1
|
Chea M, Croisé M, Huet C, Bassinet C, Benadjaoud MA, Jenny C. MR compatible detectors assessment for a 0.35 T MR-linac commissioning. Radiat Oncol 2024; 19:40. [PMID: 38509543 PMCID: PMC10956263 DOI: 10.1186/s13014-024-02431-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/11/2024] [Indexed: 03/22/2024] Open
Abstract
PURPOSE To assess a large panel of MR compatible detectors on the full range of measurements required for a 0.35 T MR-linac commissioning by using a specific statistical method represented as a continuum of comparison with the Monte Carlo (MC) TPS calculations. This study also describes the commissioning tests and the secondary MC dose calculation validation. MATERIAL AND METHODS Plans were created on the Viewray TPS to generate MC reference data. Absolute dose points, PDD, profiles and output factors were extracted and compared to measurements performed with ten different detectors: PTW 31010, 31021, 31022, Markus 34045 and Exradin A28 MR ionization chambers, SN Edge shielded diode, PTW 60019 microdiamond, PTW 60023 unshielded diode, EBT3 radiochromic films and LiF µcubes. Three commissioning steps consisted in comparison between calculated and measured dose: the beam model validation, the output calibration verification in four different phantoms and the commissioning tests recommended by the IAEA-TECDOC-1583. MAIN RESULTS The symmetry for the high resolution detectors was higher than the TPS data of about 1%. The angular responses of the PTW 60023 and the SN Edge were - 6.6 and - 11.9% compared to the PTW 31010 at 60°. The X/Y-left and the Y-right penumbras measured by the high resolution detectors were in good agreement with the TPS values except for the PTW 60023 for large field sizes. For the 0.84 × 0.83 cm2 field size, the mean deviation to the TPS of the uncorrected OF was - 1.7 ± 1.6% against - 4.0 ± 0.6% for the corrected OF whereas we found - 4.8 ± 0.8% for passive dosimeters. The mean absolute dose deviations to the TPS in different phantoms were 0 ± 0.4%, - 1.2 ± 0.6% and 0.5 ± 1.1% for the PTW 31010, PTW 31021 and Exradin A28 MR respectively. CONCLUSIONS The magnetic field effects on the measurements are considerably reduced at low magnetic field. The PTW 31010 ionization chamber can be used with confidence in different phantoms for commissioning and QA tests requiring absolute dose verifications. For relative measurements, the PTW 60019 presented the best agreement for the full range of field size. For the profile assessment, shielded diodes had a behaviour similar to the PTW 60019 and 60023 while the ionization chambers were the most suitable detectors for the symmetry. The output correction factors published by the IAEA TRS 483 seem to be applicable at low magnetic field pending the publication of new MR specific values.
Collapse
Affiliation(s)
- Michel Chea
- Medical Physics Department, Pitié-Salpêtrière Hospital, AP-HP Sorbonne University, 47-83 Boulevard de l'Hôpital, 75651, Paris Cedex 13, France.
| | - Mathilde Croisé
- Medical Physics Department, Pitié-Salpêtrière Hospital, AP-HP Sorbonne University, 47-83 Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| | - Christelle Huet
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LDRI, 92260, Fontenay-aux-Roses, France
| | - Céline Bassinet
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PSE-SANTE/SDOS/LDRI, 92260, Fontenay-aux-Roses, France
| | - Mohamed-Amine Benadjaoud
- Institut de Radioprotection et Sûreté Nucléaire (IRSN), PSE-SANTE/SERAMED, 92260, Fontenay-aux-Roses, France
| | - Catherine Jenny
- Medical Physics Department, Pitié-Salpêtrière Hospital, AP-HP Sorbonne University, 47-83 Boulevard de l'Hôpital, 75651, Paris Cedex 13, France
| |
Collapse
|
2
|
Kierkels RGJ, Hernandez V, Saez J, Angerud A, Hilgers GC, Surmann K, Schuring D, Minken AWH. Multileaf collimator characterization and modeling for a 1.5 T MR-linac using static synchronous and asynchronous sweeping gaps. Phys Med Biol 2024; 69:075004. [PMID: 38412538 DOI: 10.1088/1361-6560/ad2d7d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 02/27/2024] [Indexed: 02/29/2024]
Abstract
Objective.The Elekta unity MR-linac delivers step-and-shoot intensity modulated radiotherapy plans using a multileaf collimator (MLC) based on the Agility MLC used on conventional Elekta linacs. Currently, details of the physical Unity MLC and the computational model within its treatment planning system (TPS)Monacoare lacking in published literature. Recently, a novel approach to characterize the physical properties of MLCs was introduced using dynamic synchronous and asynchronous sweeping gap (aSG) tests. Our objective was to develop a step-and-shoot version of the dynamic aSG test to characterize the Unity MLC and the computational MLC models in theMonacoandRayStationTPSs.Approach.Dynamic aSG were discretized into a step-and-shoot aSG by investigating the number of segments/sweep and the minimal number of monitor units (MU) per segment. The step-and-shoot aSG tests were compared to the dynamic aSG tests on a conventional linac at a source-to-detector distance of 143.5 cm, mimicking the Unity configuration. the step-and-shoot aSG tests were used to characterize the Unity MLC through measurements and dose calculations in both TPSs.Main results.The step-and-shoot aSGs tests with 100 segments and 5 MU/segment gave results very similar to the dynamic aSG experiments. The effective tongue-and-groove width of the Unity gradually increased up to 1.4 cm from the leaf tip end. The MLC models inRayStationandMonacoagreed with experimental data within 2.0% and 10%, respectively. The largest discrepancies inMonacowere found for aSG tests with >10 mm leaf interdigitation, which are non-typical for clinical plans.Significance.The step-and-shoot aSG tests accurately characterize the MLC in step-and-shoot delivery mode. The MLC model inRayStation2023B accurately describes the tongue-and-groove and leaf tip effects whereasMonacooverestimates the tongue-and-groove shadowing further away from the leaf tip end.
Collapse
Affiliation(s)
| | - Victor Hernandez
- Hospital Sant Joan de Reus, Department of Medical Physics, Reus, Spain
| | - Jordi Saez
- Hospital Clínic de Barcelona, Department of Radiation Oncology, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
3
|
Hilgers GC, Ikink M, Potters I, Schuring D, Minken AW. Characterization of the on-board megavoltage imager in a magnetic resonance-guided radiotherapy machine for beam output checks. Phys Imaging Radiat Oncol 2024; 29:100558. [PMID: 38405429 PMCID: PMC10891347 DOI: 10.1016/j.phro.2024.100558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/12/2024] [Accepted: 02/12/2024] [Indexed: 02/27/2024] Open
Abstract
We characterized the on-board megavoltage imager (MVI) of a magnetic resonance-guided radiotherapy machine for beam output checks. Linearity and repeatability of its dose response were investigated. Alignment relative to the beam under clinical circumstances was evaluated for a year using daily measurements. Linearity and short-term repeatability were excellent. Long-term repeatability drifted 0.8 % per year, which can be overcome by monthly cross calibrations. Long-term alignment was stable. Thus, the MVI has suitable characteristics for beam output checks.
Collapse
Affiliation(s)
| | - Marijke Ikink
- Radiotherapiegroep, Arnhem/Deventer, The Netherlands
| | - Ilona Potters
- Radiotherapiegroep, Arnhem/Deventer, The Netherlands
| | | | | |
Collapse
|
4
|
Riis HL, Chick J, Dunlop A, Tilly D. The Quality Assurance of a 1.5 T MR-Linac. Semin Radiat Oncol 2024; 34:120-128. [PMID: 38105086 DOI: 10.1016/j.semradonc.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The recent introduction of a commercial 1.5 T MR-linac system has considerably improved the image quality of the patient acquired in the treatment unit as well as enabling online adaptive radiation therapy (oART) treatment strategies. Quality Assurance (QA) of this new technology requires new methodology that allows for the high field MR in a linac environment. The presence of the magnetic field requires special attention to the phantoms, detectors, and tools to perform QA. Due to the design of the system, the integrated megavoltage imager (MVI) is essential for radiation beam calibrations and QA. Additionally, the alignment between the MR image system and the radiation isocenter must be checked. The MR-linac system has vendor-supplied phantoms for calibration and QA tests. However, users have developed their own routine QA systems to independently check that the machine is performing as required, as to ensure we are able to deliver the intended dose with sufficient certainty. The aim of this work is therefore to review the MR-linac specific QA procedures reported in the literature.
Collapse
Affiliation(s)
- Hans Lynggaard Riis
- Department of Oncology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Joan Chick
- The Joint Department of Physics, The Royal Marsden Hospital and the Institute of Cancer Research, London, UK
| | - Alex Dunlop
- The Joint Department of Physics, The Royal Marsden Hospital and the Institute of Cancer Research, London, UK
| | - David Tilly
- Department of Immunology, Genetics and Pathology, Medical Radiation Physics, Uppsala University, Uppsala, Sweden; Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
5
|
Low DA, Fallone BG, Raaymakers BW. MRI-Guided Radiation Therapy Systems. Semin Radiat Oncol 2024; 34:14-22. [PMID: 38105089 DOI: 10.1016/j.semradonc.2023.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
MR-Guided Radiation Therapy (MRIgRT) has been made possible only due to the ingenuity and commitment of commercial radiation therapy system vendors. Unlike conventional linear accelerator systems, MRIgRT systems have had to overcome significant and previously untested techniques to integrate the MRI systems with the radiation therapy delivery systems. Each of these three commercial systems has developed different approaches to integrating their MR and Linac functions. Each has also decided on a different main magnetic field strength, from 0.35T to 1.5T, as well as different design philosophies for other systems, such as the patient support assembly and treatment planning workflow. This paper is intended to provide the reader with a detailed understanding of each system's configuration so that the reader can better interpret the scientific literature concerning these commercial MRIgRT systems.
Collapse
Affiliation(s)
| | - B Gino Fallone
- Medical Physics Division, Oncology and Medical Physics Training Programs, University of Alberta and Medical Physics Department Cross Cancer Institute, Edmonton, AB, Canada
| | - Bas W Raaymakers
- Department of Radiotherapy, UMC Utrecht, Utrecht, The Netherlands
| |
Collapse
|
6
|
Wu JK, Lee TY, Yu MC, Kuo MC, Chen WC, Hsiao YC, Wang YJ. Developing a novel quasi-3D movable water phantom for radiation therapy workable in the magnetic resonance environment. Quant Imaging Med Surg 2023; 13:7731-7740. [PMID: 38106241 PMCID: PMC10722017 DOI: 10.21037/qims-23-189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 08/25/2023] [Indexed: 12/19/2023]
Abstract
Background The use of magnetic resonance linear accelerators (MR-LINACs) for clinical treatment has opened up new possibilities and challenges in the field of radiation oncology. However, annual quality assurance (QA) is relatively understudied due to practical considerations. Thus, to overcome the difficulty of measuring the dose with a small water phantom for TRS-398 or TG-51 in all external beam radiation treatment unit environments, such as MR compatibility, we designed a remote phantom with a three-axis changeable capacity for QA. Methods The designed water phantom was tested under an MR environment. The water phantom system comprised of three parts: a phantom box, a dose measurement tool, and a PMD401 drive system. The UNIDOSE universal dosimeter was used to collect beam data. The manufacturer's developer tools were utilized to position the measurement. To ensure magnetic field homogeneity, a distortion phantom was prepared using sixty fish oil capsules aligned radially to distinguish the oil and free air. The phantom was scanned in both the MR simulator and computed tomography (CT), and the acquired images were analyzed to determine the position shift. Results The dimensions of the device are 30 cm in the X-axis, 20 cm in the Y-axis, and 17 cm in the Z-axis. Total cost of materials was no more than $10,000 US dollars. Our results indicate that the device can function normally in a regular 1.5 T MR environment without interference from the magnetic field. The water phantom's traveling speed was found to be approximately 5 mm/s with a position difference confined within 6 cm intervals during normal use. The distortion test results showed that the prepared MR environment has uniform magnetic field homogeneity. Conclusions In this study, we constructed a prototype water phantom device that can function in an MR simulator without interference between the magnetic field and electronic components. Compared to other commercially available MR-LINAC water phantoms, our device offers a more cost-effective solution for routine monthly QA. It can shorten the duration of QA tests and relieve the burden on medical physicists.
Collapse
Affiliation(s)
- Jian-Kuen Wu
- Division of Radiation Oncology, Departments of Oncology, National Taiwan University Hospital, Taipei
| | - Ting-Yen Lee
- Department of Nuclear Medicine, National Taiwan University Hospital, Taipei
| | - Min-Chin Yu
- Department of Radiation Oncology Taipei Medical University Hospital, Taipei
| | - Ming-Chih Kuo
- Department of Medical Imaging, National Taiwan University Cancer Center, Taipei
| | - Wei-Chuan Chen
- Department of Radiation Oncology, China Medical University Beigang Hospital, Yunlin
| | - Yi-Cheng Hsiao
- Department of Medical Imaging, National Taiwan University Hospital, Taipei
| | - Yu-Jen Wang
- Department of Radiation Oncology, Fu Jen Catholic University Hospital, New Taipei City
- School of Medicine, College of Medicine, Fu Jen Catholic University, New Taipei City
| |
Collapse
|
7
|
Salzillo TC, Dresner MA, Way A, Wahid KA, McDonald BA, Mulder S, Naser MA, He R, Ding Y, Yoder A, Ahmed S, Corrigan KL, Manzar GS, Andring L, Pinnix C, Stafford RJ, Mohamed ASR, Christodouleas J, Wang J, Fuller CD. Development and implementation of optimized endogenous contrast sequences for delineation in adaptive radiotherapy on a 1.5T MR-linear-accelerator: a prospective R-IDEAL stage 0-2a quantitative/qualitative evaluation of in vivo site-specific quality-assurance using a 3D T2 fat-suppressed platform for head and neck cancer. J Med Imaging (Bellingham) 2023; 10:065501. [PMID: 37937259 PMCID: PMC10627232 DOI: 10.1117/1.jmi.10.6.065501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/06/2023] [Accepted: 10/16/2023] [Indexed: 11/09/2023] Open
Abstract
Purpose To improve segmentation accuracy in head and neck cancer (HNC) radiotherapy treatment planning for the 1.5T hybrid magnetic resonance imaging/linear accelerator (MR-Linac), three-dimensional (3D), T2-weighted, fat-suppressed magnetic resonance imaging sequences were developed and optimized. Approach After initial testing, spectral attenuated inversion recovery (SPAIR) was chosen as the fat suppression technique. Five candidate SPAIR sequences and a nonsuppressed, T2-weighted sequence were acquired for five HNC patients using a 1.5T MR-Linac. MR physicists identified persistent artifacts in two of the SPAIR sequences, so the remaining three SPAIR sequences were further analyzed. The gross primary tumor volume, metastatic lymph nodes, parotid glands, and pterygoid muscles were delineated using five segmentors. A robust image quality analysis platform was developed to objectively score the SPAIR sequences on the basis of qualitative and quantitative metrics. Results Sequences were analyzed for the signal-to-noise ratio and the contrast-to-noise ratio and compared with fat and muscle, conspicuity, pairwise distance metrics, and segmentor assessments. In this analysis, the nonsuppressed sequence was inferior to each of the SPAIR sequences for the primary tumor, lymph nodes, and parotid glands, but it was superior for the pterygoid muscles. The SPAIR sequence that received the highest combined score among the analysis categories was recommended to Unity MR-Linac users for HNC radiotherapy treatment planning. Conclusions Our study led to two developments: an optimized, 3D, T2-weighted, fat-suppressed sequence that can be disseminated to Unity MR-Linac users and a robust image quality analysis pathway that can be used to objectively score SPAIR sequences and can be customized and generalized to any image quality optimization protocol. Improved segmentation accuracy with the proposed SPAIR sequence will potentially lead to improved treatment outcomes and reduced toxicity for patients by maximizing the target coverage and minimizing the radiation exposure of organs at risk.
Collapse
Affiliation(s)
- Joint Head and Neck Radiotherapy-MRI Development Cooperative
- MD Anderson Cancer Center, Radiation Oncology, Houston, Texas, United States
- Philips Healthcare, Cleveland, Ohio, United States
- MD Anderson Cancer Center, Radiation Physics, Houston, Texas, United States
- MD Anderson Cancer Center, Imaging Physics, Houston, Texas, United States
- Elekta AB, Stockholm, Sweden
| | - Travis C. Salzillo
- MD Anderson Cancer Center, Radiation Oncology, Houston, Texas, United States
| | | | - Ashley Way
- MD Anderson Cancer Center, Radiation Oncology, Houston, Texas, United States
| | - Kareem A. Wahid
- MD Anderson Cancer Center, Radiation Oncology, Houston, Texas, United States
| | - Brigid A. McDonald
- MD Anderson Cancer Center, Radiation Oncology, Houston, Texas, United States
| | - Sam Mulder
- MD Anderson Cancer Center, Radiation Oncology, Houston, Texas, United States
| | - Mohamed A. Naser
- MD Anderson Cancer Center, Radiation Oncology, Houston, Texas, United States
| | - Renjie He
- MD Anderson Cancer Center, Radiation Oncology, Houston, Texas, United States
| | - Yao Ding
- MD Anderson Cancer Center, Radiation Physics, Houston, Texas, United States
| | - Alison Yoder
- MD Anderson Cancer Center, Radiation Oncology, Houston, Texas, United States
| | - Sara Ahmed
- MD Anderson Cancer Center, Radiation Oncology, Houston, Texas, United States
| | - Kelsey L. Corrigan
- MD Anderson Cancer Center, Radiation Oncology, Houston, Texas, United States
| | - Gohar S. Manzar
- MD Anderson Cancer Center, Radiation Oncology, Houston, Texas, United States
| | - Lauren Andring
- MD Anderson Cancer Center, Radiation Oncology, Houston, Texas, United States
| | - Chelsea Pinnix
- MD Anderson Cancer Center, Radiation Oncology, Houston, Texas, United States
| | - R. Jason Stafford
- MD Anderson Cancer Center, Imaging Physics, Houston, Texas, United States
| | | | | | - Jihong Wang
- MD Anderson Cancer Center, Radiation Physics, Houston, Texas, United States
| | | |
Collapse
|
8
|
Lichter KE, Bloom JR, Sheu RD, Zalavari LT, Leung K, Collins A, Witztum A, Chuter R. Tracking and Reducing SF 6 Usage in Radiation Oncology: A Step Toward Net-Zero Health Care Emissions. Pract Radiat Oncol 2023; 13:e471-e474. [PMID: 37414248 DOI: 10.1016/j.prro.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023]
Abstract
Sulfur hexafluoride (SF6) is a widely used insulating gas in medical linear accelerators (LINACs) due to its high dielectric strength, heat transfer capabilities, and chemical stability. However, its long lifespan and high Global Warming Potential (GWP) make it a significant contributor to the environmental impact of radiation oncology. SF6 has an atmospheric lifespan of 3200 years and a GWP 23,000 times that of carbon dioxide. The amount of SF6 that can be emitted through leakage from machines is also concerning. It is estimated that the approximate 15,042 LINACs globally may leak up to 64,884,185.9 carbon dioxide equivalent per year, which is the equivalent greenhouse gas emissions of 13,981 gasoline-powered passenger vehicles driven for 1 year. Despite being regulated as a greenhouse gas under the United Nations Framework Convention on Climate Change, SF6 use within health care is often exempt from regulation, and only a few states in the United States have specific SF6 management regulations. This article highlights the need for radiation oncology centers and LINAC manufacturers to take responsibility for minimizing SF6 emissions. Programs that track usage and disposal, conduct life-cycle assessments, and implement leakage detection can help identify SF6 sources and promote recovery and recycling. Manufacturers are investing in research and development to identify alternative gases, improve leak detection, and minimize SF6 gas leakage during operation and maintenance. Alternative gases with lower GWP, such as nitrogen, compressed air, and perfluoropropane, may be considered as replacements for SF6; however, more research is needed to evaluate their feasibility and performance in radiation oncology. The article emphasizes the need for all sectors, including health care, to reduce their emissions to meet the goals of the Paris Agreement and ensure the sustainability of health care and our patients. Although SF6 is practical in radiation oncology, its environmental impact and contribution to the climate crisis cannot be ignored. Radiation oncology centers and manufacturers must take responsibility for reducing SF6 emissions by implementing best practices and promoting research and development around alternatives. To meet global emissions reduction goals and protect both planetary and patient health, the reduction of SF6 emissions will be essential.
Collapse
Affiliation(s)
- Katie E Lichter
- Department of Radiation Oncology, University of California, San Francisco, California.
| | - Julie R Bloom
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ren-Dih Sheu
- Department of Radiation Oncology, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Kayla Leung
- University of California, Berkeley, California
| | - Amy Collins
- Health Care Without Harm, Reston, Virginia; Department of Emergency Medicine, MetroWest Medical Center, Framingham, Massachusetts
| | - Alon Witztum
- Department of Radiation Oncology, University of California, San Francisco, California
| | - Robert Chuter
- Christie Medical Physics and Engineering, The Christie NHS Foundation Trust, Manchester, United Kingdom; Division of Cancer Sciences, School of Medical Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
9
|
Powers M, Baines J. A comparison of measured and treatment planning system out-of-field dose for a 1.5 T MR linac. Phys Med Biol 2023; 68:20NT01. [PMID: 37699399 DOI: 10.1088/1361-6560/acf912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 09/12/2023] [Indexed: 09/14/2023]
Abstract
Objective.Dose due to the electron streaming effect (ESE) is a significant contribution to out-of-field dose on the Elekta Unity MR-Linac. The aim of this work is to provide a systematic comparison of calculated and measured streaming dose for this system.Approach.Beams 1.0 × 1.0 cm2to 5.0 × 5.0 cm2, gantry 90.0°, 1000 MU, were incident on an in-house phantom. At the beam entrance and exit surfaces of the phantom, ESE was generated in theY-direction (IEC 61217). EBT3 film, orientated within theX-Zplane and at 14.0 mm depth in a solid water block, was used to determine ESE dose 5.0 cm beyond the phantom. The experimental arrangement was simulated in the Monaco v5.4 treatment planning system (TPS), utilising a CT phantom dataset with differing relative electron densities (RED) for the surrounding air. Horizontal (Xdirection) and vertical (Zdirection) film dose profiles were compared to the corresponding TPS profiles.Main results. For each field, the maximum ESE dose was observed at the beam exit, the magnitude of which decreases with decreasing field size. For the 5.0 × 5.0 cm2field, the exit and entry ESE doses were 19.6% and 7.0% of theDmaxdose to water, respectively. Across horizontal profiles, differences (simulated-measured) were reduced with smaller fields and lower RED. The maximum absolute profile difference was 1.7% of theDmaxdose to water for optimal RED and isocentre location. In vertical profiles an offset consistent with the Lorentz force was observed relative to theX-Yisoplane.Significance. For the fields investigated, maximum absolute differences (simulated-measured) ≤ 5.2% occurred in peak regions of ESE, at the beam entrance and exit from the phantom. Generally, there is good agreement between Monaco simulated and measured ESE. Simulated out-of-field dose is sensitive to the RED assigned to air structures and unforced RED optimises out-of-field dose calculation accuracy.
Collapse
Affiliation(s)
- Marcus Powers
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| | - John Baines
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, Queensland, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia
| |
Collapse
|
10
|
Begg J, Jelen U, Moutrie Z, Oliver C, Holloway L, Brown R. ACPSEM position paper: dosimetry for magnetic resonance imaging linear accelerators. Phys Eng Sci Med 2023; 46:1-17. [PMID: 36806156 PMCID: PMC10030536 DOI: 10.1007/s13246-023-01223-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/19/2023] [Indexed: 02/23/2023]
Abstract
Consistency and clear guidelines on dosimetry are essential for accurate and precise dosimetry, to ensure the best patient outcomes and to allow direct dose comparison across different centres. Magnetic Resonance Imaging Linac (MRI-linac) systems have recently been introduced to Australasian clinics. This report provides recommendations on reference dosimetry measurements for MRI-linacs on behalf of the Australiasian College of Physical Scientists and Engineers in Medicine (ACPSEM) MRI-linac working group. There are two configurations considered for MRI-linacs, perpendicular and parallel, referring to the relative direction of the magnetic field and radiation beam, with different impacts on dose deposition in a medium. These recommendations focus on ion chambers which are most commonly used in the clinic for reference dosimetry. Water phantoms must be MR safe or conditional and practical limitations on phantom set-up must be considered. Solid phantoms are not advised for reference dosimetry. For reference dosimetry, IAEA TRS-398 recommendations cannot be followed completely due to physical differences between conventional linac and MRI-linac systems. Manufacturers' advice on reference conditions should be followed. Beam quality specification of TPR20,10 is recommended. The configuration of the central axis of the ion chamber relative to the magnetic field and radiation beam impacts the chamber response and must be considered carefully. Recommended corrections to delivered dose are [Formula: see text], a correction for beam quality and [Formula: see text], for the impact of the magnetic field on dosimeter response in the magnetic field. Literature based values for [Formula: see text] are given. It is important to note that this is a developing field and these recommendations should be used together with a review of current literature.
Collapse
Affiliation(s)
- Jarrad Begg
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centre, Liverpool, NSW, 2170, Australia.
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia.
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW, 2170, Australia.
| | - Urszula Jelen
- St Vincents Clinic, GenesisCare, Darlinghurst, NSW, 2010, Australia
| | - Zoe Moutrie
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centre, Liverpool, NSW, 2170, Australia
| | - Chris Oliver
- Primary Standards Dosimetry Laboratory, Australian Radiation Protection and Nuclear Safety Agency, Yallambie, VIC, 3085, Australia
| | - Lois Holloway
- Department of Medical Physics, Liverpool and Macarthur Cancer Therapy Centre, Liverpool, NSW, 2170, Australia
- Ingham Institute for Applied Medical Research, Liverpool, NSW, 2170, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool, NSW, 2170, Australia
- Centre for Medical Radiation Physics, University of Wollongong, Wollongong, NSW, 2522, Australia
- Institute of Medical Physics, University of Sydney, Camperdown, NSW, 2505, Australia
| | - Rhonda Brown
- Australian Clinical Dosimetry Service, Australian Radiation Protection and Nuclear Safety Agency, Yallambie, VIC, 3085, Australia
| | | |
Collapse
|
11
|
Uijtewaal P, Côté B, Foppen T, de Vries W, Woodings S, Borman P, Lambert-Girard S, Therriault-Proulx F, Raaymakers B, Fast M. Performance of the HYPERSCINT scintillation dosimetry research platform for the 1.5 T MR-linac. Phys Med Biol 2023; 68. [PMID: 36638536 DOI: 10.1088/1361-6560/acb30c] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/13/2023] [Indexed: 01/15/2023]
Abstract
Objective.Adaptive radiotherapy techniques available on the MR-linac, such as daily plan adaptation, gating, and dynamic tracking, require versatile dosimetric detectors to validate end-to-end workflows. Plastic scintillator detectors (PSDs) offer great potential with features including: water equivalency, MRI-compatibility, and time-resolved dose measurements. Here, we characterize the performance of the HYPERSCINT RP-200 PSD (MedScint, Quebec, CA) in a 1.5 T MR-linac, and we demonstrate its suitability for dosimetry, including in a moving target.Approach.Standard techniques of detector testing were performed using a Beamscan water tank (PTW, Freiburg, DE) and compared to microDiamond (PTW, Freiburg, DE) readings. Orientation dependency was tested using the same phantom. An RW3 solid water phantom was used to evaluate detector consistency, dose linearity, and dose rate dependence. To determine the sensitivity to motion and to MRI scanning, the Quasar MRI4Dphantom (Modus, London, ON) was used statically or with sinusoidal motion (A= 10 mm,T= 4 s) to compare PSD and Semiflex ionization chamber (PTW, Freiburg, DE) readings. Conformal beams from gantry 0° and 90° were used as well as a 15-beam 8 × 7.5 Gy lung IMRT plan.Main results.Measured profiles, PDD curves and field-size dependence were consistent with the microDiamond readings with differences well within our clinical tolerances. The angular dependence gave variations up to 0.8% when not irradiating directly from behind the scintillation point. Experiments revealed excellent detector consistency between repeated measurements (SD = 0.06%), near-perfect dose linearity (R2= 1) and a dose rate dependence <0.3%. Dosimetric effects of MRI scanning (≤0.3%) and motion (≤1.3%) were minimal. Measurements were consistent with the Semiflex (differences ≤1%), and with the treatment planning system with differences of 0.8% and 0.4%, with and without motion.Significance.This study demonstrates the suitability of the HYPERSCINT PSD for accurate time-resolved dosimetry measurements in the 1.5 T MR-linac, including during MR scanning and target motion.
Collapse
Affiliation(s)
- Prescilla Uijtewaal
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Benjamin Côté
- MedScint, 1405 Bd du Parc Technologique, Québec, QC G1P 4P5, Canada
| | - Thomas Foppen
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Wilfred de Vries
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Simon Woodings
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Pim Borman
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | | | | | - Bas Raaymakers
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Martin Fast
- Department of Radiotherapy, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| |
Collapse
|
12
|
Hilgers GC, Ikink M, Potters I, Schuring D. Beam output checks of a commercial high-field magnetic resonance-guided radiotherapy machine with its on-board megavoltage imager. Phys Imaging Radiat Oncol 2023; 25:100411. [PMID: 36687506 PMCID: PMC9852784 DOI: 10.1016/j.phro.2023.100411] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Beam output checks of a commercial high-field magnetic resonance-guided radiotherapy machine can be performed with its on-board megavoltage imager (MVI). This is a fast and efficient method, but only recommended for daily checks. The aim of our study was to show its suitability for weekly checks by investigating its long-term agreement with the golden standard: ionization chamber measurements in a water tank. For one year, the output deviations obtained with both methods were compared. The difference was 0.1 ± 0.3 (1SD) percentage point. This indicated an excellent agreement, and translated into a tolerance level of ± 2 %.
Collapse
Affiliation(s)
- Guido C. Hilgers
- Corresponding author at: Department of Medical Physics, Radiotherapiegroep, Behandellocatie Deventer, Postbus 123, 7400 AC Deventer, The Netherlands.
| | | | | | | |
Collapse
|
13
|
Subashi E, Dresner A, Tyagi N. Longitudinal assessment of quality assurance measurements in a 1.5 T MR-linac: Part II-Magnetic resonance imaging. J Appl Clin Med Phys 2022; 23:e13586. [PMID: 35332990 PMCID: PMC9398228 DOI: 10.1002/acm2.13586] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/05/2022] [Accepted: 02/25/2022] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To describe and report longitudinal quality assurance (QA) measurements for the magnetic resonance imaging (MRI) component of the Elekta Unity MR-linac during the first year of clinical use in our institution. MATERIALS AND METHODS The performance of the MRI component of Unity was evaluated with daily, weekly, monthly, and annual QA testing. The measurements monitor image uniformity, signal-to-noise ratio (SNR), resolution/detectability, slice position/thickness, linearity, central frequency, and geometric accuracy. In anticipation of routine use of quantitative imaging (qMRI), we characterize B0/B1 uniformity and the bias/reproducibility of longitudinal/transverse relaxation times (T1/T2) and apparent diffusion coefficient (ADC). Tolerance levels for QA measurements of qMRI biomarkers are derived from weekly monitoring of T1, T2, and ADC. RESULTS The 1-year assessment of QA measurements shows that daily variations in each MR quality metric are well below the threshold for failure. Routine testing procedures can reproducibly identify machine issues. The longitudinal three-dimensional (3D) geometric analysis reveals that the maximum distortion in a diameter of spherical volume (DSV) of 20, 30, 40, and 50 cm is 0.4, 0.6, 1.0, and 3.1 mm, respectively. The main source of distortion is gradient nonlinearity. Maximum peak-to-peak B0 inhomogeneity is 3.05 ppm, with gantry induced B0 inhomogeneities an order of magnitude smaller. The average deviation from the nominal B1 is within 2%, with minimal dependence on gantry angle. Mean ADC, T1, and T2 values are measured with high reproducibility. The median coefficient of variation for ADC, T1, and T2 is 1.3%, 1.1%, and 0.5%, respectively. The median bias for ADC, T1, and T2 is -0.8%, -0.1%, and 3.9%, respectively. CONCLUSION The MRI component of Unity operates within the guidelines and recommendations for scanner performance and stability. Our findings support the recently published guidance in establishing clinically acceptable tolerance levels for image quality. Highly reproducible qMRI measurements are feasible in Unity.
Collapse
Affiliation(s)
- Ergys Subashi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Alex Dresner
- Philips Healthcare MR Oncology, Cleveland, Ohio, USA
| | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
14
|
Dunkerley DAP, Hyer DE, Snyder JE, St-Aubin JJ, Anderson CM, Caster JM, Smith MC, Buatti JM, Yaddanapudi S. Clinical Implementational and Site-Specific Workflows for a 1.5T MR-Linac. J Clin Med 2022; 11:jcm11061662. [PMID: 35329988 PMCID: PMC8954784 DOI: 10.3390/jcm11061662] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 01/27/2023] Open
Abstract
MR-guided adaptive radiotherapy (MRgART) provides opportunities to benefit patients through enhanced use of advanced imaging during treatment for many patients with various cancer treatment sites. This novel technology presents many new challenges which vary based on anatomic treatment location, technique, and potential changes of both tumor and normal tissue during treatment. When introducing new treatment sites, considerations regarding appropriate patient selection, treatment planning, immobilization, and plan-adaption criteria must be thoroughly explored to ensure adequate treatments are performed. This paper presents an institution’s experience in developing a MRgART program for a 1.5T MR-linac for the first 234 patients. The paper suggests practical treatment workflows and considerations for treating with MRgART at different anatomical sites, including imaging guidelines, patient immobilization, adaptive workflows, and utilization of bolus.
Collapse
|
15
|
Powers M, Baines J, Crane R, Fisher C, Gibson S, Marsh L, Oar B, Shoobridge A, Simpson-Page E, Van der Walt M, de Vine G. Commissioning measurements on an Elekta Unity MR-Linac. Phys Eng Sci Med 2022; 45:457-473. [PMID: 35235188 PMCID: PMC9239956 DOI: 10.1007/s13246-022-01113-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 02/18/2022] [Indexed: 11/03/2022]
Abstract
Magnetic resonance-guided radiotherapy technology is relatively new and commissioning publications, quality assurance (QA) protocols and commercial products are limited. This work provides guidance for implementation measurements that may be performed on the Elekta Unity MR-Linac (Elekta, Stockholm, Sweden). Adaptations of vendor supplied phantoms facilitated determination of gantry angle accuracy and linac isocentre, whereas in-house developed phantoms were used for end-to-end testing and anterior coil attenuation measurements. Third-party devices were used for measuring beam quality, reference dosimetry and during treatment plan commissioning; however, due to several challenges, variations on standard techniques were required. Gantry angle accuracy was within 0.1°, confirmed with pixel intensity profiles, and MV isocentre diameter was < 0.5 mm. Anterior coil attenuation was approximately 0.6%. Beam quality as determined by TPR20,10 was 0.705 ± 0.001, in agreement with treatment planning system (TPS) calculations, and gamma comparison against the TPS for a 22.0 × 22.0 cm2 field was above 95.0% (2.0%, 2.0 mm). Machine output was 1.000 ± 0.002 Gy per 100 MU, depth 5.0 cm. During treatment plan commissioning, sub-standard results indicated issues with machine behaviour. Once rectified, gamma comparisons were above 95.0% (2.0%, 2.0 mm). Centres which may not have access to specialized equipment can use in-house developed phantoms, or adapt those supplied by the vendor, to perform commissioning work and confirm operation of the MRL within published tolerances. The plan QA techniques used in this work can highlight issues with machine behaviour when appropriate gamma criteria are set.
Collapse
Affiliation(s)
- Marcus Powers
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia. .,College of Science and Engineering, James Cook University, Townsville, QLD, Australia.
| | - John Baines
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia.
| | - Robert Crane
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
| | - Chantelle Fisher
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
| | - Stephen Gibson
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
| | - Linda Marsh
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
| | - Bronwyn Oar
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
| | - Ariadne Shoobridge
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia.,College of Science and Engineering, James Cook University, Townsville, QLD, Australia
| | - Emily Simpson-Page
- Cancer Care Services, Royal Brisbane and Women's Hospital, Herston, QLD, Australia
| | - Marchant Van der Walt
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
| | - Glenn de Vine
- Townsville Cancer Centre, Townsville Hospital and Health Service, Townsville, QLD, Australia
| |
Collapse
|
16
|
Gough J, Hall W, Good J, Nash A, Aitken K. Technical Radiotherapy Advances – The Role of Magnetic Resonance Imaging-Guided Radiation in the Delivery of Hypofractionation. Clin Oncol (R Coll Radiol) 2022; 34:301-312. [DOI: 10.1016/j.clon.2022.02.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 02/07/2022] [Accepted: 02/23/2022] [Indexed: 12/30/2022]
|
17
|
Hunt JR, Ebert MA, Rowshanfarzad P, Riis HL. Variation in isocentre location of an Elekta Unity MR-linac through full gantry rotation. Phys Med Biol 2021; 67. [PMID: 34933298 DOI: 10.1088/1361-6560/ac4564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 12/21/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE The objective of this study was to separately quantify the stability of the megavoltage imager (MVI) and radiation head of an Elekta Unity MRL, throughout full gantry rotation. APPROACH A ball-bearing (BB) phantom was attached to the radiation head of the Unity, while a single BB was placed at isocentre. Images were acquired during rotation, using the MVI. These images were processed using an in-house developed MATLAB program to reduce the errors resulted by noise, and the positions of the BBs in the images were analysed to extract MVI and radiation head sag data. MAIN RESULTS The results returned by this method showed reproducibility, with a mean standard deviation of 7 µm for the position of BBs across all gantry angles. The radiation head was found to sag throughout rotation, with a maximum course of movement of 0.59 mm. The sag pattern was stable over a period greater than a year but showed some dependence on gantry rotation direction. SIGNIFICANCE As MRL is a relatively new system, it is promising to have data supporting the high level of precision on one Elekta Unity machine. Isolating and quantifying the sources of uncertainty in radiation delivery may allow more sophisticated analysis of how the system performance may be improved.
Collapse
Affiliation(s)
- James Robert Hunt
- School of Physics, Mathematics and Computing, The University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009, AUSTRALIA
| | - Martin Andrew Ebert
- Department of Radiation Oncology, Sir Charles Gairdner Hospital, Hospital Avenue, Nedlands, Western Australia, 6009, AUSTRALIA
| | - Pejman Rowshanfarzad
- School of Physics, Mathematics and Computing, The University of Western Australia, 35 Stirling HWY, CRAWLEY, Western Australia, 6009, AUSTRALIA
| | - Hans Lynggaard Riis
- Oncology, Odense University Hospital, J. B. Winsløws Vej 4, Odense, 5000, DENMARK
| |
Collapse
|