1
|
Burmeister JW, Bossenberger T, Nalichowski A, Hammoud A, Baran G, Dominello MM. Total body irradiation delivered using a dedicated Co-60 TBI unit: Evaluation of dosimetric uniformity and dose verification. J Appl Clin Med Phys 2024; 25:e14188. [PMID: 37910646 PMCID: PMC10860458 DOI: 10.1002/acm2.14188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/03/2023] [Accepted: 10/11/2023] [Indexed: 11/03/2023] Open
Abstract
This work presents the dosimetric characteristics of Total Body Irradiation (TBI) delivered using a dedicated Co-60 TBI unit. We demonstrate the ability to deliver a uniform dose to the entire patient without the need for a beam spoiler or patient-specific compensation. Full dose distributions are calculated using an in-house Monte Carlo treatment planning system, and cumulative dose distributions are created by deforming the dose distributions within two different patient orientations. Sample dose distributions and profiles are provided to illustrate the plan characteristics, and dose and DVH statistics are provided for a heterogeneous cohort of patients. The patient cohort includes adult and pediatric patients with a range of 132-198 cm in length and 16.5-37.5 cm in anterior-posterior thickness. With the exception of the lungs, a uniform dose of 12 Gy is delivered to the patient with nearly the entire volume receiving a dose within 10% of the prescription dose. Mean lung doses (MLDs) are maintained below the estimated threshold for radiation pneumonitis, with MLDs ranging from 7.3 to 9.3 Gy (estimated equivalent dose in 2 Gy fractions (EQD2 ) of 6.2-8.5 Gy). Dose uniformity is demonstrated across five anatomical locations within the patient for which mean doses are all within 3.1% of the prescription dose. In-vivo dosimetry demonstrates excellent agreement between measured and calculated doses, with 78% of measurements within ±5% of the calculated dose and 99% within ±10%. These results demonstrate a state-of-the-art TBI planning and delivery system using a dedicated TBI unit and hybrid in-house and commercial planning techniques which provide comprehensive dosimetric data for TBI treatment plans that are accurately verified using in-vivo dosimetry.
Collapse
Affiliation(s)
- Jay W. Burmeister
- Department of OncologyWayne State University School of MedicineDetroitMichiganUSA
- Gershenson Radiation Oncology CenterBarbara Ann Karmanos Cancer InstituteDetroitMichiganUSA
| | - Todd Bossenberger
- Gershenson Radiation Oncology CenterBarbara Ann Karmanos Cancer InstituteDetroitMichiganUSA
| | - Adrian Nalichowski
- Department of OncologyWayne State University School of MedicineDetroitMichiganUSA
- Gershenson Radiation Oncology CenterBarbara Ann Karmanos Cancer InstituteDetroitMichiganUSA
| | - Ahmad Hammoud
- Gershenson Radiation Oncology CenterBarbara Ann Karmanos Cancer InstituteDetroitMichiganUSA
| | - Geoff Baran
- Gershenson Radiation Oncology CenterBarbara Ann Karmanos Cancer InstituteDetroitMichiganUSA
| | - Michael M. Dominello
- Department of OncologyWayne State University School of MedicineDetroitMichiganUSA
| |
Collapse
|
2
|
Niver AP, Hammer CG, Culberson WS, Jacqmin D, Pogue BW. Non-contact scintillator imaging dosimetry for total body irradiation in radiotherapy. Phys Med Biol 2024; 69:035017. [PMID: 38171002 PMCID: PMC10915642 DOI: 10.1088/1361-6560/ad1a23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
Objective.The goal of this work was to assess the potential use of non-contact scintillator imaging dosimetry for tracking delivery in total body irradiation (TBI).Approach. Studies were conducted to measure the time-gated light signals caused by radiation exposure to scintillators that were placed on tissue. The purpose was to assess efficacy in conditions common for TBI, such as the large source to surface distance (SSD) commonly used, the reduced dose rate, the inclusion of a plexiglass spoiler, angle of incidence and effects of peripheral patient support structures. Dose validation work was performed on phantoms that mimicked human tissue optical properties and body geometry. For this work, 1.5 cm diameter scintillating disks were developed and affixed to phantoms under various conditions. A time-gated camera synchronized to the linac pulses was used for imaging. Scintillation intensity was quantified in post processing and the values verified with simultaneous thermolumiescent dosimeter (TLD) measurements. Mean scintillation values in each region were compared to TLD measurements to produce dose response curves, and scatter effects from the spoiler and patient bed were quantified.Main results.The dose determined by scintillators placed in TBI conditions agreed with TLD dose determinations to within 2.7%, and did so repeatedly within 1.0% standard deviation variance. A linear fit between scintillator signal and TLD dose was achieved with anR2= 0.996 across several body sites. Scatter from the patient bed resulted in a maximum increase of 19% in dose.Significance.This work suggests that non-contact scintillator imaging dosimetry could be used to verify dose in real time to patients undergoing TBI at the prescribed long SSD and low dose rate. It also has shown that patient transport stretchers can significantly influence surface dose by increasing scatter.
Collapse
Affiliation(s)
- Alexander P Niver
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, WI, United States of America
| | - Clifford G Hammer
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, WI, United States of America
| | - Wesley S Culberson
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, WI, United States of America
| | - Dustin Jacqmin
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, WI, United States of America
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, WI, United States of America
| | - Brian W Pogue
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, WI, United States of America
- Department of Human Oncology, School of Medicine and Public Health, University of Wisconsin-Madison, WI, United States of America
| |
Collapse
|
3
|
Strolin S, Paolani G, Santoro M, Cercenelli L, Bortolani B, Ammendolia I, Cammelli S, Cicoria G, Win PW, Morganti AG, Marcelli E, Strigari L. Improving total body irradiation with a dedicated couch and 3D-printed patient-specific lung blocks: A feasibility study. Front Oncol 2023; 12:1046168. [PMID: 36741733 PMCID: PMC9893493 DOI: 10.3389/fonc.2022.1046168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 11/16/2022] [Indexed: 01/20/2023] Open
Abstract
Introduction Total body irradiation (TBI) is an important component of the conditioning regimen in patients undergoing hematopoietic stem cell transplants. TBI is used in very few patients and therefore it is generally delivered with standard linear accelerators (LINACs) and not with dedicated devices. Severe pulmonary toxicity is the most common adverse effect after TBI, and patient-specific lead blocks are used to reduce mean lung dose. In this context, online treatment setup is crucial to achieve precise positioning of the lung blocks. Therefore, in this study we aim to report our experience at generating 3D-printed patient-specific lung blocks and coupling a dedicated couch (with an integrated onboard image device) with a modern LINAC for TBI treatment. Material and methods TBI was planned and delivered (2Gy/fraction given twice a day, over 3 days) to 15 patients. Online images, to be compared with planned digitally reconstructed radiographies, were acquired with the couch-dedicated Electronic Portal Imaging Device (EPID) panel and imported in the iView software using a homemade Graphical User Interface (GUI). In vivo dosimetry, using Metal-Oxide Field-Effect Transistors (MOSFETs), was used to assess the setup reproducibility in both supine and prone positions. Results 3D printing of lung blocks was feasible for all planned patients using a stereolithography 3D printer with a build volume of 14.5×14.5×17.5 cm3. The number of required pre-TBI EPID-images generally decreases after the first fraction. In patient-specific quality assurance, the difference between measured and calculated dose was generally<2%. The MOSFET measurements reproducibility along each treatment and patient was 2.7%, in average. Conclusion The TBI technique was successfully implemented, demonstrating that our approach is feasible, flexible, and cost-effective. The use of 3D-printed patient-specific lung blocks have the potential to personalize TBI treatment and to refine the shape of the blocks before delivery, making them extremely versatile.
Collapse
Affiliation(s)
- Silvia Strolin
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giulia Paolani
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Miriam Santoro
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Laura Cercenelli
- eDIMES Lab-Laboratory of Bioengineering, Department of Experimental Diagnostic and Specialty Medicine, (DIMES), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Barbara Bortolani
- eDIMES Lab-Laboratory of Bioengineering, Department of Experimental Diagnostic and Specialty Medicine, (DIMES), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Ilario Ammendolia
- Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Silvia Cammelli
- Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gianfranco Cicoria
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Phyo Wai Win
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Alessio G. Morganti
- Radiation Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Experimental, Diagnostic and Specialty Medicine-DIMES, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Emanuela Marcelli
- eDIMES Lab-Laboratory of Bioengineering, Department of Experimental Diagnostic and Specialty Medicine, (DIMES), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Lidia Strigari
- Department of Medical Physics, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
4
|
Khanna D, Pandu B, Mohandass P, Ninan H, Elavarasan R, Jacob S, Sunny G. Evaluation of Surface Dose and Commissioning of Compensator-Based Total Body Irradiation. J Med Phys 2022; 47:173-180. [PMID: 36212207 PMCID: PMC9542993 DOI: 10.4103/jmp.jmp_137_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 02/22/2022] [Accepted: 02/26/2022] [Indexed: 12/03/2022] Open
Abstract
Purpose: The aim of the current study is to commission compensator-based total body irradiation (TBI) and to compare surface dose using percentage depth dose (PDD) while varying the distance between beam spoiler and phantom surface. Materials and Methods: TBI commissioning was performed on Elekta Synergy® Platform linear accelerator for bilateral extended source to surface distance treatment technique. The PDD was measured by varying the distance (10 cm, 20 cm, 30 cm, and 40 cm) between the beam spoiler and the phantom surface. Beam profile and half-value layer (HVL) measurement were carried out using the FC65 ion-chamber. Quality assurance (QA) was performed using an in-house rice-flour phantom (RFP). In-vivo diodes (IVD) were placed on the RFP at various regions to measure the delivered dose, and it was compared to the calculated dose. Results: An increase in Dmax and surface dose was observed when beam spoiler was moved away from the phantom surface. The flatness and symmetry of the beam profile were calculated. The HVL of Perspex and aluminum is 17 cm and 8 cm, respectively. The calculated dose of each region was compared to the measured dose on the RFP with IVD, and the findings showed that the variation was <4.7% for both Perspex and Aluminum compensators. Conclusion: The commissioning of the compensator-based TBI technique was performed and its QA measurements were carried out. The Mayneord factor corrected PDD and measured PDD values were compared. The results are well within the clinical tolerance limit. This study concludes that 10 cm −20 cm is the optimal distance from the beam spoiler to phantom surface to achieve prescribed dose to the skin.
Collapse
|
5
|
Ahmed S, Bossenberger T, Nalichowski A, Bredfeldt JS, Bartlett S, Bertone K, Dominello M, Dziemianowicz M, Komajda M, Makrigiorgos GM, Marcus KJ, Ng A, Thomas M, Burmeister J. A bi-institutional multi-disciplinary failure mode and effects analysis (FMEA) for a Co-60 based total body irradiation technique. Radiat Oncol 2021; 16:224. [PMID: 34798879 PMCID: PMC8605584 DOI: 10.1186/s13014-021-01894-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 08/25/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND We aim to assess the risks associated with total body irradiation (TBI) delivered using a commercial dedicated Co-60 irradiator, and to evaluate inter-institutional and inter-professional variations in the estimation of these risks. METHODS A failure mode and effects analysis (FMEA) was generated using guidance from the AAPM TG-100 report for quantitative estimation of prospective risk metrics. Thirteen radiation oncology professionals from two institutions rated possible failure modes (FMs) for occurrence (O), severity (S), and detectability (D) indices to generate a risk priority number (RPN). The FMs were ranked by descending RPN value. Absolute gross differences (AGD) in resulting RPN values and Jaccard Index (JI; for the top 20 FMs) were calculated. The results were compared between professions and institutions. RESULTS A total of 87 potential FMs (57, 15, 10, 3, and 2 for treatment, quality assurance, planning, simulation, and logistics respectively) were identified and ranked, with individual RPN ranging between 1-420 and mean RPN values ranging between 6 and 74. The two institutions shared 6 of their respective top 20 FMs. For various institutional and professional comparison pairs, the number of common FMs in the top 20 FMs ranged from 6 to 13, with JI values of 18-48%. For the top 20 FMs, the trend in inter-professional variability was institution-specific. The mean AGD values ranged between 12.5 and 74.5 for various comparison pairs. AGD values differed the most for medical physicists (MPs) in comparison to other specialties i.e. radiation oncologists (ROs) and radiation therapists (RTs) [MPs-vs-ROs: 36.3 (standard deviation SD = 34.1); MPs-vs-RTs: 41.2 (SD = 37.9); ROs-vs-RTs: 12.5 (SD = 10.8)]. Trends in inter-professional AGD values were similar for both institutions. CONCLUSION This inter-institutional comparison provides prospective risk analysis for a new treatment delivery unit and illustrates the institution-specific nature of FM prioritization, primarily due to operational differences. Despite being subjective in nature, the FMEA is a valuable tool to ensure the identification of the most significant risks, particularly when implementing a novel treatment modality. The creation of a bi-institutional, multidisciplinary FMEA for this unique TBI technique has not only helped identify potential risks but also served as an opportunity to evaluate clinical and safety practices from the perspective of both multiple professional roles and different institutions.
Collapse
Affiliation(s)
- Shahbaz Ahmed
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Todd Bossenberger
- Gershenson Radiation Oncology Center, Karmanos Cancer Center, Detroit, MI, USA
| | - Adrian Nalichowski
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Gershenson Radiation Oncology Center, Karmanos Cancer Center, Detroit, MI, USA
| | - Jeremy S Bredfeldt
- Dana Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Sarah Bartlett
- Dana Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Kristen Bertone
- Dana Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Michael Dominello
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Mark Dziemianowicz
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Melanie Komajda
- Gershenson Radiation Oncology Center, Karmanos Cancer Center, Detroit, MI, USA
| | - G Mike Makrigiorgos
- Dana Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Karen J Marcus
- Dana Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Andrea Ng
- Dana Farber/Brigham and Women's Cancer Center, Harvard Medical School, Boston, MA, USA
| | - Marvin Thomas
- Gershenson Radiation Oncology Center, Karmanos Cancer Center, Detroit, MI, USA
| | - Jay Burmeister
- Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA
- Gershenson Radiation Oncology Center, Karmanos Cancer Center, Detroit, MI, USA
| |
Collapse
|
6
|
Tendler II, Bredfeldt JS, Zhang R, Bruza P, Jermyn M, Pogue BW, Gladstone DJ. Technical Note: Quality assurance and relative dosimetry testing of a 60 Co total body irradiator using optical imaging. Med Phys 2019; 46:3674-3678. [PMID: 31152565 DOI: 10.1002/mp.13637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/15/2019] [Accepted: 05/28/2019] [Indexed: 11/07/2022] Open
Abstract
PURPOSE The aim of this study was to create an optical imaging-based system for quality assurance (QA) testing of a dedicated Co-60 total body irradiation (TBI) machine. Our goal is to streamline the QA process by minimizing the amount time necessary for tests such as verification of dose rate and field homogeneity. METHODS Plastic scintillating rods were placed directly on the patient treatment couch of a dedicated TBI 60 Co irradiator. A tripod-mounted intensified camera was placed directly adjacent to the couch. Images were acquired over a 30-s period once the cobalt source was fully exposed. Real-time image filtering was used; cumulative images were flatfield corrected as well as background and darkfield subtracted. Scintillators were used to measure light-radiation field correspondence, dose rate, field homogeneity, and symmetry. Dose rate effects were measured by modifying the height of the treatment couch and scintillator response was compared to ionization chamber (IC) measurements. Optically stimulated luminesce detector (OSLD) used as reference dosimeters during field symmetry and homogeneity testing. RESULTS The scintillator-based system accurately reported changes in dose rate. When comparing normalized output values for IC vs scintillators over a range of source-to-surface distances, a linear relationship (R2 = 0.99) was observed. Normalized scintillator signal matched OSLD measurements with <1.5% difference during field homogeneity and symmetry testing. Beam symmetry across both axes of the field was within 2%. The light field was found to correspond to 90 ± 3% of the isodose maximum along the longitudinal and latitudinal axis, respectively. Scintillator imaging output results using a single image stack requiring no postexposure processing (needed for OSLD) or repeat manual measurements (needed for IC). CONCLUSION Imaging of scintillation light emission from plastic rods is a viable and efficient method for carrying out TBI 60 Co irradiator QA. We have shown that this technique can accurately measure field homogeneity, symmetry, light-radiation field correspondence, and dose rate effects.
Collapse
Affiliation(s)
- Irwin I Tendler
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
| | - Jeremy S Bredfeldt
- Department of Radiation Oncology, Brigham and Women's Hospital, Dana Farber Cancer Institute, Boston, MA, USA.,Harvard Medical School, Boston, MA, USA
| | - Rongxiao Zhang
- Winship Cancer Institute, Emory University, Atlanta, GA, USA
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,DoseOptics LLC, Lebanon, NH, USA
| | - Michael Jermyn
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,DoseOptics LLC, Lebanon, NH, USA
| | - Brian W Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,DoseOptics LLC, Lebanon, NH, USA.,Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA
| | - David J Gladstone
- Thayer School of Engineering, Dartmouth College, Hanover, NH, USA.,Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH, USA.,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| |
Collapse
|