1
|
Weegen M, Poggio M, Willitsch S. Coupling Trapped Ions to a Nanomechanical Oscillator. PHYSICAL REVIEW LETTERS 2024; 133:223201. [PMID: 39672119 DOI: 10.1103/physrevlett.133.223201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 10/07/2024] [Indexed: 12/15/2024]
Abstract
Cold ions in traps are well-established, highly controllable systems with a wide variety of applications in quantum science, precision spectroscopy, clocks, and chemistry. Nanomechanical oscillators are used in advanced sensing applications and for exploring the border between classical and quantum physics. Here, we report on the implementation of a hybrid system combining a metallic nanowire with laser-cooled ions in a miniaturized ion trap. Operating the experiment in the classical regime, we demonstrate resonant and off-resonant coupling of the two systems and the coherent motional excitation of the ion by the mechanical drive of the nanowire. The present results prove the feasibility of mechanically coupling ions to nanooscillators and open up avenues for mechanically manipulating the motion of trapped ions as well as for the development of ion-mechanical hybrid quantum systems.
Collapse
|
2
|
Martins FBV, Zhelyazkova V, Merkt F. Cold reactions of He + with OCS and CO 2: competitive kinetics and the effects of the molecular multipole moments. Phys Chem Chem Phys 2024; 26:24799-24808. [PMID: 39297210 PMCID: PMC11413858 DOI: 10.1039/d4cp02871f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 08/18/2024] [Indexed: 09/22/2024]
Abstract
The reactions of He+ with OCS and CO2 have been studied at collision energies between ∼kB ⋅ 200 mK and ∼kB ⋅ 30 K by merging a beam of Rydberg He atoms with rotationally cold (∼3.5 K) seeded supersonic expansions containing either OCS or 13CO2 or a mixture of OCS (mole fraction 23.2%) and 13CO2 (76.8%). The observed product ions of the He+ + 13CO2 and He+ + OCS reactions are 13CO+, and CS+ and CO+, respectively. The He+ + OCS capture rate coefficient increases by ∼75% with decreasing collision energy over the investigated range, whereas that of He+ + 13CO2 decreases by ∼40%. The analysis of the experimental results using an adiabatic-channel capture model indicates that these opposite collision-energy dependences of the rate coefficients arise from the interaction between the charge of the ion and the electric multipole moments of OCS and 13CO2. From the relative product-ion yields observed when using the mixture of OCS and 13CO2, the He+ + OCS collisions are inferred to be ∼20% more reactive than those between He+ and 13CO2. The comparison of the calculated thermal rate coefficients with earlier experiments suggests that about half of the He+ + 13CO2 collisions are reactive.
Collapse
Affiliation(s)
- Fernanda B V Martins
- ETH Zürich, Institute of Molecular Physical Science, CH-8093 Zürich, Switzerland.
| | | | - Frédéric Merkt
- ETH Zürich, Institute of Molecular Physical Science, CH-8093 Zürich, Switzerland.
| |
Collapse
|
3
|
Krohn OA, Lewandowski HJ. Cold Ion-Molecule Reactions in the Extreme Environment of a Coulomb Crystal. J Phys Chem A 2024. [PMID: 38359783 DOI: 10.1021/acs.jpca.3c07546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Coulomb crystals provide a unique environment in which to study ion-neutral gas-phase reactions. In these cold, trapped ensembles, we are able to study the kinetics and dynamics of small molecular systems. These measurements have connections to chemistry in the Interstellar Medium (ISM) and planetary atmospheres. This Feature Article will describe recent work in our laboratory that uses Coulomb crystals to study translationally cold, ion-neutral reactions. We provide a description of how the various affordances of our experimental system allow for detailed studies of the reaction mechanisms and the corresponding products. In particular, we will describe quantum-state resolved reactions, isomer-dependent reactions, and reactions with a rarely studied, astrophysically relevant ion, CCl+.
Collapse
Affiliation(s)
- O A Krohn
- JILA and the Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - H J Lewandowski
- JILA and the Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
4
|
Zhelyazkova V, Martins FBV, Schilling S, Merkt F. Reaction of an Ion and a Free Radical near 0 K: He + + NO → He + N + + O. J Phys Chem A 2023; 127:1458-1468. [PMID: 36752385 PMCID: PMC9940198 DOI: 10.1021/acs.jpca.2c08221] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/09/2023] [Indexed: 02/09/2023]
Abstract
The reactions between ions and free radicals are among the fastest chemical reactions. They are predicted to proceed with large rates, even near 0 K, but so far, this prediction has not been verified experimentally. We report on measurements of the rate coefficient of the reaction between the ion He+ and the free radical NO at collision energies in the range between 0 and ∼ kB·10 K. To avoid heating of the ions by stray electric fields, the reaction is observed within the large orbit of a Rydberg electron of principal quantum number n ≥ 30, which shields the ion from external electric fields without affecting the reaction. Low collision energies are reached by merging a supersonic beam of He Rydberg atoms with a supersonic beam of NO molecules and adjusting their relative velocity using a chip-based Rydberg-Stark decelerator and deflector. We observe a strong enhancement of the reaction rate at collision energies below ∼kB·2 K. This enhancement is interpreted on the basis of adiabatic-channel capture-rate calculations as arising from the near-degenerate rotational levels of opposite parity resulting from the Λ-doubling in the X 2Π1/2 ground state of NO. With these new results, we examine the reliability of broadly used approximate analytic expressions for the thermal rate constants of ion-molecule reactions at low temperatures.
Collapse
Affiliation(s)
| | | | - Serena Schilling
- Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| | - Frédéric Merkt
- Laboratory of Physical Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland
| |
Collapse
|
5
|
Zhelyazkova V, Martins FBV, Žeško M, Merkt F. Multipole-moment effects in ion-molecule reactions at low temperatures: part II - charge-quadrupole-interaction-induced suppression of the He + + N 2 reaction at collision energies below kB·10 K. Phys Chem Chem Phys 2022; 24:2843-2858. [PMID: 35050290 PMCID: PMC8809083 DOI: 10.1039/d1cp04798a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 12/23/2021] [Indexed: 11/22/2022]
Abstract
We report on an experimental and theoretical investigation of the He+ + N2 reaction at collision energies in the range between 0 and kB·10 K. The reaction is studied within the orbit of a highly excited Rydberg electron after merging a beam of He Rydberg atoms (He(n), n is the principal quantum number), with a supersonic beam of ground-state N2 molecules using a surface-electrode Rydberg-Stark decelerator and deflector. The collision energy Ecoll is varied by changing the velocity of the He(n) atoms for a fixed velocity of the N2 beam and the relative yields of the ionic reaction products N+ and N2+ are monitored in a time-of-flight mass spectrometer. We observe a reduction of the total reaction-product yield of ∼30% as Ecoll is reduced from ≈kB·10 K to zero. An adiabatic capture model is used to calculate the rotational-state-dependent interaction potentials experienced by the N2 molecules in the electric field of the He+ ion and the corresponding collision-energy-dependent capture rate coefficients. The total collision-energy-dependent capture rate coefficient is then determined by summing over the contributions of the N2 rotational states populated at the 7.0 K rotational temperature of the supersonic beam. The measured and calculated rate coefficients are in good agreement, which enables us to attribute the observed reduction of the reaction rate at low collision energies to the negative quadrupole moment, Qzz, of the N2 molecules. The effect of the sign of the quadrupole moment is illustrated by calculations of the rotational-state-dependent capture rate coefficients for ion-molecule reactions involving N2 (negative Qzz value) and H2 (positive Qzz value) for |J, M〉 rotational states with J ≤ 5 (M is the quantum number associated with the projection of the rotational angular momentum vector J⃑ on the collision axis). With decreasing value of |M|, J⃑ gradually aligns perpendicularly to the collision axis, leading to increasingly repulsive (attractive) interaction potentials for diatomic molecules with positive (negative) Qzz values and to reaction rate coefficients that decrease (increase) with decreasing collision energies.
Collapse
Affiliation(s)
| | | | - Matija Žeško
- Laboratory for Physical Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland.
| | - Frédéric Merkt
- Laboratory for Physical Chemistry, ETH Zurich, CH-8093 Zurich, Switzerland.
| |
Collapse
|
6
|
Zhelyazkova V, Martins FBV, Agner JA, Schmutz H, Merkt F. Multipole-moment effects in ion-molecule reactions at low temperatures: part I - ion-dipole enhancement of the rate coefficients of the He + + NH 3 and He + + ND 3 reactions at collisional energies Ecoll/ kB near 0 K. Phys Chem Chem Phys 2021; 23:21606-21622. [PMID: 34569565 PMCID: PMC8494273 DOI: 10.1039/d1cp03116c] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/02/2021] [Indexed: 11/29/2022]
Abstract
The energy dependence of the rates of the reactions between He+ and ammonia (NY3, Y = {H,D}), forming NY2+, Y and He as well as NY+, Y2 and He, and the corresponding product branching ratios have been measured at low collision energies Ecoll between 0 and kB·40 K using a recently developed merged-beam technique [Allmendinger et al., ChemPhysChem, 2016, 17, 3596]. To avoid heating of the ions by stray electric fields, the reactions are observed within the large orbit of a highly excited Rydberg electron. A beam of He Rydberg atoms was merged with a supersonic beam of ammonia using a curved surface-electrode Rydberg-Stark deflector, which is also used for adjusting the final velocity of the He Rydberg atoms, and thus the collision energy. A collision-energy resolution of about 200 mK was reached at the lowest Ecoll values. The reaction rate coefficients exhibit a sharp increase at collision energies below ∼kB·5 K and pronounced deviations from Langevin-capture behaviour. The experimental results are interpreted in terms of an adiabatic capture model describing the rotational-state-dependent orientation of the ammonia molecules by the electric field of the He+ atom. The model faithfully describes the experimental observations and enables the identification of three classes of |JKMp〉 rotational states of the ammonia molecules showing different low-energy capture behaviour: (A) high-field-seeking states with |KM| ≥ 1 correlating to the lower component of the umbrella-motion tunnelling doublet at low fields. These states undergo a negative linear Stark shift, which leads to strongly enhanced rate coefficients; (B) high-field-seeking states subject to a quadratic Stark shift at low fields and which exhibit only weak rate enhancements; and (C) low-field-seeking states with |KM| ≥ 1. These states exhibit a positive Stark shift at low fields, which completely suppresses the reactions at low collision energies. Marked differences in the low-energy reactivity of NH3 and ND3-the rate enhancements in ND3 are more pronounced than in NH3-are quantitatively explained by the model. They result from the reduced magnitudes of the tunnelling splitting and rotational intervals in ND3 and the different occupations of the rotational levels in the supersonic beam caused by the different nuclear-spin statistical weights. Thermal capture rate constants are derived from the model for the temperature range between 0 and 10 K relevant for astrochemistry. Comparison of the calculated thermal capture rate coefficients with the absolute reaction rates measured above 27 K by Marquette et al. (Chem. Phys. Lett., 1985, 122, 431) suggests that only 40% of the close collisions are reactive.
Collapse
|
7
|
Schmidt S, Plamper D, Jekkel J, Weitzel KM. Self-Reactions in the HBr + (DBr +) + HBr System: A State-Selective Investigation of the Role of Rotation. J Phys Chem A 2020; 124:8461-8468. [PMID: 32960596 DOI: 10.1021/acs.jpca.0c07361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Self-reactions observed in the HBr+ (DBr+) + HBr system have been investigated using a guided ion-beam experiment under single-collision conditions. The reaction channels observed are proton transfer/hydrogen abstraction (PT/HA) in the case of HBr+ and deuteron transfer/hydrogen abstraction (DT/HA) and charge transfer (CT) in the case of DBr+. HBr+/DBr+ ions have been formed with rotational energies selected using the resonance-enhanced multiphoton ionization (REMPI) formation process. Cross sections have been measured as a function of the rotational energy of the ion, Erot, and of the center-of-mass collision energy, Ecm. In the region of low rotational energies, the cross section for both PT/HA and DT/HA decreases with increasing ion rotation. In this region, the cross section for CT increases with increasing ion rotation. For higher rotational energies, the cross section increases with increasing ion rotation for PT/HA and less pronounced for DT/HA. The cross section for CT becomes independent of ion rotation for high rotational energies. Since all reaction channels are exothermic, all cross sections decrease with increasing Ecm.
Collapse
Affiliation(s)
- Sebastian Schmidt
- Philipps-Universität Marburg, Fachbereich Chemie, Marburg 35032, Germany
| | - Dominik Plamper
- Philipps-Universität Marburg, Fachbereich Chemie, Marburg 35032, Germany
| | - Jasmin Jekkel
- Philipps-Universität Marburg, Fachbereich Chemie, Marburg 35032, Germany
| | | |
Collapse
|
8
|
Wang J, Kilaj A, He L, Długołęcki K, Willitsch S, Küpper J. Spatial Separation of the Conformers of Methyl Vinyl Ketone. J Phys Chem A 2020; 124:8341-8345. [DOI: 10.1021/acs.jpca.0c05893] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jia Wang
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Ardita Kilaj
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Lanhai He
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Karol Długołęcki
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Stefan Willitsch
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Jochen Küpper
- Center for Free-Electron Laser Science, Deutsches Elektronen-Synchrotron DESY, Notkestrasse 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
9
|
Unke OT, Koner D, Patra S, Käser S, Meuwly M. High-dimensional potential energy surfaces for molecular simulations: from empiricism to machine learning. MACHINE LEARNING-SCIENCE AND TECHNOLOGY 2020. [DOI: 10.1088/2632-2153/ab5922] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
10
|
Schmid PC, Greenberg J, Nguyen TL, Thorpe JH, Catani KJ, Krohn OA, Miller MI, Stanton JF, Lewandowski HJ. Isomer-selected ion–molecule reactions of acetylene cations with propyne and allene. Phys Chem Chem Phys 2020; 22:20303-20310. [DOI: 10.1039/d0cp03953e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A combined experimental and quantum chemistry study between sympathetically cooled acetylene cations and propyne or allene explains the dramatically different reaction mechanisms.
Collapse
Affiliation(s)
- P. C. Schmid
- JILA and the Department of Physics
- University of Colorado
- Boulder
- USA
- I. Physikalisches Institut
| | - J. Greenberg
- JILA and the Department of Physics
- University of Colorado
- Boulder
- USA
| | - T. L. Nguyen
- Quantum Theory Project
- Departments of Chemistry and Physics
- University of Florida
- Gainesville
- USA
| | - J. H. Thorpe
- Quantum Theory Project
- Departments of Chemistry and Physics
- University of Florida
- Gainesville
- USA
| | - K. J. Catani
- JILA and the Department of Physics
- University of Colorado
- Boulder
- USA
| | - O. A. Krohn
- JILA and the Department of Physics
- University of Colorado
- Boulder
- USA
| | - M. I. Miller
- JILA and the Department of Physics
- University of Colorado
- Boulder
- USA
| | - J. F. Stanton
- Quantum Theory Project
- Departments of Chemistry and Physics
- University of Florida
- Gainesville
- USA
| | | |
Collapse
|
11
|
McKemmish LK, Tennyson J. General mathematical formulation of scattering processes in atom-diatomic collisions in the RmatReact methodology. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2019; 377:20180409. [PMID: 31378187 PMCID: PMC6710894 DOI: 10.1098/rsta.2018.0409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/26/2019] [Indexed: 06/10/2023]
Abstract
Accurately modelling cold and ultracold reactive collisions occurring over deep potential wells, such as [Formula: see text], requires the development of new theoretical and computational methodologies. One potentially useful framework is the R-matrix method adopted widely for electron-molecule collisions which has more recently been applied to non-reactive heavy-particle collisions such as Ar-Ar. The existing treatment of non-reactive elastic and inelastic scattering needs to be substantially extended to enable modelling of reactive collisions: this is the subject of this paper. Herein, we develop the general mathematical formulation for non-reactive elastic and inelastic scattering, photoassociation, photodissociation, charge exchange and reactive scattering using the R-matrix method. Of particular note is that the inner region, of central importance to calculable R-matrix methodologies, must be finite in all scattering coordinates rather than a single scattering coordinate as for non-reactive scattering. This article is part of a discussion meeting issue 'Advances in hydrogen molecular ions: H3+, H5+ and beyond'.
Collapse
Affiliation(s)
- Laura K. McKemmish
- School of Chemistry, University of New South Wales, Kensington, Sydney, NSW 2052, Australia
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| | - Jonathan Tennyson
- Department of Physics and Astronomy, University College London, London WC1E 6BT, UK
| |
Collapse
|
12
|
Rivero U, Unke OT, Meuwly M, Willitsch S. Reactive atomistic simulations of Diels-Alder reactions: The importance of molecular rotations. J Chem Phys 2019; 151:104301. [DOI: 10.1063/1.5114981] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Uxía Rivero
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Oliver T. Unke
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Markus Meuwly
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| | - Stefan Willitsch
- Department of Chemistry, University of Basel, Klingelbergstrasse 80, 4056 Basel, Switzerland
| |
Collapse
|
13
|
González-Sánchez L, Gómez-Carrasco S, Santadaría AM, Wester R, Gianturco FA. Collisional Quantum Dynamics for MgH - ( 1Σ +) With He as a Buffer Gas: Ionic State-Changing Reactions in Cold Traps. Front Chem 2019; 7:64. [PMID: 30809520 PMCID: PMC6379277 DOI: 10.3389/fchem.2019.00064] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 01/23/2019] [Indexed: 11/17/2022] Open
Abstract
We present in this paper a detailed theoretical and computational analysis of the quantum inelastic dynamics involving the lower rotational levels of the MgH− (X1Σ+) molecular anion in collision with He atoms which provide the buffer gas in a cold trap. The interaction potential between the molecular partner and the He (1S) gaseous atoms is obtained from accurate quantum chemical calculations at the post-Hartree-Fock level as described in this paper. The spatial features and the interaction strength of the present potential energy surface (PES) are analyzed in detail and in comparison with similar, earlier results involving the MgH+ (1Σ) cation interacting with He atoms. The quantum, multichannel dynamics is then carried out using the newly obtained PES and the final inelastic rats constants, over the range of temperatures which are expected to be present in a cold ion trap experiment, are obtained to generate the multichannel kinetics of population changes observed for the molecular ion during the collisional cooling process. The rotational populations finally achieved at specific temperatures are linked to state-selective laser photo-detachment experiments to be carried out in our laboratory.All intermediate steps of the quantum modeling are also compared with the behavior of the corresponding MgH+ cation in the trap and the marked differences which exist between the collisional dynamics of the two systems are dicussed and explained. The feasibility of the present anion to be involved in state-selective photo-detachment experiments is fully analyzed and suggestions are made for the best performing conditions to be selected during trap experiments.
Collapse
Affiliation(s)
| | | | | | - Roland Wester
- Department of Physics, Institut für Ionenphysik und Angewandte Physik, Universitaet Innsbruck, Innsbruck, Austria
| | - Francesco A Gianturco
- Department of Physics, Institut für Ionenphysik und Angewandte Physik, Universitaet Innsbruck, Innsbruck, Austria
| |
Collapse
|
14
|
Observation of different reactivities of para and ortho-water towards trapped diazenylium ions. Nat Commun 2018; 9:2096. [PMID: 29844308 PMCID: PMC5974139 DOI: 10.1038/s41467-018-04483-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 04/27/2018] [Indexed: 11/08/2022] Open
Abstract
Water is one of the most fundamental molecules in chemistry, biology and astrophysics. It exists as two distinct nuclear-spin isomers, para- and ortho-water, which do not interconvert in isolated molecules. The experimental challenges in preparing pure samples of the two isomers have thus far precluded a characterization of their individual chemical behavior. Capitalizing on recent advances in the electrostatic deflection of polar molecules, we separate the ground states of para- and ortho-water in a molecular beam to show that the two isomers exhibit different reactivities in a prototypical reaction with trapped diazenylium ions. Based on ab initio calculations and a modelling of the reaction kinetics using rotationally adiabatic capture theory, we rationalize this finding in terms of different rotational averaging of ion-dipole interactions during the reaction. Water molecules exist as two distinct nuclear-spin isomers denoted ortho and para. Here, the authors separate these two isomers in the gas phase to show that they exhibit different reactivities in a prototypical proton-transfer reaction.
Collapse
|