1
|
Paula Goetting-Minesky M, Godovikova V, Saraithong P, Rickard AH, Crawley BR, Agolli SM, Fenno JC. Functional characterization and optimization of protein expression in Treponema denticola shuttle plasmids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.27.620309. [PMID: 39484406 PMCID: PMC11527128 DOI: 10.1101/2024.10.27.620309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Oral spirochetes are among a small group of keystone pathogens contributing to dysregulation of periodontal tissue homeostasis, leading to breakdown of the tissue and bone supporting the teeth in periodontal disease. Of the greater than sixty oral Treponema species and phylotypes, T. denticola is one of the few that can be grown in culture and the only one in which genetic manipulation has been shown to be practicable. T. denticola is thus a model organism for studying spirochete metabolic processes, interactions with other microbes and host cell and tissue responses relevant to oral diseases as well as venereal and nonvenereal treponematoses. We recently demonstrated enhanced transformation efficiency using a SyngenicDNA-based shuttle plasmid resistant to T. denticola restriction-modification systems. Here we expand on this work by further characterizing the shuttle plasmid and optimizing expression of cloned genes using several promoter-gene constructs for genetic complementation and exogenous gene expression, including the first inducible system for controlled expression of potentially toxic plasmid-encoded genes in Treponema . Our results highlight the importance of precise pairing of promoters and genes of interest to obtaining biologically optimal protein expression. This work expands the utility of the shuttle plasmid and will facilitate future studies employing shuttle plasmids in analysis of Treponema physiology and behavior. IMPORTANCE Rigorous genetic analysis in oral spirochetes has been hampered by the limited utility of available versions of the E. coli-T. denticola shuttle plasmid system. We report expanded characterization of the shuttle plasmid, including relative activity of diverse promoters and the first inducible expression system described for T. denticola. We show that careful customization of the shuttle plasmid for specific applications is crucial for obtaining successful results.
Collapse
|
2
|
Anselmi NK, Vanyo ST, Clark ND, Rodriguez DML, Jones MM, Rosenthal S, Patel D, Marconi RT, Visser MB. Topology and functional characterization of major outer membrane proteins of Treponema maltophilum and Treponema lecithinolyticum. Mol Oral Microbiol 2024. [PMID: 39263909 DOI: 10.1111/omi.12484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/13/2024]
Abstract
Numerous Treponema species are prevalent in the dysbiotic subgingival microbial community during periodontitis. The major outer sheath protein is a highly expressed virulence factor of the well-characterized species Treponema denticola. Msp forms an oligomeric membrane protein complex with adhesin and porin properties and contributes to host-microbial interaction. Treponema maltophilum and Treponema lecithinolyticum species are also prominent during periodontitis but are relatively understudied. Msp-like membrane surface proteins exist in T. maltophilum (MspA) and T. lecithinolyticum (MspTL), but limited information exists regarding their structural features or functionality. Protein profiling reveals numerous differences between these species, but minimal differences between strains of the same species. Using protein modeling tools, we predict MspA and MspTL monomeric forms to be large β-barrel structures composed of 20 all-next-neighbor antiparallel β strands which most likely adopt a homotrimer formation. Using cell fractionation, Triton X-114 phase partitioning, heat modifiability, and chemical and detergent release assays, we found evidence of amphiphilic integral membrane-associated oligomerization for both native MspA and MspTL in intact spirochetes. Proteinase K accessibility and immunofluorescence assays demonstrate surface exposure of MspA and MspTL. Functionally, purified recombinant MspA or MspTL monomer proteins can impair neutrophil chemotaxis. Expressions of MspA or MspTL with a PelB leader sequence in Escherichia coli also demonstrate surface exposure and can impair neutrophil chemotaxis in an in vivo air pouch model of inflammation. Collectively, our data demonstrate that MspA and MspTL membrane proteins can contribute to pathogenesis of these understudied oral spirochete species.
Collapse
Affiliation(s)
- Natalie K Anselmi
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Stephen T Vanyo
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Nicholas D Clark
- Department of Structural Biology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Dayron M Leyva Rodriguez
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Megan M Jones
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Sara Rosenthal
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, New York, USA
| | - Dhara Patel
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Richard T Marconi
- Department of Microbiology and Immunology, Virginia Commonwealth University Medical Center, Richmond, Virginia, USA
| | - Michelle B Visser
- Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, New York, USA
| |
Collapse
|
3
|
Johnston CD, Goetting-Minesky MP, Kennedy K, Godovikova V, Zayed SM, Roberts RS, Fenno JC. Enhanced transformation efficiency in Treponema denticola enabled by SyngenicDNA-based plasmids lacking restriction-modification target motifs. Mol Oral Microbiol 2023; 38:455-470. [PMID: 37880921 PMCID: PMC11024988 DOI: 10.1111/omi.12441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/25/2023] [Accepted: 10/08/2023] [Indexed: 10/27/2023]
Abstract
Oral spirochetes are among a small group of keystone pathogens contributing to dysregulation of tissue homeostatic processes that leads to breakdown of the tissue and bone supporting the teeth in periodontal disease. Additionally, our group has recently demonstrated that Treponema are among the dominant microbial genera detected intracellularly in tumor specimens from patients with oral squamous cell carcinoma. While over 60 species and phylotypes of oral Treponema have been detected, T. denticola is one of the few that can be grown in culture and the only one in which genetic manipulation is regularly performed. Thus, T. denticola is a key model organism for studying spirochete metabolic processes, interactions with other microbes, and host cell and tissue responses relevant to oral diseases, as well as venereal and nonvenereal treponematoses whose agents lack workable genetic systems. We previously demonstrated improved transformation efficiency using an Escherichia coli-T. denticola shuttle plasmid and its utility for expression in T. denticola of an exogenous fluorescent protein that is active under anaerobic conditions. Here, we expand on this work by characterizing T. denticola Type I and Type II restriction-modification (R-M) systems and designing a high-efficiency R-M-silent "SyngenicDNA" shuttle plasmid resistant to all T. denticola ATCC 35405 R-M systems. Resequencing of the ATCC 33520 genome revealed an additional Type I R-M system consistent with the relatively low transformation efficiency of the shuttle plasmid in this strain. Using SyngenicDNA approaches, we optimized shuttle plasmid transformation efficiency in T. denticola and used it to complement a defined T. denticola ΔfhbB mutant strain. We further report the first high-efficiency transposon mutagenesis of T. denticola using an R-M-silent, codon-optimized, himarC9 transposase-based plasmid. Thus, use of SyngenicDNA-based strategies and tools can enable further mechanistic examinations of T. denticola physiology and behavior.
Collapse
Affiliation(s)
- Christopher D. Johnston
- Vaccine and Infection Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - M. Paula Goetting-Minesky
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109
| | - Kelly Kennedy
- Vaccine and Infection Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Valentina Godovikova
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109
| | - Sara M. Zayed
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109
| | | | - J. Christopher Fenno
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
4
|
Desjardins A, Zerfas P, Filion D, Palmer RJ, Falcone EL. Mucispirillum schaedleri: Biofilm Architecture and Age-Dependent Pleomorphy. Microorganisms 2023; 11:2200. [PMID: 37764045 PMCID: PMC10535455 DOI: 10.3390/microorganisms11092200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/24/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023] Open
Abstract
Round bodies in spirochete cultures have been a controversial subject since their description seven decades ago. We report the existence of round bodies (spherical cells) in cultures of Mucispirillum schaedleri, a spiral bacterium phylogenetically distant from spirochetes. Furthermore, when grown in biofilms, M. schaedleri demonstrates a unique morphology known as cording, which has been previously described only in mycobacteria. Thus, M. schaedleri has two distinct features, each previously thought to be unique to two different phylogenetically distant groups of bacteria.
Collapse
Affiliation(s)
- Aléhandra Desjardins
- Center for Immunity, Inflammation and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC H2W 1R7, Canada;
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC H3T 1J4, Canada
| | - Patricia Zerfas
- Division of Veterinary Resources, Office of Research Services, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Dominic Filion
- Microscopy and Imaging Platform, Montreal Clinical Research Institute (IRCM), Montreal, QC H2W 1R7, Canada
| | - Robert J. Palmer
- National Institute of Dental and Craniofacial Research, National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Emilia Liana Falcone
- Center for Immunity, Inflammation and Infectious Diseases, Montreal Clinical Research Institute (IRCM), Montreal, QC H2W 1R7, Canada;
- Department of Microbiology, Infectious Diseases and Immunology, Université de Montréal, Montreal, QC H3T 1J4, Canada
- Department of Medicine, Université de Montréal, Montreal, QC H3T 1J4, Canada
| |
Collapse
|
5
|
Characterization of Treponema denticola Major Surface Protein (Msp) by Deletion Analysis and Advanced Molecular Modeling. J Bacteriol 2022; 204:e0022822. [PMID: 35913147 PMCID: PMC9487533 DOI: 10.1128/jb.00228-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Treponema denticola, a keystone pathogen in periodontitis, is a model organism for studying Treponema physiology and host-microbe interactions. Its major surface protein Msp forms an oligomeric outer membrane complex that binds fibronectin, has cytotoxic pore-forming activity, and disrupts several intracellular processes in host cells. T. denticola msp is an ortholog of the Treponema pallidum tprA to -K gene family that includes tprK, whose remarkable in vivo hypervariability is proposed to contribute to T. pallidum immune evasion. We recently identified the primary Msp surface-exposed epitope and proposed a model of the Msp protein as a β-barrel protein similar to Gram-negative bacterial porins. Here, we report fine-scale Msp mutagenesis demonstrating that both the N and C termini as well as the centrally located Msp surface epitope are required for native Msp oligomer expression. Removal of as few as three C-terminal amino acids abrogated Msp detection on the T. denticola cell surface, and deletion of four residues resulted in complete loss of detectable Msp. Substitution of a FLAG tag for either residues 6 to 13 of mature Msp or an 8-residue portion of the central Msp surface epitope resulted in expression of full-length Msp but absence of the oligomer, suggesting roles for both domains in oligomer formation. Consistent with previously reported Msp N-glycosylation, proteinase K treatment of intact cells released a 25 kDa polypeptide containing the Msp surface epitope into culture supernatants. Molecular modeling of Msp using novel metagenome-derived multiple sequence alignment (MSA) algorithms supports the hypothesis that Msp is a large-diameter, trimeric outer membrane porin-like protein whose potential transport substrate remains to be identified. IMPORTANCE The Treponema denticola gene encoding its major surface protein (Msp) is an ortholog of the T. pallidum tprA to -K gene family that includes tprK, whose remarkable in vivo hypervariability is proposed to contribute to T. pallidum immune evasion. Using a combined strategy of fine-scale mutagenesis and advanced predictive molecular modeling, we characterized the Msp protein and present a high-confidence model of its structure as an oligomer embedded in the outer membrane. This work adds to knowledge of Msp-like proteins in oral treponemes and may contribute to understanding the evolutionary and potential functional relationships between T. denticola Msp and the orthologous T. pallidum Tpr proteins.
Collapse
|
6
|
Radaic A, Brody H, Contreras F, Hajfathalian M, Lucido L, Kamarajan P, Kapila YL. Nisin and Nisin Probiotic Disrupt Oral Pathogenic Biofilms and Restore Their Microbiome Composition towards Healthy Control Levels in a Peri-Implantitis Setting. Microorganisms 2022; 10:1336. [PMID: 35889055 PMCID: PMC9324437 DOI: 10.3390/microorganisms10071336] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/24/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
Peri-implantitis is characterized by chronic inflammation of the peri-implant supporting tissues that progressively and irreversibly leads to bone loss and, consequently, implant loss. Similar to periodontal disease, oral dysbiosis is thought to be a driver of peri-implantitis. However, managing peri-implantitis with traditional treatment methods, such as nonsurgical debridement or surgery, is not always successful. Thus, novel strategies have been proposed to address these shortcomings. One strategy is the use of probiotics as antimicrobial agents since they are considered safe for humans and the environment. Specifically, the probiotic Lactococcus lactis produces nisin, which has been used worldwide for food preservation. The objective of this study was to determine whether nisin and the wild-type (WT) nisin-producing L. lactis probiotic can disrupt oral pathogenic biofilms and promote a healthier oral microbiome within these oral biofilms on titanium discs. Using confocal imaging and 16S rRNA sequencing, this study revealed that nisin and WT L. lactis probiotic disrupt oral pathogenic biofilms in a peri-implantitis setting in vitro. More specifically, nisin decreased the viability of the pathogen-spiked biofilms dose-dependently from 62.53 ± 3.69% to 54.26 ± 3.35% and 44.88 ± 2.98%, respectively. Similarly, 105 CFU/mL of WT L. lactis significantly decreased biofilm viability to 52.45 ± 3.41%. Further, both treatments shift the composition, relative abundance, and diversity levels of these biofilms towards healthy control levels. A total of 1 µg/mL of nisin and 103 CFU/mL of WT L. lactis were able to revert the pathogen-mediated changes in the Proteobacteria (from 80.5 ± 2.9% to 75.6 ± 2.0%, 78.0 ± 2.8%, and 75.1 ± 5.3%, respectively) and Firmicutes (from 11.6 ± 1.6% to 15.4 ± 1.3%, 13.8 ± 1.8%, and 13.7 ± 2.6%, respectively) phyla back towards control levels. Thus, nisin and its nisin-producing L. lactis probiotic may be useful in treating peri-implantitis by promoting healthier oral biofilms, which may be useful for improving patient oral health.
Collapse
Affiliation(s)
- Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; (A.R.); (H.B.); (F.C.); (M.H.); (L.L.); (P.K.)
| | - Hanna Brody
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; (A.R.); (H.B.); (F.C.); (M.H.); (L.L.); (P.K.)
| | - Fernando Contreras
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; (A.R.); (H.B.); (F.C.); (M.H.); (L.L.); (P.K.)
| | - Maryam Hajfathalian
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; (A.R.); (H.B.); (F.C.); (M.H.); (L.L.); (P.K.)
- Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Luke Lucido
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; (A.R.); (H.B.); (F.C.); (M.H.); (L.L.); (P.K.)
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; (A.R.); (H.B.); (F.C.); (M.H.); (L.L.); (P.K.)
| | - Yvonne L. Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA 94143, USA; (A.R.); (H.B.); (F.C.); (M.H.); (L.L.); (P.K.)
- Division of Oral and Systemic Health Sciences, Sections of Biosystems and Function and Periodontics, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
7
|
Complete Genome Sequences of Three Human Oral Treponema parvum Isolates. Microbiol Resour Announc 2021; 10:e0039421. [PMID: 34236225 PMCID: PMC8265222 DOI: 10.1128/mra.00394-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Treponema parvum is a spirochete associated with human and animal oral/nonoral soft tissue infections. Here, we report the complete genome sequences of three human oral isolates of T. parvum, namely, ATCC 700770T (OMZ 833T), ATCC 700773 (OMZ 842), and OMZ 843, which possess circular chromosomes of a median size of 2.63 Mb.
Collapse
|
8
|
Ganther S, Radaic A, Malone E, Kamarajan P, Chang NYN, Tafolla C, Zhan L, Fenno JC, Kapila YL. Treponema denticola dentilisin triggered TLR2/MyD88 activation upregulates a tissue destructive program involving MMPs via Sp1 in human oral cells. PLoS Pathog 2021; 17:e1009311. [PMID: 34255809 PMCID: PMC8301614 DOI: 10.1371/journal.ppat.1009311] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 07/23/2021] [Accepted: 05/26/2021] [Indexed: 12/28/2022] Open
Abstract
Periodontal disease is driven by dysbiosis in the oral microbiome, resulting in over-representation of species that induce the release of pro-inflammatory cytokines, chemokines, and tissue-remodeling matrix metalloproteinases (MMPs) in the periodontium. These chronic tissue-destructive inflammatory responses result in gradual loss of tooth-supporting alveolar bone. The oral spirochete Treponema denticola, is consistently found at significantly elevated levels in periodontal lesions. Host-expressed Toll-Like Receptor 2 (TLR2) senses a variety of bacterial ligands, including acylated lipopolysaccharides and lipoproteins. T. denticola dentilisin, a surface-expressed protease complex comprised of three lipoproteins has been implicated as a virulence factor in periodontal disease, primarily due to its proteolytic activity. While the role of acylated bacterial components in induction of inflammation is well-studied, little attention has been given to the potential role of the acylated nature of dentilisin. The purpose of this study was to test the hypothesis that T. denticola dentilisin activates a TLR2-dependent mechanism, leading to upregulation of tissue-destructive genes in periodontal tissue. RNA-sequencing of periodontal ligament cells challenged with T. denticola bacteria revealed significant upregulation of genes associated with extracellular matrix organization and degradation including potentially tissue-specific inducible MMPs that may play novel roles in modulating host immune responses that have yet to be characterized within the context of oral disease. The Gram-negative oral commensal, Veillonella parvula, failed to upregulate these same MMPs. Dentilisin-induced upregulation of MMPs was mediated via TLR2 and MyD88 activation, since knockdown of expression of either abrogated these effects. Challenge with purified dentilisin upregulated the same MMPs while a dentilisin-deficient T. denticola mutant had no effect. Finally, T. denticola-mediated activation of TLR2/MyD88 lead to the nuclear translocation of the transcription factor Sp1, which was shown to be a critical regulator of all T. denticola-dependent MMP expression. Taken together, these data suggest that T. denticola dentilisin stimulates tissue-destructive cellular processes in a TLR2/MyD88/Sp1-dependent fashion.
Collapse
Affiliation(s)
- Sean Ganther
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - Erin Malone
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - Nai-Yuan Nicholas Chang
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - Christian Tafolla
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - Ling Zhan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| | - J. Christopher Fenno
- Department of Biological and Material Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Yvonne L. Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
9
|
Goetting-Minesky MP, Godovikova V, Fenno JC. Approaches to Understanding Mechanisms of Dentilisin Protease Complex Expression in Treponema denticola. Front Cell Infect Microbiol 2021; 11:668287. [PMID: 34084756 PMCID: PMC8167434 DOI: 10.3389/fcimb.2021.668287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/04/2021] [Indexed: 11/25/2022] Open
Abstract
The oral spirochete Treponema denticola is a keystone periodontal pathogen that, in association with members of a complex polymicrobial oral biofilm, contributes to tissue damage and alveolar bone loss in periodontal disease. Virulence-associated behaviors attributed to T. denticola include disruption of the host cell extracellular matrix, tissue penetration and disruption of host cell membranes accompanied by dysregulation of host immunoregulatory factors. T. denticola dentilisin is associated with several of these behaviors. Dentilisin is an outer membrane-associated complex of acylated subtilisin-family PrtP protease and two other lipoproteins, PrcB and PrcA, that are unique to oral spirochetes. Dentilisin is encoded in a single operon consisting of prcB-prcA-prtP. We employ multiple approaches to study mechanisms of dentilisin assembly and PrtP protease activity. To determine the role of each protein in the protease complex, we have made targeted mutations throughout the protease locus, including polar and nonpolar mutations in each gene (prcB, prcA, prtP) and deletions of specific PrtP domains, including single base mutagenesis of key PrtP residues. These will facilitate distinguishing between host cell responses to dentilisin protease activity and its acyl groups. The boundaries of the divergent promoter region and the relationship between dentilisin and the adjacent iron transport operon are being resolved by incremental deletions in the sequence immediately 5’ to the protease locus. Comparison of the predicted three-dimensional structure of PrtP to that of other subtilisin-like proteases shows a unique PrtP C-terminal domain of approximately 250 residues. A survey of global gene expression in the presence or absence of protease gene expression reveals potential links between dentilisin and iron uptake and homeostasis in T. denticola. Understanding the mechanisms of dentilisin transport, assembly and activity of this unique protease complex may lead to more effective prophylactic or therapeutic treatments for periodontal disease.
Collapse
Affiliation(s)
- M Paula Goetting-Minesky
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - Valentina Godovikova
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| | - J Christopher Fenno
- Department of Biologic and Materials Sciences & Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
10
|
Su X, Tang Z, Lu Z, Liu Y, He W, Jiang J, Zhang Y, Wu H. Oral Treponema denticola Infection Induces Aβ 1-40 and Aβ 1-42 Accumulation in the Hippocampus of C57BL/6 Mice. J Mol Neurosci 2021; 71:1506-1514. [PMID: 33763842 DOI: 10.1007/s12031-021-01827-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 03/05/2021] [Indexed: 02/05/2023]
Abstract
Accumulation of amyloid-β (Aβ) in the brain is a central component of pathology in Alzheimer's disease. A growing volume of evidence demonstrates close associations between periodontal pathogens including Porphyromonas gingivalis (P. gingivalis) and Treponema denticola (T. denticola) and AD. However, the effect and mechanisms of T. denticola on accumulation of Aβ remain to be unclear. In this study, we demonstrated that T. denticola was able to enter the brain and act directly on nerve cells resulting in intra- and extracellular Aβ1-40 and Aβ1-42 accumulation in the hippocampus of C57BL/6 mice by selectively activating both β-secretase and γ-secretase. Furthermore, both KMI1303, an inhibitor of β-secretase, as well as DAPT, an inhibitor of γ- secretase, were found to be able to inhibit the effect of T. denticola on Aβ accumulation in N2a neuronal cells. Overall, it is concluded that T. denticola increases the expression of Aβ1-42 and Aβ1-40 by its regulation on beta-site amyloid precursor protein cleaving enzyme-1 and presenilin 1.
Collapse
Affiliation(s)
- Xinyi Su
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhiqun Tang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhiyue Lu
- Department of Stomatology Beijing Hospital, Institute of Geriatric Medicine, National Center of Gerontology, Beijing, 100000, China
| | - Yuqiu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Wanzhi He
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Jiapei Jiang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yifan Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Hongkun Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
11
|
Kamarajan P, Ateia I, Shin JM, Fenno JC, Le C, Zhan L, Chang A, Darveau R, Kapila YL. Periodontal pathogens promote cancer aggressivity via TLR/MyD88 triggered activation of Integrin/FAK signaling that is therapeutically reversible by a probiotic bacteriocin. PLoS Pathog 2020; 16:e1008881. [PMID: 33002094 PMCID: PMC7529280 DOI: 10.1371/journal.ppat.1008881] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 08/12/2020] [Indexed: 12/13/2022] Open
Abstract
Epidemiological studies reveal significant associations between periodontitis and oral cancer. However, knowledge about the contribution of periodontal pathogens to oral cancer and potential regulatory mechanisms involved is limited. Previously, we showed that nisin, a bacteriocin and commonly used food preservative, reduced oral cancer tumorigenesis and extended the life expectancy in tumor-bearing mice. In addition, nisin has antimicrobial effects on key periodontal pathogens. Thus, the purpose of this study was to test the hypothesis that key periodontal pathogens (Porphyromonas gingivalis, Treponema denticola, and Fusobacterium nucleatum) promote oral cancer via specific host-bacterial interactions, and that bacteriocin/nisin therapy may modulate these responses. All three periodontal pathogens enhanced oral squamous cell carcinoma (OSCC) cell migration, invasion, tumorsphere formation, and tumorigenesis in vivo, without significantly affecting cell proliferation or apoptosis. In contrast, oral commensal bacteria did not affect OSCC cell migration. Pathogen-enhanced OSCC cell migration was mediated via integrin alpha V and FAK activation, since stably blocking alpha V or FAK expression abrogated these effects. Nisin inhibited these pathogen-mediated processes. Further, Treponema denticola induced TLR2 and 4 and MyD88 expression. Stable suppression of MyD88 significantly inhibited Treponema denticola-induced FAK activation and abrogated pathogen-induced migration. Together, these data demonstrate that periodontal pathogens contribute to a highly aggressive cancer phenotype via crosstalk between TLR/MyD88 and integrin/FAK signaling. Nisin can modulate these pathogen-mediated effects, and thus has therapeutic potential as an antimicrobial and anti-tumorigenic agent.
Collapse
Affiliation(s)
- Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, United States of America
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States of America
| | - Islam Ateia
- Department of Oral Medicine and Periodontology, Mansoura University, Mansoura, Egypt
| | - Jae M. Shin
- Department of Cariology, Restorative Sciences, and Endodontics, School of Dentistry, University of Michigan, Ann Arbor, MI, United States of America
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, United States of America
| | - J. Christopher Fenno
- Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann arbor, MI, United States of America
| | - Charles Le
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, United States of America
| | - Ling Zhan
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, United States of America
| | - Ana Chang
- Department of Periodontics, Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States of America
| | - Richard Darveau
- Department of Periodontics, Oral Health Sciences, School of Dentistry, University of Washington, Seattle, WA, United States of America
| | - Yvonne L. Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California, San Francisco, CA, United States of America
- Department of Periodontics and Oral Medicine, School of Dentistry, University of Michigan, Ann Arbor, MI, United States of America
| |
Collapse
|
12
|
Radaic A, Ye C, Parks B, Gao L, Kuraji R, Malone E, Kamarajan P, Zhan L, Kapila YL. Modulation of pathogenic oral biofilms towards health with nisin probiotic. J Oral Microbiol 2020; 12:1809302. [PMID: 32944159 PMCID: PMC7482728 DOI: 10.1080/20002297.2020.1809302] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Background Oral dysbiosis is an imbalance in the oral microbiome and is associated with a variety of oral and systemic diseases, including periodontal disease, caries, and head and neck/oral cancer. Although antibiotics can be used to control this dysbiosis, they can lead to adverse side effects and superinfections. Thus, novel strategies have been proposed to address these shortcomings. One strategy is the use of probiotics as antimicrobial agents, since they are considered safe for humans and the environment. Specifically, the Gram-positive Lactococcus lactis, a species present in the oral and gut microbiota, is able to produce nisin, which has been used worldwide for food preservation. Objective The objective of this study was to test whether a nisin probiotic can promote a healthier oral microbiome in pathogen-spiked oral biofilms. Results We found that L. lactis can prevent oral biofilm formation and disrupt 24-h and 48-h pre-formed biofilms. Finally, we demonstrate that both treatments, a nisin-producing L. lactis probiotic and nisin can decrease the levels of pathogens in the biofilms and return the diversity levels back to control or ‘healthy’ levels. Conclusion A nisin-producing probiotic, can be used to treat ‘disease-altered’ biofilms and promote healthier oral biofilms, which may be useful for improving patient oral health.
Collapse
Affiliation(s)
- Allan Radaic
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Changchang Ye
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA.,State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Periodontology, West China School of Stomatology, Sichuan University, Chengdu, China
| | - Brett Parks
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Li Gao
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA.,Department of Periodontology, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Ryutaro Kuraji
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA.,Department of Life Science Dentistry, The Nippon Dental University, Tokyo, Japan.,Department of Periodontology, The Nippon Dental University School of Life Dentistry at Tokyo, Tokyo, Japan
| | - Erin Malone
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Pachiyappan Kamarajan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Ling Zhan
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| | - Yvonne L Kapila
- Department of Orofacial Sciences, School of Dentistry, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
13
|
Roles of TroA and TroR in Metalloregulated Growth and Gene Expression in Treponema denticola. J Bacteriol 2020; 202:JB.00770-19. [PMID: 31932313 DOI: 10.1128/jb.00770-19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 02/06/2023] Open
Abstract
The availability of divalent metal cations required as cofactors for microbial metabolism is severely limited in the host environment. Bacteria have evolved highly regulated uptake systems to maintain essential metal homeostasis to meet cellular demands while preventing toxicity. The Tro operon (troABCDR), present in all sequenced Treponema spp., is a member of a highly conserved family of ATP-binding cassette transporters involved in metal cation uptake whose expression is controlled by TroR, a DtxR-like cation-responsive regulatory protein. Transcription of troA responds to divalent manganese and iron (T. denticola) or manganese and zinc (T. pallidum), and metal-dependent TroR binding to the troA promoter represses troA transcription. We report here the construction and complementation of defined T. denticola ΔtroR and ΔtroA strains to characterize (i) the role of TroA in metal-dependent T. denticola growth and (ii) the role of TroR in T. denticola gene expression. We show that TroA expression is required for T. denticola growth under iron- and manganese-limited conditions. Furthermore, TroR is required for the transcriptional regulation of troA in response to iron or manganese, and deletion of troR results in significant differential expression of more than 800 T. denticola genes in addition to troA These results suggest that (i) TroA-mediated cation uptake is important in metal homeostasis in vitro and may be important for Treponema survival in the host environment and (ii) the absence of TroR results in significant dysregulation of nearly one-third of the T. denticola genome. These effects may be direct (as with troA) or indirect due to dysregulation of metal homeostasis.IMPORTANCE Treponema denticola is one of numerous host-associated spirochetes, a group including commensals, pathobionts, and at least one frank pathogen. While most T. denticola research concerns its role in periodontitis, its relative tractability for growth and genetic manipulation make it a useful model for studying Treponema physiology, metabolism, and host-microbe interactions. Metal micronutrient acquisition and homeostasis are highly regulated both in microbial cells and by host innate defense mechanisms that severely limit metal cation bioavailability. Here, we characterized the T. denticola troABCDR operon, the role of TroA-mediated iron and manganese uptake in growth, and the effects of TroR on global gene expression. This study contributes to our understanding of the mechanisms involved in cellular metal homeostasis required for survival in the host environment.
Collapse
|
14
|
Immunotopological Analysis of the Treponema denticola Major Surface Protein (Msp). J Bacteriol 2018; 201:JB.00528-18. [PMID: 30373754 DOI: 10.1128/jb.00528-18] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022] Open
Abstract
Treponema denticola, one of several recognized periodontal pathogens, is a model organism for studying Treponema physiology and host-microbe interactions. Its major surface protein Msp (or MOSP) comprises an oligomeric outer membrane-associated complex that binds fibronectin, has cytotoxic pore-forming activity, and disrupts several intracellular responses. There are two hypotheses regarding native Msp structure and membrane topology. One hypothesis predicts that the entire Msp protein forms a β-barrel structure similar to that of well-studied outer membrane porins of Gram-negative bacteria. The second hypothesis predicts a bipartite Msp with distinct and separate periplasmic N-terminal and porin-like β-barrel C-terminal domains. The bipartite model, based on bioinformatic analysis of the orthologous Treponema pallidum Tpr proteins, is supported largely by studies of recombinant TprC and Msp polypeptides. The present study reports immunological studies in both T. denticola and Escherichia coli backgrounds to identify a prominent Msp surface epitope (residues 229 to 251 in ATCC 35405) in a domain that differs between strains with otherwise highly conserved Msps. These results were then used to evaluate a series of in silico structural models of representative T. denticola Msps. The data presented here are consistent with a model of Msp as a large-diameter β-barrel porin. This work adds to the knowledge regarding the diverse Msp-like proteins in oral treponemes and may contribute to an understanding of the evolutionary and potential functional relationships between Msps of oral Treponema and the orthologous group of Tpr proteins of T. pallidum. IMPORTANCE Treponema denticola is among a small subset of the oral microbiota contributing to severe periodontal disease. Due to its relative genetic tractability, T. denticola is a model organism for studying Treponema physiology and host-microbe interactions. T. denticola Msp is a highly expressed outer membrane-associated oligomeric protein that binds fibronectin, has cytotoxic pore-forming activity, and disrupts intracellular regulatory pathways. It shares homology with the orthologous group of T. pallidum Tpr proteins, one of which is implicated in T. pallidum in vivo antigenic variation. The outer membrane topologies of both Msp and the Tpr family proteins are unresolved, with conflicting reports on protein domain localization and function. In this study, we combined empirical immunological data derived both from diverse T. denticola strains and from recombinant Msp expression in E. coli with in silico predictive structural modeling of T. denticola Msp membrane topology, to move toward resolution of this important issue in Treponema biology.
Collapse
|
15
|
Ateia IM, Sutthiboonyapan P, Kamarajan P, Jin T, Godovikova V, Kapila YL, Fenno JC. Treponema denticola increases MMP-2 expression and activation in the periodontium via reversible DNA and histone modifications. Cell Microbiol 2018; 20. [PMID: 29205773 DOI: 10.1111/cmi.12815] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 11/03/2017] [Accepted: 11/28/2017] [Indexed: 12/21/2022]
Abstract
Host-derived matrix metalloproteinases (MMPs) and bacterial proteases mediate destruction of extracellular matrices and supporting alveolar bone in periodontitis. The Treponema denticola dentilisin protease induces MMP-2 expression and activation in periodontal ligament (PDL) cells, and dentilisin-mediated activation of pro-MMP-2 is required for cellular fibronectin degradation. Here, we report that T. denticola regulates MMP-2 expression through epigenetic modifications in the periodontium. PDL cells were treated with epigenetic enzyme inhibitors before or after T. denticola challenge. Fibronectin fragmentation, MMP-2 expression, and activation were assessed by immunoblot, zymography, and qRT-PCR, respectively. Chromatin modification enzyme expression in T. denticola-challenged PDL cells and periodontal tissues were evaluated using gene arrays. Several classes of epigenetic enzymes showed significant alterations in transcription in diseased tissue and T. denticola-challenged PDL cells. T. denticola-mediated MMP-2 expression and activation were significantly reduced in PDL cells treated with inhibitors of aurora kinases and histone deacetylases. In contrast, DNA methyltransferase inhibitors had little effect, and inhibitors of histone acetyltransferases, methyltransferases, and demethylases exacerbated T. denticola-mediated MMP-2 expression and activation. Chronic epigenetic changes in periodontal tissues mediated by T. denticola or other oral microbes may contribute to the limited success of conventional treatment of chronic periodontitis and may be amenable to therapeutic reversal.
Collapse
Affiliation(s)
- Islam M Ateia
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Department of Periodontics and Oral Medicine, University of Mansoura Faculty of Dentistry, Mansoura, Egypt
| | - Pimchanok Sutthiboonyapan
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Department of Periodontology, Chulalongkorn University Faculty of Dentistry, Bangkok, Thailand
| | - Pachiyappan Kamarajan
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Department of Orofacial Sciences, University of California San Francisco School of Dentistry, San Francisco, CA, USA
| | - Taocong Jin
- Office of Research, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Valentina Godovikova
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| | - Yvonne L Kapila
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor, MI, USA.,Department of Orofacial Sciences, University of California San Francisco School of Dentistry, San Francisco, CA, USA
| | - J Christopher Fenno
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, MI, USA
| |
Collapse
|
16
|
You M, Chan Y, Lacap-Bugler DC, Huo YB, Gao W, Leung WK, Watt RM. Oral treponeme major surface protein: Sequence diversity and distributions within periodontal niches. Mol Oral Microbiol 2017; 32:455-474. [PMID: 28453906 DOI: 10.1111/omi.12185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2017] [Indexed: 12/19/2022]
Abstract
Treponema denticola and other species (phylotypes) of oral spirochetes are widely considered to play important etiological roles in periodontitis and other oral infections. The major surface protein (Msp) of T. denticola is directly implicated in several pathological mechanisms. Here, we have analyzed msp sequence diversity across 68 strains of oral phylogroup 1 and 2 treponemes; including reference strains of T. denticola, Treponema putidum, Treponema medium, 'Treponema vincentii', and 'Treponema sinensis'. All encoded Msp proteins contained highly conserved, taxon-specific signal peptides, and shared a predicted 'three-domain' structure. A clone-based strategy employing 'msp-specific' polymerase chain reaction primers was used to analyze msp gene sequence diversity present in subgingival plaque samples collected from a group of individuals with chronic periodontitis (n=10), vs periodontitis-free controls (n=10). We obtained 626 clinical msp gene sequences, which were assigned to 21 distinct 'clinical msp genotypes' (95% sequence identity cut-off). The most frequently detected clinical msp genotype corresponded to T. denticola ATCC 35405T , but this was not correlated to disease status. UniFrac and libshuff analysis revealed that individuals with periodontitis and periodontitis-free controls harbored significantly different communities of treponeme clinical msp genotypes (P<.001). Patients with periodontitis had higher levels of clinical msp genotype diversity than periodontitis-free controls (Mann-Whitney U-test, P<.05). The relative proportions of 'T. vincentii' clinical msp genotypes were significantly higher in the control group than in the periodontitis group (P=.018). In conclusion, our data clearly show that both healthy and diseased individuals commonly harbor a wide diversity of Treponema clinical msp genotypes within their subgingival niches.
Collapse
Affiliation(s)
- M You
- Department of Oral Radiology and State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, Chengdu, China
| | - Y Chan
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Sai Ying Pun, Hong Kong SAR, China
| | - D C Lacap-Bugler
- School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Y-B Huo
- Zhujiang New Town Dental Clinic, Guanghua School and Hospital of Stomatology, Guangdong Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - W Gao
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Sai Ying Pun, Hong Kong SAR, China
| | - W K Leung
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Sai Ying Pun, Hong Kong SAR, China
| | - R M Watt
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, Sai Ying Pun, Hong Kong SAR, China
| |
Collapse
|
17
|
Multilocus Sequence Analysis of Phylogroup 1 and 2 Oral Treponeme Strains. Appl Environ Microbiol 2017; 83:AEM.02499-16. [PMID: 27864174 DOI: 10.1128/aem.02499-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 11/14/2016] [Indexed: 02/08/2023] Open
Abstract
More than 75 "species-level" phylotypes of spirochete bacteria belonging to the genus Treponema reside within the human oral cavity. The majority of these oral treponeme phylotypes correspond to as-yet-uncultivated taxa or strains of uncertain standing in taxonomy. Here, we analyze phylogenetic and taxonomic relationships between oral treponeme strains using a multilocus sequence analysis (MLSA) scheme based on the highly conserved 16S rRNA, pyrH, recA, and flaA genes. We utilized this MLSA scheme to analyze genetic data from a curated collection of oral treponeme strains (n = 71) of diverse geographical origins. This comprises phylogroup 1 (n = 23) and phylogroup 2 (n = 48) treponeme strains, including all relevant American Type Culture Collection reference strains. The taxonomy of all strains was confirmed or inferred via the analysis of ca. 1,450-bp 16S rRNA gene sequences using a combination of bioinformatic and phylogenetic approaches. Taxonomic and phylogenetic relationships between the respective treponeme strains were further investigated by analyzing individual and concatenated flaA (1,074-nucleotide [nt]), recA (1,377-nt), and pyrH (696-nt) gene sequence data sets. Our data confirmed the species differentiation between Treponema denticola (n = 41) and Treponema putidum (n = 7) strains. Notably, our results clearly supported the differentiation of the 23 phylogroup 1 treponeme strains into five distinct "species-level" phylotypes. These respectively corresponded to "Treponema vincentii" (n = 11), Treponema medium (n = 1), "Treponema sinensis" (Treponema sp. IA; n = 4), Treponema sp. IB (n = 3), and Treponema sp. IC (n = 4). In conclusion, our MLSA-based approach can be used to effectively discriminate oral treponeme taxa, confirm taxonomic assignment, and enable the delineation of species boundaries with high confidence. IMPORTANCE Periodontal diseases are caused by persistent polymicrobial biofilm infections of the gums and underlying tooth-supporting structures and have a complex and variable etiology. Although Treponema denticola is strongly associated with periodontal diseases, the etiological roles of other treponeme species/phylotypes are less well defined. This is due to a paucity of formal species descriptions and a poor understanding of genetic relationships between oral treponeme taxa. Our study directly addresses these issues. It represents one of the most comprehensive analyses of oral treponeme strains performed to date, including isolates from North America, Europe, and Asia. We envisage that our results will greatly facilitate future metagenomic efforts aimed at characterizing the clinical distributions of oral treponeme species/phylotypes, helping investigators to establish a more detailed understanding of their etiological roles in periodontal diseases and other infectious diseases. Our results are also directly relevant to various polymicrobial tissue infections in animals, which also involve treponeme populations.
Collapse
|
18
|
Vences-Guzmán MÁ, Paula Goetting-Minesky M, Guan Z, Castillo-Ramirez S, Córdoba-Castro LA, López-Lara IM, Geiger O, Sohlenkamp C, Christopher Fenno J. 1,2-Diacylglycerol choline phosphotransferase catalyzes the final step in the unique Treponema denticola phosphatidylcholine biosynthesis pathway. Mol Microbiol 2017; 103:896-912. [PMID: 28009086 DOI: 10.1111/mmi.13596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/03/2016] [Indexed: 01/09/2023]
Abstract
Treponema denticola synthesizes phosphatidylcholine through a licCA-dependent CDP-choline pathway identified only in the genus Treponema. However, the mechanism of conversion of CDP-choline to phosphatidylcholine remained unclear. We report here characterization of TDE0021 (herein designated cpt) encoding a 1,2-diacylglycerol choline phosphotransferase homologous to choline phosphotransferases that catalyze the final step of the highly conserved Kennedy pathway for phosphatidylcholine synthesis in eukaryotes. T. denticola Cpt catalyzed in vitro phosphatidylcholine formation from CDP-choline and diacylglycerol, and full activity required divalent manganese. Allelic replacement mutagenesis of cpt in T. denticola resulted in abrogation of phosphatidylcholine synthesis. T. denticola Cpt complemented a Saccharomyces cerevisiae CPT1 mutant, and expression of the entire T. denticola LicCA-Cpt pathway in E. coli resulted in phosphatidylcholine biosynthesis. Our findings show that T. denticola possesses a unique phosphatidylcholine synthesis pathway combining conserved prokaryotic choline kinase and CTP:phosphocholine cytidylyltransferase activities with a 1,2-diacylglycerol choline phosphotransferase that is common in eukaryotes. Other than in a subset of mammalian host-associated Treponema that includes T. pallidum, this pathway is found in neither bacteria nor Archaea. Molecular dating analysis of the Cpt gene family suggests that a horizontal gene transfer event introduced this gene into an ancestral Treponema well after its divergence from other spirochetes.
Collapse
Affiliation(s)
- Miguel Ángel Vences-Guzmán
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - M Paula Goetting-Minesky
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109, USA
| | - Ziqiang Guan
- Department of Biochemistry, Duke University Medical Center, Durham, North Carolina, 27710, USA
| | - Santiago Castillo-Ramirez
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - Luz América Córdoba-Castro
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - Isabel M López-Lara
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - Otto Geiger
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - Christian Sohlenkamp
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Av. Universidad s/n, Apdo. Postal 565-A, Cuernavaca, Morelos, CP62210, Mexico
| | - J Christopher Fenno
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor, Michigan, 48109, USA
| |
Collapse
|
19
|
Nagano K, Hasegawa Y, Yoshida Y, Yoshimura F. Comparative analysis of motility and other properties of Treponema denticola strains. Microb Pathog 2016; 102:82-88. [PMID: 27914958 DOI: 10.1016/j.micpath.2016.11.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/18/2016] [Accepted: 11/29/2016] [Indexed: 01/27/2023]
Abstract
The periodontitis-associated pathogen Treponema denticola is a spirochetal bacterium that swims by rotating its cell body like a corkscrew using periplasmic flagella. We compared physiologic and pathogenic properties, including motility, in four strains of T. denticola. Phase-contrast microscopy showed differential motility between the strains; ATCC 35404 showed the highest motility, followed by ATCC 33521, and the remaining two strains (ATCC 35405 and ATCC 33520) showed the lowest motility. Transmission electron microscopy showed that the low motility strains exhibited extracellular flagellar protrusions resulting from elongated flagella. Treponemal flagellar filaments are composed of three flagellins of FlaB1, FlaB2 and FlaB3. FlaB1 expression was comparable between the strains, whereas FlaB2 expression was lowest in ATCC 35404. FlaB3 expression varied among strains, with ATCC 35405, ATCC 33520, ATCC 33521, and ATCC 35404 showing the highest to lowest expression levels, respectively. Additionally, the low motility strains showed faster electrophoretic mobility of FlaB3, suggesting that posttranslational modifications of these proteins may have varied, because the amino acid sequences of FlaB3 were identical between the strains. These results suggest that inappropriate expression of FlaB2 and FlaB3 caused the unusual elongation of flagella that resulted in decreased motility. Furthermore, the low motility strains grew to higher bacterial density, and showed greater chymotrypsin-like protease activity, and more bacterial cells associated with gingival epithelial cells in comparison with the high motility strains. There may be a relationship between motility and these properties, but the genetic factors underlying this association remain unclear.
Collapse
Affiliation(s)
- Keiji Nagano
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan.
| | - Yoshiaki Hasegawa
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Yasuo Yoshida
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| | - Fuminobu Yoshimura
- Department of Microbiology, School of Dentistry, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya, Aichi 464-8650, Japan
| |
Collapse
|
20
|
Lyme disease and relapsing fever Borrelia elongate through zones of peptidoglycan synthesis that mark division sites of daughter cells. Proc Natl Acad Sci U S A 2016; 113:9162-70. [PMID: 27506799 DOI: 10.1073/pnas.1610805113] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Agents that cause Lyme disease, relapsing fever, leptospirosis, and syphilis belong to the phylum Spirochaetae-a unique lineage of bacteria most known for their long, spiral morphology. Despite the relevance to human health, little is known about the most fundamental aspects of spirochete growth. Here, using quantitative microscopy to track peptidoglycan cell-wall synthesis, we found that the Lyme disease spirochete Borrelia burgdorferi displays a complex pattern of growth. B. burgdorferi elongates from discrete zones that are both spatially and temporally regulated. In addition, some peptidoglycan incorporation occurs along the cell body, with the notable exception of a large region at the poles. Newborn cells inherit a highly active zone of peptidoglycan synthesis at midcell that contributes to elongation for most of the cell cycle. Concomitant with the initiation of nucleoid separation and cell constriction, second and third zones of elongation are established at the 1/4 and 3/4 cellular positions, marking future sites of division for the subsequent generation. Positioning of elongation zones along the cell is robust to cell length variations and is relatively precise over long distances (>30 µm), suggesting that cells ‟sense" relative, as opposed to absolute, cell length to establish zones of peptidoglycan synthesis. The transition from one to three zones of peptidoglycan growth during the cell cycle is also observed in relapsing fever Borrelia. However, this mode of growth does not extend to representative species from other spirochetal genera, suggesting that this distinctive growth mode represents an evolutionary divide in the spirochete phylum.
Collapse
|
21
|
A Modified Shuttle Plasmid Facilitates Expression of a Flavin Mononucleotide-Based Fluorescent Protein in Treponema denticola ATCC 35405. Appl Environ Microbiol 2015; 81:6496-504. [PMID: 26162875 DOI: 10.1128/aem.01541-15] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 07/07/2015] [Indexed: 12/18/2022] Open
Abstract
Oral pathogens, including Treponema denticola, initiate the dysregulation of tissue homeostasis that characterizes periodontitis. However, progress of research on the roles of T. denticola in microbe-host interactions and signaling, microbial communities, microbial physiology, and molecular evolution has been hampered by limitations in genetic methodologies. This is typified by an extremely low transformation efficiency and inability to transform the most widely studied T. denticola strain with shuttle plasmids. Previous studies have suggested that robust restriction-modification (R-M) systems in T. denticola contributed to these problems. To facilitate further molecular genetic analysis of T. denticola behavior, we optimized existing protocols such that shuttle plasmid transformation efficiency was increased by >100-fold over prior reports. Here, we report routine transformation of T. denticola ATCC 35405 with shuttle plasmids, independently of both plasmid methylation status and activity of the type II restriction endonuclease encoded by TDE0911. To validate the utility of this methodological advance, we demonstrated expression and activity in T. denticola of a flavin mononucleotide-based fluorescent protein (FbFP) that is active under anoxic conditions. Addition of routine plasmid-based fluorescence labeling to the Treponema toolset will enable more-rigorous and -detailed studies of the behavior of this organism.
Collapse
|
22
|
Shin JM, Ateia I, Paulus JR, Liu H, Fenno JC, Rickard AH, Kapila YL. Antimicrobial nisin acts against saliva derived multi-species biofilms without cytotoxicity to human oral cells. Front Microbiol 2015; 6:617. [PMID: 26150809 PMCID: PMC4471743 DOI: 10.3389/fmicb.2015.00617] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 06/03/2015] [Indexed: 02/05/2023] Open
Abstract
Objectives: Nisin is a lantibiotic widely used for the preservation of food and beverages. Recently, investigators have reported that nisin may have clinical applications for treating bacterial infections. The aim of this study was to investigate the effects of ultra pure food grade Nisin ZP (>95% purity) on taxonomically diverse bacteria common to the human oral cavity and saliva derived multi-species oral biofilms, and to discern the toxicity of nisin against human cells relevant to the oral cavity. Methods: The minimum inhibitory concentrations and minimum bactericidal concentrations of taxonomically distinct oral bacteria were determined using agar and broth dilution methods. To assess the effects of nisin on biofilms, two model systems were utilized: a static and a controlled flow microfluidic system. Biofilms were inoculated with pooled human saliva and fed filter-sterilized saliva for 20–22 h at 37°C. Nisin effects on cellular apoptosis and proliferation were evaluated using acridine orange/ethidium bromide fluorescent nuclear staining and lactate dehydrogenase activity assays. Results: Nisin inhibited planktonic growth of oral bacteria at low concentrations (2.5–50 μg/ml). Nisin also retarded development of multi-species biofilms at concentrations ≥1 μg/ml. Specifically, under biofilm model conditions, nisin interfered with biofilm development and reduced biofilm biomass and thickness in a dose-dependent manner. The treatment of pre-formed biofilms with nisin resulted in dose- and time-dependent disruption of the biofilm architecture along with decreased bacterial viability. Human cells relevant to the oral cavity were unaffected by the treatment of nisin at anti-biofilm concentrations and showed no signs of apoptotic changes unless treated with much higher concentrations (>200 μg/ml). Conclusion: This work highlights the potential therapeutic value of high purity food grade nisin to inhibit the growth of oral bacteria and the development of biofilms relevant to oral diseases.
Collapse
Affiliation(s)
- Jae M Shin
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor MI, USA
| | - Islam Ateia
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor MI, USA
| | - Jefrey R Paulus
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor MI, USA
| | - Hongrui Liu
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor MI, USA
| | - J Christopher Fenno
- Department of Biologic and Materials Sciences, University of Michigan School of Dentistry, Ann Arbor MI, USA
| | - Alexander H Rickard
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor MI, USA
| | - Yvonne L Kapila
- Department of Periodontics and Oral Medicine, University of Michigan School of Dentistry, Ann Arbor MI, USA
| |
Collapse
|
23
|
Complete Genome Sequence for Treponema sp. OMZ 838 (ATCC 700772, DSM 16789), Isolated from a Necrotizing Ulcerative Gingivitis Lesion. GENOME ANNOUNCEMENTS 2014; 2:2/6/e01333-14. [PMID: 25540346 PMCID: PMC4276824 DOI: 10.1128/genomea.01333-14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The oral treponeme bacterium Treponema sp. OMZ 838 was originally isolated from a human necrotizing ulcerative gingivitis (NUG) lesion. Its taxonomic status remains uncertain. The complete genome sequence length was determined to be 2,708,067 bp, with a G+C content of 44.58%, and 2,236 predicted coding DNA sequences (CDS).
Collapse
|
24
|
Complete Genome Sequence of the Oral Spirochete Bacterium Treponema putidum Strain OMZ 758T (ATCC 700334T). GENOME ANNOUNCEMENTS 2014; 2:2/5/e01076-14. [PMID: 25342686 PMCID: PMC4208330 DOI: 10.1128/genomea.01076-14] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The oral spirochete bacterium Treponema putidum inhabits human periodontal niches. The complete genome sequence of the OMZ 758T (ATCC 700334T) strain of this species was determined, revealing a 2,796,913-bp chromosome, with a G+C content of 37.30% and a single plasmid (pTPu1; 3,649 bp) identical to pTS1 from Treponema denticola.
Collapse
|
25
|
Mo S, You M, Su YCF, Lacap-Bugler DC, Huo YB, Smith GJD, Leung WK, Watt RM. Multilocus sequence analysis of Treponema denticola strains of diverse origin. BMC Microbiol 2013; 13:24. [PMID: 23379917 PMCID: PMC3574001 DOI: 10.1186/1471-2180-13-24] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 01/24/2013] [Indexed: 01/19/2023] Open
Abstract
Background The oral spirochete bacterium Treponema denticola is associated with both the incidence and severity of periodontal disease. Although the biological or phenotypic properties of a significant number of T. denticola isolates have been reported in the literature, their genetic diversity or phylogeny has never been systematically investigated. Here, we describe a multilocus sequence analysis (MLSA) of 20 of the most highly studied reference strains and clinical isolates of T. denticola; which were originally isolated from subgingival plaque samples taken from subjects from China, Japan, the Netherlands, Canada and the USA. Results The sequences of the 16S ribosomal RNA gene, and 7 conserved protein-encoding genes (flaA, recA, pyrH, ppnK, dnaN, era and radC) were successfully determined for each strain. Sequence data was analyzed using a variety of bioinformatic and phylogenetic software tools. We found no evidence of positive selection or DNA recombination within the protein-encoding genes, where levels of intraspecific sequence polymorphism varied from 18.8% (flaA) to 8.9% (dnaN). Phylogenetic analysis of the concatenated protein-encoding gene sequence data (ca. 6,513 nucleotides for each strain) using Bayesian and maximum likelihood approaches indicated that the T. denticola strains were monophyletic, and formed 6 well-defined clades. All analyzed T. denticola strains appeared to have a genetic origin distinct from that of ‘Treponema vincentii’ or Treponema pallidum. No specific geographical relationships could be established; but several strains isolated from different continents appear to be closely related at the genetic level. Conclusions Our analyses indicate that previous biological and biophysical investigations have predominantly focused on a subset of T. denticola strains with a relatively narrow range of genetic diversity. Our methodology and results establish a genetic framework for the discrimination and phylogenetic analysis of T. denticola isolates, which will greatly assist future biological and epidemiological investigations involving this putative ‘periodontopathogen’.
Collapse
Affiliation(s)
- Sisu Mo
- Oral Biosciences, Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong
| | | | | | | | | | | | | | | |
Collapse
|
26
|
Abstract
Oral Treponema species, most notably T. denticola, are implicated in the destructive effects of human periodontal disease. Progress in the molecular analysis of interactions between T. denticola and host proteins is reviewed here, with particular emphasis on the characterization of surface-expressed and secreted proteins of T. denticola involved in interactions with host cells, extracellular matrix components, and components of the innate immune system.
Collapse
Affiliation(s)
- J. Christopher Fenno
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|