1
|
El-Rami FE, Zielke RA, Wi T, Sikora AE, Unemo M. Quantitative Proteomics of the 2016 WHO Neisseria gonorrhoeae Reference Strains Surveys Vaccine Candidates and Antimicrobial Resistance Determinants. Mol Cell Proteomics 2019; 18:127-150. [PMID: 30352803 PMCID: PMC6317477 DOI: 10.1074/mcp.ra118.001125] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 10/23/2018] [Indexed: 12/27/2022] Open
Abstract
The sexually transmitted disease gonorrhea (causative agent: Neisseria gonorrhoeae) remains an urgent public health threat globally because of its reproductive health repercussions, high incidence, widespread antimicrobial resistance (AMR), and absence of a vaccine. To mine gonorrhea antigens and enhance our understanding of gonococcal AMR at the proteome level, we performed the first large-scale proteomic profiling of a diverse panel (n = 15) of gonococcal strains, including the 2016 World Health Organization (WHO) reference strains. These strains show all existing AMR profiles - established through phenotypic characterization and reference genome publication - and are intended for quality assurance in laboratory investigations. Herein, these isolates were subjected to subcellular fractionation and labeling with tandem mass tags coupled to mass spectrometry and multi-combinatorial bioinformatics. Our analyses detected 904 and 723 common proteins in cell envelope and cytoplasmic subproteomes, respectively. We identified nine novel gonorrhea vaccine candidates. Expression and conservation of new and previously selected antigens were investigated. In addition, established gonococcal AMR determinants were evaluated for the first time using quantitative proteomics. Six new proteins, WHO_F_00238, WHO_F_00635c, WHO_F_00745, WHO_F_01139, WHO_F_01144c, and WHO_F_01126, were differentially expressed in all strains, suggesting that they represent global proteomic AMR markers, indicate a predisposition toward developing or compensating gonococcal AMR, and/or act as new antimicrobial targets. Finally, phenotypic clustering based on the isolates' defined antibiograms and common differentially expressed proteins yielded seven matching clusters between established and proteome-derived AMR signatures. Together, our investigations provide a reference proteomics data bank for gonococcal vaccine and AMR research endeavors, which enables microbiological, clinical, or epidemiological projects and enhances the utility of the WHO reference strains.
Collapse
Affiliation(s)
- Fadi E El-Rami
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Ryszard A Zielke
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon
| | - Teodora Wi
- §Department of Reproductive Health and Research, World Health Organization, Geneva, Switzerland
| | - Aleksandra E Sikora
- From the ‡Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon;; ¶Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, Oregon;.
| | - Magnus Unemo
- ‖World Health Organization Collaborating Centre for Gonorrhoea and other Sexually Transmitted Infections, Department of Laboratory Medicine, Clinical Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden.
| |
Collapse
|
2
|
Baarda BI, Martinez FG, Sikora AE. Proteomics, Bioinformatics and Structure-Function Antigen Mining For Gonorrhea Vaccines. Front Immunol 2018; 9:2793. [PMID: 30564232 PMCID: PMC6288298 DOI: 10.3389/fimmu.2018.02793] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/13/2018] [Indexed: 12/12/2022] Open
Abstract
Expanding efforts to develop preventive gonorrhea vaccines is critical because of the serious health consequences combined with the prevalence and the dire possibility of untreatable gonorrhea. Reverse vaccinology, which includes genome and proteome mining, has proven successful in the discovery of vaccine candidates against many pathogenic bacteria. Here, we describe proteomic applications including comprehensive, quantitative proteomic platforms and immunoproteomics coupled with broad-ranging bioinformatics that have been applied for antigen mining to develop gonorrhea vaccine(s). We further focus on outlining the vaccine candidate decision tree, describe the structure-function of novel proteome-derived antigens as well as ways to gain insights into their roles in the cell envelope, and underscore new lessons learned about the fascinating biology of Neisseria gonorrhoeae.
Collapse
Affiliation(s)
- Benjamin I. Baarda
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Fabian G. Martinez
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
| | - Aleksandra E. Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, United States
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton, OR, United States
| |
Collapse
|
3
|
SliC is a surface-displayed lipoprotein that is required for the anti-lysozyme strategy during Neisseria gonorrhoeae infection. PLoS Pathog 2018; 14:e1007081. [PMID: 29975784 PMCID: PMC6033465 DOI: 10.1371/journal.ppat.1007081] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 05/08/2018] [Indexed: 12/16/2022] Open
Abstract
Lysozymes are nearly omnipresent as the first line of immune defense against microbes in animals. They exert bactericidal action through antimicrobial peptide activity and peptidoglycan hydrolysis. Gram-negative bacteria developed several weapons to battle lysozymes, including inhibitors of c-type lysozymes in the MliC/PliC family and the Neisseria adhesin complex protein (ACP). Until the recent discovery of ACP, no proteinaceous lysozyme inhibitors were reported for the genus Neisseria, including the important human pathogen N. gonorrhoeae. Here, we describe a previously unrecognized gonococcal virulence mechanism involving a protein encoded by the open reading frame ngo1063 that acts to counteract c-type Iysozyme and provides a competitive advantage in the murine model of gonorrhea. We named this protein SliC as a surface-exposed lysozyme inhibitor of c-type lysozyme. SliC displays low overall primary sequence similarity to the MliC/PliC inhibitors, but we demonstrate that it has a parallel inhibitory mechanism. Our studies provide the first evidence that bacterial proteinaceous lysozyme inhibitors protect against host lysozyme during infection based on lack of attenuation of the ΔsliC mutant in lysozyme knock-out mice, and that the conserved residues involved in lysozyme inhibition, S83 and K103, are functionally indispensable during infection in wild type mice. Recombinant SliC completely abrogated the lytic activity of human and chicken c-type lysozymes, showing a preference towards human lysozyme with an IC50 of 1.85 μM and calculated KD value of 9.2 ± 1.9 μM. In contrast, mutated SliC bearing S83A and K103A substitutions failed to protect fluorescein-labeled cell-wall from lysozyme-mediated hydrolysis. Further, we present data revealing that SliC is a surface-displayed lipoprotein released in membrane vesicles that is expressed throughout all phases of growth, in conditions relevant to different niches of the human host, and during experimental infection of the murine genital tract. SliC is also highly conserved and expressed by diverse gonococcal isolates as well as N. meningitidis, N. lactamica, and N. weaveri. This study is the first to highlight the importance of an anti-lysozyme strategy to escape the innate immune response during N. gonorrhoeae infection. Neisseria gonorrhoeae, the etiologic agent of gonorrhea, is a clinically important pathogen due to the emergence of multi-drug resistance and the lack of a vaccine(s). During host colonization, pathogenic and commensal Neisseria inevitably encounter lysozyme, a major host innate defense factor that is abundantly present in epithelial secretions and phagocytic cells. Although Neisseria spp produce a c-type lysozyme inhibitor, the Adhesin Complex Protein, the significance of lysozyme inhibition for host colonization has not been addressed. Here we demonstrate the existence of a new c-type lysozyme inhibitor in Neisseria. We show that it is a surface-displayed lipoprotein in N. gonorrhoeae and, through its lysozyme-blocking function, plays a critical role in colonization of genital tract mucosae during infection in the female gonorrhea mouse model. We named the protein SliC as a surface-exposed lysozyme inhibitor of c-type lysozyme. Understanding the mechanisms underlying anti-lysozyme strategies may facilitate antimicrobial development.
Collapse
|
4
|
Sikora AE, Wierzbicki IH, Zielke RA, Ryner RF, Korotkov KV, Buchanan SK, Noinaj N. Structural and functional insights into the role of BamD and BamE within the β-barrel assembly machinery in Neisseria gonorrhoeae. J Biol Chem 2018; 293:1106-1119. [PMID: 29229778 PMCID: PMC5787791 DOI: 10.1074/jbc.ra117.000437] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/18/2017] [Indexed: 12/22/2022] Open
Abstract
The β-barrel assembly machinery (BAM) is a conserved multicomponent protein complex responsible for the biogenesis of β-barrel outer membrane proteins (OMPs) in Gram-negative bacteria. Given its role in the production of OMPs for survival and pathogenesis, BAM represents an attractive target for the development of therapeutic interventions, including drugs and vaccines against multidrug-resistant bacteria such as Neisseria gonorrhoeae The first structure of BamA, the central component of BAM, was from N. gonorrhoeae, the etiological agent of the sexually transmitted disease gonorrhea. To aid in pharmaceutical targeting of BAM, we expanded our studies to BamD and BamE within BAM of this clinically relevant human pathogen. We found that the presence of BamD, but not BamE, is essential for gonococcal viability. However, BamE, but not BamD, was cell-surface-displayed under native conditions; however, in the absence of BamE, BamD indeed becomes surface-exposed. Loss of BamE altered cell envelope composition, leading to slower growth and an increase in both antibiotic susceptibility and formation of membrane vesicles containing greater amounts of vaccine antigens. Both BamD and BamE are expressed in diverse gonococcal isolates, under host-relevant conditions, and throughout different phases of growth. The solved structures of Neisseria BamD and BamE share overall folds with Escherichia coli proteins but contain differences that may be important for function. Together, these studies highlight that, although BAM is conserved across Gram-negative bacteria, structural and functional differences do exist across species, which may be leveraged in the development of species-specific therapeutics in the effort to combat multidrug resistance.
Collapse
Affiliation(s)
- Aleksandra E Sikora
- From the Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97330,
| | - Igor H Wierzbicki
- From the Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97330
| | - Ryszard A Zielke
- From the Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97330
| | - Rachael F Ryner
- From the Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97330
| | - Konstantin V Korotkov
- Department of Molecular and Cellular Biochemistry, College of Medicine, University of Kentucky, Lexington, Kentucky 40536
| | - Susan K Buchanan
- NIDDK, National Institutes of Health, Bethesda, Maryland 20892, and
| | - Nicholas Noinaj
- Markey Center for Structural Biology, Department of Biological Sciences and the Purdue Institute of Inflammation, Immunology and Infectious Disease, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
5
|
Dugovich BS, Peel MJ, Palmer AL, Zielke RA, Sikora AE, Beechler BR, Jolles AE, Epps CW, Dolan BP. Detection of bacterial-reactive natural IgM antibodies in desert bighorn sheep populations. PLoS One 2017; 12:e0180415. [PMID: 28662203 PMCID: PMC5491220 DOI: 10.1371/journal.pone.0180415] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Accepted: 05/29/2017] [Indexed: 12/25/2022] Open
Abstract
Ecoimmunology is a burgeoning field of ecology which studies immune responses in wildlife by utilizing general immune assays such as the detection of natural antibody. Unlike adaptive antibodies, natural antibodies are important in innate immune responses and often recognized conserved epitopes present in pathogens. Here, we describe a procedure for measuring natural antibodies reactive to bacterial antigens that may be applicable to a variety of organisms. IgM from desert bighorn sheep plasma samples was tested for reactivity to outer membrane proteins from Vibrio coralliilyticus, a marine bacterium to which sheep would have not been exposed. Immunoblotting demonstrated bighorn sheep IgM could bind to a variety of bacterial cell envelope proteins while ELISA analysis allowed for rapid determination of natural antibody levels in hundreds of individual animals. Natural antibody levels were correlated with the ability of plasma to kill laboratory strains of E. coli bacteria. Finally, we demonstrate that natural antibody levels varied in two distinct populations of desert bighorn sheep. These data demonstrate a novel and specific measure of natural antibody function and show that this varies in ecologically relevant ways.
Collapse
Affiliation(s)
- Brian S. Dugovich
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, United States of America
| | - Melanie J. Peel
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, United States of America
| | - Amy L. Palmer
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, United States of America
| | - Ryszard A. Zielke
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Aleksandra E. Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon, United States of America
| | - Brianna R. Beechler
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, United States of America
| | - Anna E. Jolles
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, United States of America
| | - Clinton W. Epps
- Department of Fisheries and Wildlife, College of Agricultural Sciences, Oregon State University, Corvallis, Oregon, United States of America
| | - Brian P. Dolan
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| |
Collapse
|
6
|
Baarda BI, Sikora AE. Proteomics of Neisseria gonorrhoeae: the treasure hunt for countermeasures against an old disease. Front Microbiol 2015; 6:1190. [PMID: 26579097 PMCID: PMC4620152 DOI: 10.3389/fmicb.2015.01190] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/12/2015] [Indexed: 01/26/2023] Open
Abstract
Neisseria gonorrhoeae is an exquisitely adapted, strictly human pathogen and the causative agent of the sexually transmitted infection gonorrhea. This ancient human disease remains a serious problem, occurring at high incidence globally and having a major impact on reproductive and neonatal health. N. gonorrhoeae is rapidly evolving into a superbug and no effective vaccine exists to prevent gonococcal infections. Untreated or inadequately treated gonorrhea can lead to severe sequelae, including pelvic inflammatory disease and infertility in women, epididymitis in men, and sight-threatening conjunctivitis in infants born to infected mothers. Therefore, there is an immediate need for accelerated research toward the identification of molecular targets for development of drugs with new mechanisms of action and preventive vaccine(s). Global proteomic approaches are ideally suited to guide these studies. Recent quantitative proteomics (SILAC, iTRAQ, and ICAT) have illuminated the pathways utilized by N. gonorrhoeae to adapt to different lifestyles and micro-ecological niches within the host, while comparative 2D SDS-PAGE analysis has been used to elucidate spectinomycin resistance mechanisms. Further, high-throughput examinations of cell envelopes and naturally released membrane vesicles have unveiled the ubiquitous and differentially expressed proteins between temporally and geographically diverse N. gonorrhoeae isolates. This review will focus on these different approaches, emphasizing the role of proteomics in the search for vaccine candidates. Although our knowledge of N. gonorrhoeae has been expanded, still far less is known about this bacterium than the closely related N. meningitidis, where genomics- and proteomics-driven studies have led to the successful development of vaccines.
Collapse
Affiliation(s)
| | - Aleksandra E. Sikora
- Department of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, OR, USA
| |
Collapse
|