direct evidence on the role of intravesicular pH. This idea is consistent not only with the preceding discussion, but also with the fact that the intracellular membrane-bound compartments least involved in fusion events (e.g. mitochondria) are of neutral or alkaline internal pH. Membrane fusion is certainly required for the formation of vesicles at the periphery of the Golgi apparatus, and possibly earlier in the transport and processing of biosynthetic products in the Golgi (Bergeron et al., 1982). Thus the accumulation of amines in the Golgi may be responsible for several effects on the flow of macromolecules along their translocation pathways. The status of the plasma membrane in this view is complex. It might be argued that the pH dictating the fusion step in endocytosis is that of the extracellular fluid, in which case the inhibitory effects of amines on this process are not explained. However, the rapidity of acidification of the newly formed endocytic vesicles allows the possibility that plasma membrane invaginations might temporarily sequester areas which are of lower pH than that of the bulk extracellular fluid even before fusion, since the proton pumping enzyme(s) are probably present on the plasma membrane. Were this the case, then an acid pH could again be a factor determining membrane fusion at the plasma membrane. The inhibition of endocytosis by weak bases thus may again reflect elevation of pH in a sequestered compartment. From the data on the dependence of response on the concentration of amines, we anticipate that most responses involving membrane flow will be biphasic, with inhibitory effects at low amine concentration, giving way to stimulatory ones at higher concentrations. We suggest that the reported dichotomy between different amines in intracellular membrane fusion systems (D'Arcy Hart, 1982) may result from this concentration dependence.(ABSTRACT TRUNCATED AT 400 WORDS)
Collapse
|
20
|
Willingham MC, Pastan I. Formation of receptosomes from plasma membrane coated pits during endocytosis: analysis by serial sections with improved membrane labeling and preservation techniques. Proc Natl Acad Sci U S A 1983; 80:5617-21. [PMID: 6136969 PMCID: PMC384309 DOI: 10.1073/pnas.80.18.5617] [Citation(s) in RCA: 48] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The early events in the entry of ligands into cultured fibroblasts through plasma membrane clathrin-coated pits were examined by using serial sections and electron microscopy. Swiss 3T3 cells were labeled at 4 degrees C with concanavalin A-horseradish peroxidase and warmed to 37 degrees C for 1 or 2 min to label organelles participating in endocytosis. Cells were fixed in glutaraldehyde and further preserved with a membrane contrast-enhancement technique that utilized sequential osmium/ferrocyanide, thiocarbohydrazide, and osmium/ferrocyanide treatment in situ. This technique provides exceptional preservation and enhanced contrast of membranous structures. Serial sections taken both parallel to and perpendicular to the substratum were examined by electron microscopy, and 263 clathrin-coated structures containing horseradish peroxidase were evaluated for their connection to the plasma membrane. All of these coated structures were found to be connected to the plasma membrane either directly or via necks approximately equal to 170 A in width and up to 7,000 A in length. These necks were often surrounded by a dense filamentous network. These results strongly suggest that isolated coated vesicles do not form during the endocytosis process in Swiss 3T3 cells.
Collapse
|
21
|
Hopkins CR, Trowbridge IS. Internalization and processing of transferrin and the transferrin receptor in human carcinoma A431 cells. J Cell Biol 1983; 97:508-21. [PMID: 6309862 PMCID: PMC2112524 DOI: 10.1083/jcb.97.2.508] [Citation(s) in RCA: 509] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The binding and subsequent intracellular processing of transferrin and transferrin receptors was studied in A431 cells using 125I-transferrin and a monoclonal antibody to the receptor (ATR) labeled with 125I and gold colloid. Using 125I-transferrin we have shown that, whereas at 37 degrees C uptake proceeded linearly for up to 60 min, most of the ligand that was bound was internalized and then rapidly returned to the incubation medium undegraded. At 37 degrees C, the intracellular half-life of the most rapidly recycled transferrin was 7.5 min. 125I-ATR displayed the same kinetics of uptake but following its internalization at 37 degrees C, it was partially degraded. At 22 degrees C and below, the intracellular degradation of 125I-ATR was selectively inhibited and as a result it accumulated intracellularly. Electron microscopy of conventional thin sections and of whole-cell mounts was used to follow the uptake and processing of transferrin receptors labeled with ATR-gold colloid complexes. Using a pulse-chase protocol, the intracellular pathway followed by internalized ATR gold-receptor complexes was outlined in detail. Within 5 min at 22 degrees C the internalized complexes were transferred from coated pits on the cell surface to a system of narrow, branching cisternae within the peripheral cytoplasm. By 15 min they reached larger, more dilated elements that, in thin section, appeared as irregular profiles containing small (30-50-nm diam) vesicles. By 30 min, the gold complexes were located predominantly within typical spherical multivesicular bodies lying in the peripheral cytoplasm, and by 40-60 min, they reached a system of cisternal and multivesicular body elements in the juxtanuclear area. At 22 degrees C, no other compartments became labeled but if they were warmed to 37 degrees C the gold complexes were transferred to lysosome-like elements. Extracting ATR-gold complexes with Triton X after a 30-min chase at 22 degrees C and purifying them on Sepharose-transferrin indicated that the internalized complexes remained bound to the transferrin receptor during their intracellular processing.
Collapse
|