1
|
McGee KP, Cao M, Das IJ, Yu V, Witte RJ, Kishan AU, Valle LF, Wiesinger F, De-Colle C, Cao Y, Breen WG, Traughber BJ. The Use of Magnetic Resonance Imaging in Radiation Therapy Treatment Simulation and Planning. J Magn Reson Imaging 2024; 60:1786-1805. [PMID: 38265188 DOI: 10.1002/jmri.29246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/08/2024] [Accepted: 01/08/2024] [Indexed: 01/25/2024] Open
Abstract
Ever since its introduction as a diagnostic imaging tool the potential of magnetic resonance imaging (MRI) in radiation therapy (RT) treatment simulation and planning has been recognized. Recent technical advances have addressed many of the impediments to use of this technology and as a result have resulted in rapid and growing adoption of MRI in RT. The purpose of this article is to provide a broad review of the multiple uses of MR in the RT treatment simulation and planning process, identify several of the most used clinical scenarios in which MR is integral to the simulation and planning process, highlight existing limitations and provide multiple unmet needs thereby highlighting opportunities for the diagnostic MR imaging community to contribute and collaborate with our oncology colleagues. EVIDENCE LEVEL: 5 TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- Kiaran P McGee
- Department of Radiology, Mayo Clinic & Foundation, Rochester, Minnesota, USA
| | - Minsong Cao
- Department of Radiation Oncology, University of California, Los Angeles, California, USA
| | - Indra J Das
- Department of Radiation Oncology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Victoria Yu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Robert J Witte
- Department of Radiology, Mayo Clinic & Foundation, Rochester, Minnesota, USA
| | - Amar U Kishan
- Department of Radiation Oncology, University of California, Los Angeles, California, USA
| | - Luca F Valle
- Department of Radiation Oncology, University of California, Los Angeles, California, USA
| | | | - Chiara De-Colle
- Department of Radiation Oncology, University Hospital and Medical Faculty, Eberhard Karls University Tübingen, Tübingen, Germany
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan, USA
| | - William G Breen
- Department of Radiation Oncology, Mayo Clinic & Foundation, Rochester, Minnesota, USA
| | - Bryan J Traughber
- Department of Radiation Oncology, Mayo Clinic & Foundation, Rochester, Minnesota, USA
| |
Collapse
|
2
|
Yan Y, Kim JP, Nejad-Davarani SP, Dong M, Hurst NJ, Zhao J, Glide-Hurst CK. Deep Learning-Based Synthetic Computed Tomography for Low-Field Brain Magnetic Resonance-Guided Radiation Therapy. Int J Radiat Oncol Biol Phys 2024:S0360-3016(24)03445-X. [PMID: 39357787 DOI: 10.1016/j.ijrobp.2024.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 08/27/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE Magnetic resonance (MR)-guided radiation therapy enables online adaptation to address intra- and interfractional changes. To address the need of high-fidelity synthetic computed tomography (synCT) required for dose calculation, we developed a conditional generative adversarial network for synCT generation from low-field MR imaging in the brain. METHODS AND MATERIALS Simulation MR-CT pairs from 12 patients with glioma imaged with a head and neck surface coil and treated on a 0.35T MR-linac were prospectively included to train the model consisting of a 9-block residual network generator and a PatchGAN discriminator. Four-fold cross-validation was implemented. SynCT was quantitatively evaluated against real CT using mean absolute error (MAE), peak signal-to-noise ratio (PSNR), and structural similarity index measure (SSIM). Dose was calculated on synCT applying original treatment plan. Dosimetric performance was evaluated by dose-volume histogram metric comparison and local 3-dimensional gamma analysis. To demonstrate utilization in treatment adaptation, longitudinal synCTs were generated for qualitative evaluation, and 1 offline adaptation case underwent 2 comparative plan evaluations. Secondary validation was conducted with 9 patients on a different MR-linac using a high-resolution brain coil. RESULTS Our model generated high-quality synCTs with MAE, PSNR, and SSIM of 70.9 ± 10.4 HU, 28.4 ± 1.5 dB, and 0.87 ± 0.02 within the field of view, respectively. Underrepresented postsurgical anomalies challenged model performance. Nevertheless, excellent dosimetric agreement was observed with the mean difference between real and synCT dose-volume histogram metrics of -0.07 ± 0.29 Gy for target D95 and within [-0.14, 0.02] Gy for organs at risk. Significant differences were only observed in the right lens D0.01cc with negligible overall difference (<0.13 Gy). Mean gamma analysis pass rates were 92.2% ± 3.0%, 99.2% ± 0.7%, and 99.9% ± 0.1% at 1%/1 mm, 2%/2 mm, and 3%/3 mm, respectively. Secondary validation yielded no significant differences in synCT performance for whole-brain MAE, PSNR, and SSIM with comparable dosimetric results. CONCLUSIONS Our conditional generative adversarial network model generated high-fidelity brain synCTs from low-field MR imaging with excellent dosimetric performance. Secondary validation suggests great promise of implementing synCTs to facilitate robust dose calculation for online adaptive brain MR-guided radiation therapy.
Collapse
Affiliation(s)
- Yuhao Yan
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin; Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Joshua P Kim
- Department of Radiation Oncology, Henry Ford Health, Detroit, Michigan
| | | | - Ming Dong
- Department of Computer Science, Wayne State University, Detroit, Michigan
| | - Newton J Hurst
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jiwei Zhao
- Department of Statistics, University of Wisconsin-Madison, Madison, Wisconsin; Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, Wisconsin
| | - Carri K Glide-Hurst
- Department of Human Oncology, University of Wisconsin-Madison, Madison, Wisconsin; Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin.
| |
Collapse
|
3
|
Li F, Xu Y, Lemus OD, Wang TJC, Sisti MB, Wuu CS. Synthetic CT for gamma knife radiosurgery dose calculation: A feasibility study. Phys Med 2024; 125:104504. [PMID: 39197262 DOI: 10.1016/j.ejmp.2024.104504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/24/2024] [Accepted: 08/22/2024] [Indexed: 09/01/2024] Open
Abstract
PURPOSE To determine if MRI-based synthetic CTs (sCT), generated with no predefined pulse sequence, can be used for inhomogeneity correction in routine gamma knife radiosurgery (GKRS) treatment planning dose calculation. METHODS Two sets of sCTs were generated from T1post and T2 images using cycleGAN. Twenty-eight patients (18 training, 10 validation) were retrospectively selected. The image quality of the generated sCTs was compared with the original CT (oCT) regarding the HU value preservation using histogram comparison, RMSE and MAE, and structural integrity. Dosimetric comparisons were also made among GKRS plans from 3 calculation approaches: TMR10 (oCT), and convolution (oCT and sCT), at four locations: original disease site, bone/tissue interface, air/tissue interface, and mid-brain. RESULTS The study showed that sCTs and oCTs' HU were similar, with T2-sCT performing better. TMR10 significantly underdosed the target by a mean of 5.4% compared to the convolution algorithm. There was no significant difference in convolution algorithm shot time between the oCT and sCT generated with T2. The highest and lowest dosimetric differences between the two CTs were observed in the bone and air interface, respectively. Dosimetric differences of 3.3% were observed in sCT predicted from MRI with stereotactic frames, which was not included in the training sets. CONCLUSIONS MRI-based sCT can be utilized for GKRS convolution dose calculation without the unnecessary radiation dose, and sCT without metal artifacts could be generated in framed cases. Larger datasets inclusive of all pulse sequences can improve the training set. Further investigation and validation studies are needed before clinical implementation.
Collapse
Affiliation(s)
- Fiona Li
- Department of Radiation Oncology, Columbia University, New York, NY, USA.
| | - Yuanguang Xu
- Department of Radiation Oncology, Columbia University, New York, NY, USA
| | - Olga D Lemus
- Department of Radiation Oncology, Columbia University, New York, NY, USA
| | - Tony J C Wang
- Department of Radiation Oncology, Columbia University, New York, NY, USA
| | - Michael B Sisti
- Department of Neurological Surgery, Columbia University, New York, NY, USA
| | - Cheng-Shie Wuu
- Department of Radiation Oncology, Columbia University, New York, NY, USA
| |
Collapse
|
4
|
Villegas F, Dal Bello R, Alvarez-Andres E, Dhont J, Janssen T, Milan L, Robert C, Salagean GAM, Tejedor N, Trnková P, Fusella M, Placidi L, Cusumano D. Challenges and opportunities in the development and clinical implementation of artificial intelligence based synthetic computed tomography for magnetic resonance only radiotherapy. Radiother Oncol 2024; 198:110387. [PMID: 38885905 DOI: 10.1016/j.radonc.2024.110387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 06/13/2024] [Accepted: 06/13/2024] [Indexed: 06/20/2024]
Abstract
Synthetic computed tomography (sCT) generated from magnetic resonance imaging (MRI) can serve as a substitute for planning CT in radiation therapy (RT), thereby removing registration uncertainties associated with multi-modality imaging pairing, reducing costs and patient radiation exposure. CE/FDA-approved sCT solutions are nowadays available for pelvis, brain, and head and neck, while more complex deep learning (DL) algorithms are under investigation for other anatomic sites. The main challenge in achieving a widespread clinical implementation of sCT lies in the absence of consensus on sCT commissioning and quality assurance (QA), resulting in variation of sCT approaches across different hospitals. To address this issue, a group of experts gathered at the ESTRO Physics Workshop 2022 to discuss the integration of sCT solutions into clinics and report the process and its outcomes. This position paper focuses on aspects of sCT development and commissioning, outlining key elements crucial for the safe implementation of an MRI-only RT workflow.
Collapse
Affiliation(s)
- Fernanda Villegas
- Department of Oncology-Pathology, Karolinska Institute, Solna, Sweden; Radiotherapy Physics and Engineering, Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, Solna, Sweden
| | - Riccardo Dal Bello
- Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Emilie Alvarez-Andres
- OncoRay - National Center for Radiation Research in Oncology, Medical Faculty and University Hospital Carl Gustav Carus, TUD Dresden University of Technology, Helmholtz-Zentrum Dresden-Rossendorf, Dresden, Germany; Faculty of Medicine Carl Gustav Carus, TUD Dresden University of Technology, Dresden, Germany
| | - Jennifer Dhont
- Université libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (H.U.B), Institut Jules Bordet, Department of Medical Physics, Brussels, Belgium; Université Libre De Bruxelles (ULB), Radiophysics and MRI Physics Laboratory, Brussels, Belgium
| | - Tomas Janssen
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Lisa Milan
- Medical Physics Unit, Imaging Institute of Southern Switzerland (IIMSI), Ente Ospedaliero Cantonale, Bellinzona, Switzerland
| | - Charlotte Robert
- UMR 1030 Molecular Radiotherapy and Therapeutic Innovations, ImmunoRadAI, Paris-Saclay University, Institut Gustave Roussy, Inserm, Villejuif, France; Department of Radiation Oncology, Gustave Roussy, Villejuif, France
| | - Ghizela-Ana-Maria Salagean
- Faculty of Physics, Babes-Bolyai University, Cluj-Napoca, Romania; Department of Radiation Oncology, TopMed Medical Centre, Targu Mures, Romania
| | - Natalia Tejedor
- Department of Medical Physics and Radiation Protection, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Petra Trnková
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
| | - Marco Fusella
- Department of Radiation Oncology, Abano Terme Hospital, Italy
| | - Lorenzo Placidi
- Fondazione Policlinico Universitario Agostino Gemelli, IRCCS, Department of Diagnostic Imaging, Oncological Radiotherapy and Hematology, Rome, Italy.
| | - Davide Cusumano
- Mater Olbia Hospital, Strada Statale Orientale Sarda 125, Olbia, Sassari, Italy
| |
Collapse
|
5
|
Fridström KML, Winter RM, Hornik N, Almberg SS, Danielsen S, Redalen KR. Evaluation of magnetic resonance imaging derived synthetic computed tomography for proton therapy planning in prostate cancer. Phys Imaging Radiat Oncol 2024; 31:100625. [PMID: 39253731 PMCID: PMC11381754 DOI: 10.1016/j.phro.2024.100625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 09/11/2024] Open
Abstract
Background and purpose Magnetic resonance imaging (MRI)-only workflow is used in photon radiotherapy (RT) today, but not yet for protons. To bring MRI-only proton RT into clinical use, proton dose calculation on MRI-derived synthetic CT (sCT) must be validated. We evaluated proton dose calculation accuracy of prostate cancer proton plans using a commercially available sCT generator already validated for photon planning. Materials and methods The retrospective planning study included 10 prostate cancer patients who underwent MRI and planning CT (pCT) before RT. sCT were generated from the MRI with MRI Planner v2.3, and compared to pCT using structural mean absolute error (MAE). The pCT was used to create one-arc volumetric modulated arc therapy (VMAT) photon plan and two-field intensity modulated proton therapy (IMPT) proton plan. Each plan was recalculated on the sCT and compared to pCT doses. Dose volume histogram parameters, gamma analyses and range differences were evaluated. Results Median MAE for the body contour was 71 HU. Dose differences between pCT and sCT were small and similar for VMAT and IMPT plans. Median (range) gamma pass rates were lower for IMPT plans with 95.8 (89.3-98.7) % compared to VMAT plans with 99.4 (91.2-99.6) %. The proton range difference was 1.0 (interquartile range -0.1 - 0.2) mm deeper for sCT compared to the reference. Conclusion MRI-only IMPT planning for prostate cancer seems feasible in a clinical setting for the evaluated beam arrangement and sCT generator. More patients and evaluation of other beam arrangements are needed for a more general conclusion.
Collapse
Affiliation(s)
- Kajsa M L Fridström
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
- Cancer Clinic, St. Olav Hospital, Trondheim, Norway
| | - René M Winter
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| | - Natalie Hornik
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
- Eberhard Karls University of Tübingen, Tübingen, Germany
| | | | - Signe Danielsen
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
- Cancer Clinic, St. Olav Hospital, Trondheim, Norway
| | - Kathrine R Redalen
- Department of Physics, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|
6
|
Emin S, Rossi E, Myrvold Rooth E, Dorniok T, Hedman M, Gagliardi G, Villegas F. Clinical implementation of a commercial synthetic computed tomography solution for radiotherapy treatment of glioblastoma. Phys Imaging Radiat Oncol 2024; 30:100589. [PMID: 38818305 PMCID: PMC11137592 DOI: 10.1016/j.phro.2024.100589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 05/12/2024] [Accepted: 05/13/2024] [Indexed: 06/01/2024] Open
Abstract
Background and Purpose Magnetic resonance (MR)-only radiotherapy (RT) workflow eliminates uncertainties due to computed tomography (CT)-MR image registration, by using synthetic CT (sCT) images generated from MR. This study describes the clinical implementation process, from retrospective commissioning to prospective validation stage of a commercial artificial intelligence (AI)-based sCT product. Evaluation of the dosimetric performance of the sCT is presented, with emphasis on the impact of voxel size differences between image modalities. Materials and methods sCT performance was assessed in glioblastoma RT planning. Dose differences for 30 patients in both commissioning and validation cohorts were calculated at various dose-volume-histogram (DVH) points for target and organs-at-risk (OAR). A gamma analysis was conducted on regridded image plans. Quality assurance (QA) guidelines were established based on commissioning phase results. Results Mean dose difference to target structures was found to be within ± 0.7 % regardless of image resolution and cohort. OARs' mean dose differences were within ± 1.3 % for plans calculated on regridded images for both cohorts, while differences were higher for plans with original voxel size, reaching up to -4.2 % for chiasma D2% in the commissioning cohort. Gamma passing rates for the brain structure using the criteria 1 %/1mm, 2 %/2mm and 3 %/3mm were 93.6 %/99.8 %/100 % and 96.6 %/99.9 %/100 % for commissioning and validation cohorts, respectively. Conclusions Dosimetric outcomes in both commissioning and validation stages confirmed sCT's equivalence to CT. The large patient cohort in this study aided in establishing a robust QA program for the MR-only workflow, now applied in glioblastoma RT at our center.
Collapse
Affiliation(s)
- Sevgi Emin
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Elia Rossi
- Department of Radiation Oncology, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | | | - Torsten Dorniok
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden
| | - Mattias Hedman
- Department of Radiation Oncology, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Giovanna Gagliardi
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| | - Fernanda Villegas
- Department of Medical Radiation Physics and Nuclear Medicine, Karolinska University Hospital, 171 76 Stockholm, Sweden
- Department of Oncology-Pathology, Karolinska Institute, 171 77 Stockholm, Sweden
| |
Collapse
|
7
|
Sherwani MK, Gopalakrishnan S. A systematic literature review: deep learning techniques for synthetic medical image generation and their applications in radiotherapy. FRONTIERS IN RADIOLOGY 2024; 4:1385742. [PMID: 38601888 PMCID: PMC11004271 DOI: 10.3389/fradi.2024.1385742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 03/11/2024] [Indexed: 04/12/2024]
Abstract
The aim of this systematic review is to determine whether Deep Learning (DL) algorithms can provide a clinically feasible alternative to classic algorithms for synthetic Computer Tomography (sCT). The following categories are presented in this study: ∙ MR-based treatment planning and synthetic CT generation techniques. ∙ Generation of synthetic CT images based on Cone Beam CT images. ∙ Low-dose CT to High-dose CT generation. ∙ Attenuation correction for PET images. To perform appropriate database searches, we reviewed journal articles published between January 2018 and June 2023. Current methodology, study strategies, and results with relevant clinical applications were analyzed as we outlined the state-of-the-art of deep learning based approaches to inter-modality and intra-modality image synthesis. This was accomplished by contrasting the provided methodologies with traditional research approaches. The key contributions of each category were highlighted, specific challenges were identified, and accomplishments were summarized. As a final step, the statistics of all the cited works from various aspects were analyzed, which revealed that DL-based sCTs have achieved considerable popularity, while also showing the potential of this technology. In order to assess the clinical readiness of the presented methods, we examined the current status of DL-based sCT generation.
Collapse
Affiliation(s)
- Moiz Khan Sherwani
- Section for Evolutionary Hologenomics, Globe Institute, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
8
|
Grigo J, Szkitsak J, Höfler D, Fietkau R, Putz F, Bert C. "sCT-Feasibility" - a feasibility study for deep learning-based MRI-only brain radiotherapy. Radiat Oncol 2024; 19:33. [PMID: 38459584 PMCID: PMC10924348 DOI: 10.1186/s13014-024-02428-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/29/2024] [Indexed: 03/10/2024] Open
Abstract
BACKGROUND Radiotherapy (RT) is an important treatment modality for patients with brain malignancies. Traditionally, computed tomography (CT) images are used for RT treatment planning whereas magnetic resonance imaging (MRI) images are used for tumor delineation. Therefore, MRI and CT need to be registered, which is an error prone process. The purpose of this clinical study is to investigate the clinical feasibility of a deep learning-based MRI-only workflow for brain radiotherapy, that eliminates the registration uncertainty through calculation of a synthetic CT (sCT) from MRI data. METHODS A total of 54 patients with an indication for radiation treatment of the brain and stereotactic mask immobilization will be recruited. All study patients will receive standard therapy and imaging including both CT and MRI. All patients will receive dedicated RT-MRI scans in treatment position. An sCT will be reconstructed from an acquired MRI DIXON-sequence using a commercially available deep learning solution on which subsequent radiotherapy planning will be performed. Through multiple quality assurance (QA) measures and reviews during the course of the study, the feasibility of an MRI-only workflow and comparative parameters between sCT and standard CT workflow will be investigated holistically. These QA measures include feasibility and quality of image guidance (IGRT) at the linear accelerator using sCT derived digitally reconstructed radiographs in addition to potential dosimetric deviations between the CT and sCT plan. The aim of this clinical study is to establish a brain MRI-only workflow as well as to identify risks and QA mechanisms to ensure a safe integration of deep learning-based sCT into radiotherapy planning and delivery. DISCUSSION Compared to CT, MRI offers a superior soft tissue contrast without additional radiation dose to the patients. However, up to now, even though the dosimetrical equivalence of CT and sCT has been shown in several retrospective studies, MRI-only workflows have still not been widely adopted. The present study aims to determine feasibility and safety of deep learning-based MRI-only radiotherapy in a holistic manner incorporating the whole radiotherapy workflow. TRIAL REGISTRATION NCT06106997.
Collapse
Affiliation(s)
- Johanna Grigo
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, DE- 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Juliane Szkitsak
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, DE- 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Daniel Höfler
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, DE- 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, DE- 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Florian Putz
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, DE- 91054, Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany
| | - Christoph Bert
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Universitätsstraße 27, DE- 91054, Erlangen, Germany.
- Comprehensive Cancer Center Erlangen-EMN (CCC ER-EMN), Erlangen, Germany.
| |
Collapse
|
9
|
Liu C, Liu Z, Holmes J, Zhang L, Zhang L, Ding Y, Shu P, Wu Z, Dai H, Li Y, Shen D, Liu N, Li Q, Li X, Zhu D, Liu T, Liu W. Artificial general intelligence for radiation oncology. META-RADIOLOGY 2023; 1:100045. [PMID: 38344271 PMCID: PMC10857824 DOI: 10.1016/j.metrad.2023.100045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
The emergence of artificial general intelligence (AGI) is transforming radiation oncology. As prominent vanguards of AGI, large language models (LLMs) such as GPT-4 and PaLM 2 can process extensive texts and large vision models (LVMs) such as the Segment Anything Model (SAM) can process extensive imaging data to enhance the efficiency and precision of radiation therapy. This paper explores full-spectrum applications of AGI across radiation oncology including initial consultation, simulation, treatment planning, treatment delivery, treatment verification, and patient follow-up. The fusion of vision data with LLMs also creates powerful multimodal models that elucidate nuanced clinical patterns. Together, AGI promises to catalyze a shift towards data-driven, personalized radiation therapy. However, these models should complement human expertise and care. This paper provides an overview of how AGI can transform radiation oncology to elevate the standard of patient care in radiation oncology, with the key insight being AGI's ability to exploit multimodal clinical data at scale.
Collapse
Affiliation(s)
- Chenbin Liu
- Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, Guangdong, China
| | | | - Jason Holmes
- Department of Radiation Oncology, Mayo Clinic, USA
| | - Lu Zhang
- Department of Computer Science and Engineering, The University of Texas at Arlington, USA
| | - Lian Zhang
- Department of Radiation Oncology, Mayo Clinic, USA
| | - Yuzhen Ding
- Department of Radiation Oncology, Mayo Clinic, USA
| | - Peng Shu
- School of Computing, University of Georgia, USA
| | - Zihao Wu
- School of Computing, University of Georgia, USA
| | - Haixing Dai
- School of Computing, University of Georgia, USA
| | - Yiwei Li
- School of Computing, University of Georgia, USA
| | - Dinggang Shen
- School of Biomedical Engineering, ShanghaiTech University, China
- Shanghai United Imaging Intelligence Co., Ltd, China
- Shanghai Clinical Research and Trial Center, China
| | - Ninghao Liu
- School of Computing, University of Georgia, USA
| | - Quanzheng Li
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Xiang Li
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, USA
| | - Dajiang Zhu
- Department of Computer Science and Engineering, The University of Texas at Arlington, USA
| | | | - Wei Liu
- Department of Radiation Oncology, Mayo Clinic, USA
| |
Collapse
|
10
|
Tian L, Lühr A. Proton range uncertainty caused by synthetic computed tomography generated with deep learning from pelvic magnetic resonance imaging. Acta Oncol 2023; 62:1461-1469. [PMID: 37703314 DOI: 10.1080/0284186x.2023.2256967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 09/04/2023] [Indexed: 09/15/2023]
Abstract
BACKGROUND In proton therapy, it is disputed whether synthetic computed tomography (sCT), derived from magnetic resonance imaging (MRI), permits accurate dose calculations. On the one hand, an MRI-only workflow could eliminate errors caused by, e.g., MRI-CT registration. On the other hand, the extra error would be induced due to an sCT generation model. This work investigated the systematic and random model error induced by sCT generation of a widely discussed deep learning model, pix2pix. MATERIAL AND METHODS An open-source image dataset of 19 patients with cancer in the pelvis was employed and split into 10, 5, and 4 for training, testing, and validation of the model, respectively. Proton pencil beams (200 MeV) were simulated on the real CT and generated sCT using the tool for particle simulation (TOPAS). Monte Carlo (MC) dropout was used for error estimation (50 random sCT samples). Systematic and random model errors were investigated for sCT generation and dose calculation on sCT. RESULTS For sCT generation, random model error near the edge of the body (∼200 HU) was higher than that within the body (∼100 HU near the bone edge and <10 HU in soft tissue). The mean absolute error (MAE) was 49 ± 5, 191 ± 23, and 503 ± 70 HU for the whole body, bone, and air in the patient, respectively. Random model errors of the proton range were small (<0.2 mm) for all spots and evenly distributed throughout the proton fields. Systematic errors of the proton range were -1.0(±2.2) mm and 0.4(±0.9)%, respectively, and were unevenly distributed within the proton fields. For 4.5% of the spots, large errors (>5 mm) were found, which may relate to MRI-CT mismatch due to, e.g., registration, MRI distortion anatomical changes, etc. CONCLUSION The sCT model was shown to be robust, i.e., had a low random model error. However, further investigation to reduce and even predict and manage systematic error is still needed for future MRI-only proton therapy.
Collapse
Affiliation(s)
- Liheng Tian
- Department of Physics, TU Dortmund University, Dortmund, Germany
| | - Armin Lühr
- Department of Physics, TU Dortmund University, Dortmund, Germany
| |
Collapse
|
11
|
Kaushik SS, Bylund M, Cozzini C, Shanbhag D, Petit SF, Wyatt JJ, Menzel MI, Pirkl C, Mehta B, Chauhan V, Chandrasekharan K, Jonsson J, Nyholm T, Wiesinger F, Menze B. Region of interest focused MRI to synthetic CT translation using regression and segmentation multi-task network. Phys Med Biol 2023; 68:195003. [PMID: 37567235 DOI: 10.1088/1361-6560/acefa3] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 08/10/2023] [Indexed: 08/13/2023]
Abstract
Objective. In MR-only clinical workflow, replacing CT with MR image is of advantage for workflow efficiency and reduces radiation to the patient. An important step required to eliminate CT scan from the workflow is to generate the information provided by CT via an MR image. In this work, we aim to demonstrate a method to generate accurate synthetic CT (sCT) from an MR image to suit the radiation therapy (RT) treatment planning workflow. We show the feasibility of the method and make way for a broader clinical evaluation.Approach. We present a machine learning method for sCT generation from zero-echo-time (ZTE) MRI aimed at structural and quantitative accuracies of the image, with a particular focus on the accurate bone density value prediction. The misestimation of bone density in the radiation path could lead to unintended dose delivery to the target volume and results in suboptimal treatment outcome. We propose a loss function that favors a spatially sparse bone region in the image. We harness the ability of the multi-task network to produce correlated outputs as a framework to enable localization of region of interest (RoI) via segmentation, emphasize regression of values within RoI and still retain the overall accuracy via global regression. The network is optimized by a composite loss function that combines a dedicated loss from each task.Main results. We have included 54 brain patient images in this study and tested the sCT images against reference CT on a subset of 20 cases. A pilot dose evaluation was performed on 9 of the 20 test cases to demonstrate the viability of the generated sCT in RT planning. The average quantitative metrics produced by the proposed method over the test set were-(a) mean absolute error (MAE) of 70 ± 8.6 HU; (b) peak signal-to-noise ratio (PSNR) of 29.4 ± 2.8 dB; structural similarity metric (SSIM) of 0.95 ± 0.02; and (d) Dice coefficient of the body region of 0.984 ± 0.Significance. We demonstrate that the proposed method generates sCT images that resemble visual characteristics of a real CT image and has a quantitative accuracy that suits RT dose planning application. We compare the dose calculation from the proposed sCT and the real CT in a radiation therapy treatment planning setup and show that sCT based planning falls within 0.5% target dose error. The method presented here with an initial dose evaluation makes an encouraging precursor to a broader clinical evaluation of sCT based RT planning on different anatomical regions.
Collapse
Affiliation(s)
- Sandeep S Kaushik
- GE Healthcare, Munich, Germany
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| | - Mikael Bylund
- Department of Radiation Sciences, UmeåUniversity, Umea, Sweden
| | | | | | - Steven F Petit
- Department of Radiotherapy, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Jonathan J Wyatt
- Translational and Clinical Research Institute, Newcastle University and Northern Centre for Cancer Care, Newcastle upon Tyne Hospitals NHS Foundation Trust, United Kingdom
| | - Marion I Menzel
- GE Healthcare, Munich, Germany
- Dept. of Physics, Technical University of Munich, Munich, Germany
| | | | | | - Vikas Chauhan
- Sree Chitra Tirunal Institute of Medical Sciences and Technology (SCTIMST), Trivandrum, India
| | | | - Joakim Jonsson
- Department of Radiation Sciences, UmeåUniversity, Umea, Sweden
| | - Tufve Nyholm
- Department of Radiation Sciences, UmeåUniversity, Umea, Sweden
| | | | - Bjoern Menze
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
| |
Collapse
|
12
|
McNaughton J, Fernandez J, Holdsworth S, Chong B, Shim V, Wang A. Machine Learning for Medical Image Translation: A Systematic Review. Bioengineering (Basel) 2023; 10:1078. [PMID: 37760180 PMCID: PMC10525905 DOI: 10.3390/bioengineering10091078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/30/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND CT scans are often the first and only form of brain imaging that is performed to inform treatment plans for neurological patients due to its time- and cost-effective nature. However, MR images give a more detailed picture of tissue structure and characteristics and are more likely to pick up abnormalities and lesions. The purpose of this paper is to review studies which use deep learning methods to generate synthetic medical images of modalities such as MRI and CT. METHODS A literature search was performed in March 2023, and relevant articles were selected and analyzed. The year of publication, dataset size, input modality, synthesized modality, deep learning architecture, motivations, and evaluation methods were analyzed. RESULTS A total of 103 studies were included in this review, all of which were published since 2017. Of these, 74% of studies investigated MRI to CT synthesis, and the remaining studies investigated CT to MRI, Cross MRI, PET to CT, and MRI to PET. Additionally, 58% of studies were motivated by synthesizing CT scans from MRI to perform MRI-only radiation therapy. Other motivations included synthesizing scans to aid diagnosis and completing datasets by synthesizing missing scans. CONCLUSIONS Considerably more research has been carried out on MRI to CT synthesis, despite CT to MRI synthesis yielding specific benefits. A limitation on medical image synthesis is that medical datasets, especially paired datasets of different modalities, are lacking in size and availability; it is therefore recommended that a global consortium be developed to obtain and make available more datasets for use. Finally, it is recommended that work be carried out to establish all uses of the synthesis of medical scans in clinical practice and discover which evaluation methods are suitable for assessing the synthesized images for these needs.
Collapse
Affiliation(s)
- Jake McNaughton
- Auckland Bioengineering Institute, University of Auckland, 6/70 Symonds Street, Auckland 1010, New Zealand; (J.M.)
| | - Justin Fernandez
- Auckland Bioengineering Institute, University of Auckland, 6/70 Symonds Street, Auckland 1010, New Zealand; (J.M.)
- Department of Engineering Science and Biomedical Engineering, University of Auckland, 3/70 Symonds Street, Auckland 1010, New Zealand
| | - Samantha Holdsworth
- Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Mātai Medical Research Institute, 400 Childers Road, Tairāwhiti Gisborne 4010, New Zealand
| | - Benjamin Chong
- Auckland Bioengineering Institute, University of Auckland, 6/70 Symonds Street, Auckland 1010, New Zealand; (J.M.)
- Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| | - Vickie Shim
- Auckland Bioengineering Institute, University of Auckland, 6/70 Symonds Street, Auckland 1010, New Zealand; (J.M.)
- Mātai Medical Research Institute, 400 Childers Road, Tairāwhiti Gisborne 4010, New Zealand
| | - Alan Wang
- Auckland Bioengineering Institute, University of Auckland, 6/70 Symonds Street, Auckland 1010, New Zealand; (J.M.)
- Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
- Centre for Brain Research, University of Auckland, 85 Park Road, Auckland 1023, New Zealand
| |
Collapse
|
13
|
Podgorsak AR, Venkatesulu BP, Abuhamad M, Harkenrider MM, Solanki AA, Roeske JC, Kang H. Dosimetric and workflow impact of synthetic-MRI use in prostate high-dose-rate brachytherapy. Brachytherapy 2023; 22:686-696. [PMID: 37316376 DOI: 10.1016/j.brachy.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/27/2023] [Accepted: 05/14/2023] [Indexed: 06/16/2023]
Abstract
PURPOSE Target and organ delineation during prostate high-dose-rate (HDR) brachytherapy treatment planning can be improved by acquiring both a postimplant CT and MRI. However, this leads to a longer treatment delivery workflow and may introduce uncertainties due to anatomical motion between scans. We investigated the dosimetric and workflow impact of MRI synthesized from CT for prostate HDR brachytherapy. METHODS AND MATERIALS Seventy-eight CT and T2-weighted MRI datasets from patients treated with prostate HDR brachytherapy at our institution were retrospectively collected to train and validate our deep-learning-based image-synthesis method. Synthetic MRI was assessed against real MRI using the dice similarity coefficient (DSC) between prostate contours drawn using both image sets. The DSC between the same observer's synthetic and real MRI prostate contours was compared with the DSC between two different observers' real MRI prostate contours. New treatment plans were generated targeting the synthetic MRI-defined prostate and compared with the clinically delivered plans using target coverage and dose to critical organs. RESULTS Variability between the same observer's prostate contours from synthetic and real MRI was not significantly different from the variability between different observer's prostate contours on real MRI. Synthetic MRI-planned target coverage was not significantly different from that of the clinically delivered plans. There were no increases above organ institutional dose constraints in the synthetic MRI plans. CONCLUSIONS We developed and validated a method for synthesizing MRI from CT for prostate HDR brachytherapy treatment planning. Synthetic MRI use may lead to a workflow advantage and removal of CT-to-MRI registration uncertainty without loss of information needed for target delineation and treatment planning.
Collapse
Affiliation(s)
- Alexander R Podgorsak
- Department of Radiation Oncology, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, IL.
| | - Bhanu P Venkatesulu
- Department of Radiation Oncology, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, IL
| | - Mohammad Abuhamad
- Department of Computer Science, Loyola University Chicago, Chicago, IL
| | - Matthew M Harkenrider
- Department of Radiation Oncology, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, IL
| | - Abhishek A Solanki
- Department of Radiation Oncology, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, IL
| | - John C Roeske
- Department of Radiation Oncology, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, IL
| | - Hyejoo Kang
- Department of Radiation Oncology, Stritch School of Medicine, Cardinal Bernardin Cancer Center, Loyola University Chicago, Chicago, IL
| |
Collapse
|
14
|
Feng X, Tang B, Yao X, Liu M, Liao X, Yuan K, Peng Q, Orlandini LC. Effectiveness of bladder filling control during online MR-guided adaptive radiotherapy for rectal cancer. Radiat Oncol 2023; 18:136. [PMID: 37592338 PMCID: PMC10436664 DOI: 10.1186/s13014-023-02315-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 07/05/2023] [Indexed: 08/19/2023] Open
Abstract
BACKGROUND Magnetic resonance-guided adaptive radiotherapy (MRgART) treatment sessions at MR-Linac are time-consuming and changes in organs at risk volumes can impact the treatment dosimetry. This study aims to evaluate the feasibility to control bladder filling during the rectum MRgART online session and its effectiveness on plan dosimetry. METHODS A total of 109 online adaptive sessions of 24 rectum cancer patients treated at Unity 1.5 T MR-Linac with a short course radiotherapy (25 Gy, 5 Gy × 5) for whom the adaptive plan was optimized and recalculated online based on the daily magnetic resonance imaging (MRI) were analysed. Patients were fitted with a bladder catheter to control bladder filling; the bladder is emptied and then partially filled with a known amount of saline at the beginning and end of the online session. A first MRI ([Formula: see text]) acquired at the beginning of the session was used for plan adaptation and the second ([Formula: see text]) was acquired while approving the adapted plan and rigidly registered with the first to ensure the appropriateness of the isodoses on the ongoing delivery treatment. For each fraction, the time interval between the two MRIs and potential bladder changes were assessed with independent metrics, and the impact on the plan dosimetry was evaluated by comparing target and organs at risk dose volume histogram cut-off points of the plan adapted on [Formula: see text] and recalculated on [Formula: see text]. RESULTS Median bladder volume variations, DSC, and HD of 8.17%, 0.922, and 2.92 mm were registered within a median time of 38 min between [Formula: see text] and [Formula: see text]; dosimetric differences < 0.65% were registered for target coverage, and < 0.5% for bladder, small bowel and femoral heads constraints, with a p value > 0.05. CONCLUSION The use of a bladder filling control procedure can help ensure the dosimetric accuracy of the online adapted treatment delivered.
Collapse
Affiliation(s)
- Xi Feng
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Bin Tang
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Xinghong Yao
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Min Liu
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
- Institute of Nuclear Technology and Automation Engineering, Chengdu University of Technology, Chengdu, China
| | - Xiongfei Liao
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Ke Yuan
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Qian Peng
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| | - Lucia Clara Orlandini
- Department of Radiation Oncology, Sichuan Cancer Hospital & Institute, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
- Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Center, Chengdu, China
| |
Collapse
|
15
|
Pai S, Hadzic I, Rao C, Zhovannik I, Dekker A, Traverso A, Asteriadis S, Hortal E. Frequency-Domain-Based Structure Losses for CycleGAN-Based Cone-Beam Computed Tomography Translation. SENSORS (BASEL, SWITZERLAND) 2023; 23:1089. [PMID: 36772129 PMCID: PMC9920313 DOI: 10.3390/s23031089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/28/2022] [Accepted: 01/05/2023] [Indexed: 06/18/2023]
Abstract
Research exploring CycleGAN-based synthetic image generation has recently accelerated in the medical community due to its ability to leverage unpaired images effectively. However, a commonly established drawback of the CycleGAN, the introduction of artifacts in generated images, makes it unreliable for medical imaging use cases. In an attempt to address this, we explore the effect of structure losses on the CycleGAN and propose a generalized frequency-based loss that aims at preserving the content in the frequency domain. We apply this loss to the use-case of cone-beam computed tomography (CBCT) translation to computed tomography (CT)-like quality. Synthetic CT (sCT) images generated from our methods are compared against baseline CycleGAN along with other existing structure losses proposed in the literature. Our methods (MAE: 85.5, MSE: 20433, NMSE: 0.026, PSNR: 30.02, SSIM: 0.935) quantitatively and qualitatively improve over the baseline CycleGAN (MAE: 88.8, MSE: 24244, NMSE: 0.03, PSNR: 29.37, SSIM: 0.935) across all investigated metrics and are more robust than existing methods. Furthermore, no observable artifacts or loss in image quality were observed. Finally, we demonstrated that sCTs generated using our methods have superior performance compared to the original CBCT images on selected downstream tasks.
Collapse
Affiliation(s)
- Suraj Pai
- GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| | - Ibrahim Hadzic
- GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| | - Chinmay Rao
- Division of Image Processing, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Ivan Zhovannik
- GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| | - Andre Dekker
- GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| | - Alberto Traverso
- GROW School for Oncology and Reproduction, Maastricht University Medical Centre+, 6229 HX Maastricht, The Netherlands
| | - Stylianos Asteriadis
- Department of Advanced Computing Sciences, Maastricht University, 6229 EN Maastricht, The Netherlands
| | - Enrique Hortal
- Department of Advanced Computing Sciences, Maastricht University, 6229 EN Maastricht, The Netherlands
| |
Collapse
|
16
|
Hyuk Choi J, Asadi B, Simpson J, Dowling JA, Chalup S, Welsh J, Greer P. Investigation of a water equivalent depth method for dosimetric accuracy evaluation of synthetic CT. Phys Med 2023; 105:102507. [PMID: 36535236 DOI: 10.1016/j.ejmp.2022.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 12/23/2022] Open
Abstract
PURPOSE To provide a metric that reflects the dosimetric utility of the synthetic CT (sCT) and can be rapidly determined. METHODS Retrospective CT and atlas-based sCT of 62 (53 IMRT and 9 VMAT) prostate cancer patients were used. For image similarity measurements, the sCT and reference CT (rCT) were aligned using clinical registration parameters. Conventional image similarity metrics including the mean absolute error (MAE) and mean error (ME) were calculated. The water equivalent depth (WED) was automatically determined for each patient on the rCT and sCT as the distance from the skin surface to the treatment plan isocentre at 36 equidistant gantry angles, and the mean WED difference (ΔWED¯) between the two scans was calculated. Doses were calculated on each scan pair for the clinical plan in the treatment planning system. The image similarity measurements and ΔWED¯ were then compared to the isocentre dose difference (ΔDiso) between the two scans. RESULTS While no particular relationship to dose was observed for the other image similarity metrics, the ME results showed a linear trend against ΔDiso with R2 = 0.6, and the 95 % prediction interval for ΔDiso between -1.2 and 1 %. The ΔWED¯ results showed an improved linear trend (R2 = 0.8) with a narrower 95 % prediction interval from -0.8 % to 0.8 %. CONCLUSION ΔWED¯ highly correlates with ΔDiso for the reference and synthetic CT scans. This is easy to calculate automatically and does not require time-consuming dose calculations. Therefore, it can facilitate the process of developing and evaluating new sCT generation algorithms.
Collapse
Affiliation(s)
- Jae Hyuk Choi
- School of Information and Physical Sciences, University of Newcastle, Newcastle, New South Wales, Australia.
| | - Behzad Asadi
- Department of Radiation Oncology, Calvary Mater Hospital, Newcastle, New South Wales, Australia
| | - John Simpson
- Department of Radiation Oncology, Calvary Mater Hospital, Newcastle, New South Wales, Australia
| | - Jason A Dowling
- School of Information and Physical Sciences, University of Newcastle, Newcastle, New South Wales, Australia; Commonwealth Scientific and Industrial Research Organisation, Australian E-Health Research Centre, Herston, Queensland, Australia
| | - Stephan Chalup
- School of Information and Physical Sciences, University of Newcastle, Newcastle, New South Wales, Australia
| | - James Welsh
- School of Engineering, University of Newcastle, Newcastle, New South Wales, Australia
| | - Peter Greer
- School of Information and Physical Sciences, University of Newcastle, Newcastle, New South Wales, Australia; Department of Radiation Oncology, Calvary Mater Hospital, Newcastle, New South Wales, Australia
| |
Collapse
|
17
|
Guerini AE, Nici S, Magrini SM, Riga S, Toraci C, Pegurri L, Facheris G, Cozzaglio C, Farina D, Liserre R, Gasparotti R, Ravanelli M, Rondi P, Spiazzi L, Buglione M. Adoption of Hybrid MRI-Linac Systems for the Treatment of Brain Tumors: A Systematic Review of the Current Literature Regarding Clinical and Technical Features. Technol Cancer Res Treat 2023; 22:15330338231199286. [PMID: 37774771 PMCID: PMC10542234 DOI: 10.1177/15330338231199286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/24/2023] [Accepted: 08/08/2023] [Indexed: 10/01/2023] Open
Abstract
BACKGROUND Possible advantages of magnetic resonance (MR)-guided radiation therapy (MRgRT) for the treatment of brain tumors include improved definition of treatment volumes and organs at risk (OARs) that could allow margin reductions, resulting in limited dose to the OARs and/or dose escalation to target volumes. Recently, hybrid systems integrating a linear accelerator and an magnetic resonance imaging (MRI) scan (MRI-linacs, MRL) have been introduced, that could potentially lead to a fully MRI-based treatment workflow. METHODS We performed a systematic review of the published literature regarding the adoption of MRL for the treatment of primary or secondary brain tumors (last update November 3, 2022), retrieving a total of 2487 records; after a selection based on title and abstracts, the full text of 74 articles was analyzed, finally resulting in the 52 papers included in this review. RESULTS AND DISCUSSION Several solutions have been implemented to achieve a paradigm shift from CT-based radiotherapy to MRgRT, such as the management of geometric integrity and the definition of synthetic CT models that estimate electron density. Multiple sequences have been optimized to acquire images with adequate quality with on-board MR scanner in limited times. Various sophisticated algorithms have been developed to compensate the impact of magnetic field on dose distribution and calculate daily adaptive plans in a few minutes with satisfactory dosimetric parameters for the treatment of primary brain tumors and cerebral metastases. Dosimetric studies and preliminary clinical experiences demonstrated the feasibility of treating brain lesions with MRL. CONCLUSIONS The adoption of an MRI-only workflow is feasible and could offer several advantages for the treatment of brain tumors, including superior image quality for lesions and OARs and the possibility to adapt the treatment plan on the basis of daily MRI. The growing body of clinical data will clarify the potential benefit in terms of toxicity and response to treatment.
Collapse
Affiliation(s)
- Andrea Emanuele Guerini
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
- Co-first authors
| | - Stefania Nici
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy
- Co-first authors
| | - Stefano Maria Magrini
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Stefano Riga
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy
| | - Cristian Toraci
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy
| | - Ludovica Pegurri
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Giorgio Facheris
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
| | - Claudia Cozzaglio
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy
| | - Davide Farina
- Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Roberto Liserre
- Department of Radiology, Neuroradiology Unit, ASST Spedali Civili University Hospital, Brescia, Italy
| | - Roberto Gasparotti
- Neuroradiology Unit, Department of Medical-Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Marco Ravanelli
- Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Paolo Rondi
- Radiology Unit, Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Luigi Spiazzi
- Medical Physics Department, ASST Spedali Civili Hospital, Brescia, Italy
- Co-last author
| | - Michela Buglione
- Department of Radiation Oncology, University and Spedali Civili Hospital, Brescia, Italy
- Co-last author
| |
Collapse
|
18
|
A Systematic Literature Review on Applications of GAN-Synthesized Images for Brain MRI. FUTURE INTERNET 2022. [DOI: 10.3390/fi14120351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
With the advances in brain imaging, magnetic resonance imaging (MRI) is evolving as a popular radiological tool in clinical diagnosis. Deep learning (DL) methods can detect abnormalities in brain images without an extensive manual feature extraction process. Generative adversarial network (GAN)-synthesized images have many applications in this field besides augmentation, such as image translation, registration, super-resolution, denoising, motion correction, segmentation, reconstruction, and contrast enhancement. The existing literature was reviewed systematically to understand the role of GAN-synthesized dummy images in brain disease diagnosis. Web of Science and Scopus databases were extensively searched to find relevant studies from the last 6 years to write this systematic literature review (SLR). Predefined inclusion and exclusion criteria helped in filtering the search results. Data extraction is based on related research questions (RQ). This SLR identifies various loss functions used in the above applications and software to process brain MRIs. A comparative study of existing evaluation metrics for GAN-synthesized images helps choose the proper metric for an application. GAN-synthesized images will have a crucial role in the clinical sector in the coming years, and this paper gives a baseline for other researchers in the field.
Collapse
|
19
|
Chourak H, Barateau A, Tahri S, Cadin C, Lafond C, Nunes JC, Boue-Rafle A, Perazzi M, Greer PB, Dowling J, de Crevoisier R, Acosta O. Quality assurance for MRI-only radiation therapy: A voxel-wise population-based methodology for image and dose assessment of synthetic CT generation methods. Front Oncol 2022; 12:968689. [PMID: 36300084 PMCID: PMC9589295 DOI: 10.3389/fonc.2022.968689] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/20/2022] [Indexed: 11/13/2022] Open
Abstract
The quality assurance of synthetic CT (sCT) is crucial for safe clinical transfer to an MRI-only radiotherapy planning workflow. The aim of this work is to propose a population-based process assessing local errors in the generation of sCTs and their impact on dose distribution. For the analysis to be anatomically meaningful, a customized interpatient registration method brought the population data to the same coordinate system. Then, the voxel-based process was applied on two sCT generation methods: a bulk-density method and a generative adversarial network. The CT and MRI pairs of 39 patients treated by radiotherapy for prostate cancer were used for sCT generation, and 26 of them with delineated structures were selected for analysis. Voxel-wise errors in sCT compared to CT were assessed for image intensities and dose calculation, and a population-based statistical test was applied to identify the regions where discrepancies were significant. The cumulative histograms of the mean absolute dose error per volume of tissue were computed to give a quantitative indication of the error for each generation method. Accurate interpatient registration was achieved, with mean Dice scores higher than 0.91 for all organs. The proposed method produces three-dimensional maps that precisely show the location of the major discrepancies for both sCT generation methods, highlighting the heterogeneity of image and dose errors for sCT generation methods from MRI across the pelvic anatomy. Hence, this method provides additional information that will assist with both sCT development and quality control for MRI-based planning radiotherapy.
Collapse
Affiliation(s)
- Hilda Chourak
- University of Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, Rennes, France
- The Australian eHealth Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Health and Biosecurity, Brisbane, QLD, Australia
- *Correspondence: Hilda Chourak, ; Jason Dowling,
| | - Anaïs Barateau
- University of Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, Rennes, France
| | - Safaa Tahri
- University of Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, Rennes, France
| | - Capucine Cadin
- University of Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, Rennes, France
| | - Caroline Lafond
- University of Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, Rennes, France
| | - Jean-Claude Nunes
- University of Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, Rennes, France
| | - Adrien Boue-Rafle
- University of Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, Rennes, France
| | - Mathias Perazzi
- University of Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, Rennes, France
| | - Peter B. Greer
- School of Mathematical and Physical Sciences, University of Newcastle, Newcastle, NSW, Australia
- Radiation Oncology, Calvary Mater Newcastle Hospital, Newcastle, NSW, Australia
| | - Jason Dowling
- The Australian eHealth Research Centre, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Health and Biosecurity, Brisbane, QLD, Australia
- *Correspondence: Hilda Chourak, ; Jason Dowling,
| | - Renaud de Crevoisier
- University of Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, Rennes, France
| | - Oscar Acosta
- University of Rennes, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, Rennes, France
| |
Collapse
|
20
|
Masitho S, Szkitsak J, Grigo J, Fietkau R, Putz F, Bert C. Feasibility of artificial-intelligence-based synthetic computed tomography in a magnetic resonance-only radiotherapy workflow for brain radiotherapy: two-way dose validation and 2D/2D kV-image-based positioning. Phys Imaging Radiat Oncol 2022; 24:111-117. [DOI: 10.1016/j.phro.2022.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/05/2022] Open
|
21
|
Emergence of MR-Linac in Radiation Oncology: Successes and Challenges of Riding on the MRgRT Bandwagon. J Clin Med 2022; 11:jcm11175136. [PMID: 36079065 PMCID: PMC9456673 DOI: 10.3390/jcm11175136] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/05/2022] Open
Abstract
The special issue of JCM on “Advances of MRI in Radiation Oncology” provides a unique forum for scientific literature related to MR imaging in radiation oncology. This issue covered many aspects, such as MR technology, motion management, economics, soft-tissue–air interface issues, and disease sites such as the pancreas, spine, sarcoma, prostate, head and neck, and rectum from both camps—the Unity and MRIdian systems. This paper provides additional information on the success and challenges of the two systems. A challenging aspect of this technology is low throughput and the monumental task of education and training that hinders its use for the majority of therapy centers. Additionally, the cost of this technology is too high for most institutions, and hence widespread use is still limited. This article highlights some of the difficulties and how to resolve them.
Collapse
|
22
|
Tang B, Liu M, Wang B, Diao P, Li J, Feng X, Wu F, Yao X, Liao X, Hou Q, Orlandini LC. Improving the clinical workflow of a MR-Linac by dosimetric evaluation of synthetic CT. Front Oncol 2022; 12:920443. [PMID: 36106119 PMCID: PMC9464932 DOI: 10.3389/fonc.2022.920443] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/04/2022] [Indexed: 11/13/2022] Open
Abstract
Adaptive radiotherapy performed on the daily magnetic resonance imaging (MRI) is an option to improve the treatment quality. In the adapt-to-shape workflow of 1.5-T MR-Linac, the contours of structures are adjusted on the basis of patient daily MRI, and the adapted plan is recalculated on the MRI-based synthetic computed tomography (syCT) generated by bulk density assignment. Because dosimetric accuracy of this strategy is a priority and requires evaluation, this study aims to explore the usefulness of adding an assessment of dosimetric errors associated with recalculation on syCT to the clinical workflow. Sixty-one patients, with various tumor sites, treated using a 1.5-T MR-Linac were included in this study. In Monaco V5.4, the target and organs at risk (OARs) were contoured, and a reference CT plan that contains information about the outlined contours, their average electron density (ED), and the priority of ED assignment was generated. To evaluate the dosimetric error of syCT caused by the inherent approximation within bulk density assignment, the reference CT plan was recalculated on the syCT obtained from the reference CT by forcing all contoured structures to their mean ED defined on the reference plan. The dose–volume histogram (DVH) and dose distribution of the CT and syCT plan were compared. The causes of dosimetric discrepancies were investigated, and the reference plan was reworked to minimize errors if needed. For 54 patients, gamma analysis of the dose distribution on syCT and CT show a median pass rate of 99.7% and 98.5% with the criteria of 3%/3 mm and 2%/2 mm, respectively. DVH difference of targets and OARs remained less than 1.5% or 1 Gy. For the remaining patients, factors (i.e., inappropriate ED assignments) influenced the dosimetric agreement of the syCT vs. CT reference DVH by up to 21%. The causes of the errors were promptly identified, and the DVH dosimetry was realigned except for two lung treatments for which a significant discrepancy remained. The recalculation on the syCT obtained from the planning CT is a powerful tool to assess and decrease the minimal error committed during the adaptive plan on the MRI-based syCT.
Collapse
Affiliation(s)
- Bin Tang
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, affiliated to University of Electronic Science and Technology of China (UESTC), Chengdu, China
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, China
| | - Min Liu
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, affiliated to University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Bingjie Wang
- Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Peng Diao
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, affiliated to University of Electronic Science and Technology of China (UESTC), Chengdu, China
- *Correspondence: Peng Diao,
| | - Jie Li
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, affiliated to University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Xi Feng
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, affiliated to University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Fan Wu
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, affiliated to University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Xinghong Yao
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, affiliated to University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Xiongfei Liao
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, affiliated to University of Electronic Science and Technology of China (UESTC), Chengdu, China
| | - Qing Hou
- Key Laboratory of Radiation Physics and Technology of the Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu, China
| | - Lucia Clara Orlandini
- Department of Radiation Oncology, Sichuan Cancer Hospital and Research Institute, affiliated to University of Electronic Science and Technology of China (UESTC), Chengdu, China
| |
Collapse
|
23
|
Shokraei Fard A, Reutens DC, Vegh V. From CNNs to GANs for cross-modality medical image estimation. Comput Biol Med 2022; 146:105556. [DOI: 10.1016/j.compbiomed.2022.105556] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/03/2022] [Accepted: 04/22/2022] [Indexed: 11/03/2022]
|
24
|
Vivas Maiques B, Ruiz IO, Janssen T, Mans A. Clinical rationale for in vivo portal dosimetry in magnetic resonance guided online adaptive radiotherapy. Phys Imaging Radiat Oncol 2022; 23:16-23. [PMID: 35734264 PMCID: PMC9207286 DOI: 10.1016/j.phro.2022.06.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 10/28/2022] Open
|
25
|
Ali H, Biswas R, Ali F, Shah U, Alamgir A, Mousa O, Shah Z. The role of generative adversarial networks in brain MRI: a scoping review. Insights Imaging 2022; 13:98. [PMID: 35662369 PMCID: PMC9167371 DOI: 10.1186/s13244-022-01237-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/11/2022] [Indexed: 11/23/2022] Open
Abstract
The performance of artificial intelligence (AI) for brain MRI can improve if enough data are made available. Generative adversarial networks (GANs) showed a lot of potential to generate synthetic MRI data that can capture the distribution of real MRI. Besides, GANs are also popular for segmentation, noise removal, and super-resolution of brain MRI images. This scoping review aims to explore how GANs methods are being used on brain MRI data, as reported in the literature. The review describes the different applications of GANs for brain MRI, presents the most commonly used GANs architectures, and summarizes the publicly available brain MRI datasets for advancing the research and development of GANs-based approaches. This review followed the guidelines of PRISMA-ScR to perform the study search and selection. The search was conducted on five popular scientific databases. The screening and selection of studies were performed by two independent reviewers, followed by validation by a third reviewer. Finally, the data were synthesized using a narrative approach. This review included 139 studies out of 789 search results. The most common use case of GANs was the synthesis of brain MRI images for data augmentation. GANs were also used to segment brain tumors and translate healthy images to diseased images or CT to MRI and vice versa. The included studies showed that GANs could enhance the performance of AI methods used on brain MRI imaging data. However, more efforts are needed to transform the GANs-based methods in clinical applications.
Collapse
Affiliation(s)
- Hazrat Ali
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, 34110, Doha, Qatar.
| | - Rafiul Biswas
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, 34110, Doha, Qatar
| | - Farida Ali
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, 34110, Doha, Qatar
| | - Uzair Shah
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, 34110, Doha, Qatar
| | - Asma Alamgir
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, 34110, Doha, Qatar
| | - Osama Mousa
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, 34110, Doha, Qatar
| | - Zubair Shah
- College of Science and Engineering, Hamad Bin Khalifa University, Qatar Foundation, 34110, Doha, Qatar.
| |
Collapse
|
26
|
Sun H, Xi Q, Fan R, Sun J, Xie K, Ni X, Yang J. Synthesis of pseudo-CT images from pelvic MRI images based on MD-CycleGAN model for radiotherapy. Phys Med Biol 2021; 67. [PMID: 34879356 DOI: 10.1088/1361-6560/ac4123] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/08/2021] [Indexed: 11/12/2022]
Abstract
OBJECTIVE A multi-discriminator-based cycle generative adversarial network (MD-CycleGAN) model was proposed to synthesize higher-quality pseudo-CT from MRI. APPROACH The MRI and CT images obtained at the simulation stage with cervical cancer were selected to train the model. The generator adopted the DenseNet as the main architecture. The local and global discriminators based on convolutional neural network jointly discriminated the authenticity of the input image data. In the testing phase, the model was verified by four-fold cross-validation method. In the prediction stage, the data were selected to evaluate the accuracy of the pseudo-CT in anatomy and dosimetry, and they were compared with the pseudo-CT synthesized by GAN with generator based on the architectures of ResNet, sU-Net, and FCN. MAIN RESULTS There are significant differences(P<0.05) in the four-fold-cross validation results on peak signal-to-noise ratio and structural similarity index metrics between the pseudo-CT obtained based on MD-CycleGAN and the ground truth CT (CTgt). The pseudo-CT synthesized by MD-CycleGAN had closer anatomical information to the CTgt with root mean square error of 47.83±2.92 HU and normalized mutual information value of 0.9014±0.0212 and mean absolute error value of 46.79±2.76 HU. The differences in dose distribution between the pseudo-CT obtained by MD-CycleGAN and the CTgt were minimal. The mean absolute dose errors of Dosemax, Dosemin and Dosemean based on the planning target volume were used to evaluate the dose uncertainty of the four pseudo-CT. The u-values of the Wilcoxon test were 55.407, 41.82 and 56.208, and the differences were statistically significant. The 2%/2 mm-based gamma pass rate (%) of the proposed method was 95.45±1.91, and the comparison methods (ResNet_GAN, sUnet_GAN and FCN_GAN) were 93.33±1.20, 89.64±1.63 and 87.31±1.94, respectively. SIGNIFICANCE The pseudo-CT obtained based on MD-CycleGAN have higher imaging quality and are closer to the CTgt in terms of anatomy and dosimetry than other GAN models.
Collapse
Affiliation(s)
- Hongfei Sun
- Northwestern Polytechnical University School of Automation, School of Automation, Xi'an, Shaanxi, 710129, CHINA
| | - Qianyi Xi
- The Affiliated Changzhou No 2 People's Hospital of Nanjing Medical University, ., Changzhou, Jiangsu, 213003, CHINA
| | - Rongbo Fan
- Northwestern Polytechnical University School of Automation, School of Automation, Xi'an, Shaanxi, 710129, CHINA
| | - Jiawei Sun
- The Affiliated Changzhou No 2 People's Hospital of Nanjing Medical University, ., Changzhou, Jiangsu, 213003, CHINA
| | - Kai Xie
- The Affiliated Changzhou No 2 People's Hospital of Nanjing Medical University, ., Changzhou, Jiangsu, 213003, CHINA
| | - Xinye Ni
- The Affiliated Changzhou No 2 People's Hospital of Nanjing Medical University, ., Changzhou, 213003, CHINA
| | - Jianhua Yang
- Northwestern Polytechnical University School of Automation, School of Automation, Xi'an, Shaanxi, 710129, CHINA
| |
Collapse
|
27
|
Boulanger M, Nunes JC, Chourak H, Largent A, Tahri S, Acosta O, De Crevoisier R, Lafond C, Barateau A. Deep learning methods to generate synthetic CT from MRI in radiotherapy: A literature review. Phys Med 2021; 89:265-281. [PMID: 34474325 DOI: 10.1016/j.ejmp.2021.07.027] [Citation(s) in RCA: 87] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 01/04/2023] Open
Abstract
PURPOSE In radiotherapy, MRI is used for target volume and organs-at-risk delineation for its superior soft-tissue contrast as compared to CT imaging. However, MRI does not provide the electron density of tissue necessary for dose calculation. Several methods of synthetic-CT (sCT) generation from MRI data have been developed for radiotherapy dose calculation. This work reviewed deep learning (DL) sCT generation methods and their associated image and dose evaluation, in the context of MRI-based dose calculation. METHODS We searched the PubMed and ScienceDirect electronic databases from January 2010 to March 2021. For each paper, several items were screened and compiled in figures and tables. RESULTS This review included 57 studies. The DL methods were either generator-only based (45% of the reviewed studies), or generative adversarial network (GAN) architecture and its variants (55% of the reviewed studies). The brain and pelvis were the most commonly investigated anatomical localizations (39% and 28% of the reviewed studies, respectively), and more rarely, the head-and-neck (H&N) (15%), abdomen (10%), liver (5%) or breast (3%). All the studies performed an image evaluation of sCTs with a diversity of metrics, with only 36 studies performing dosimetric evaluations of sCT. CONCLUSIONS The median mean absolute errors were around 76 HU for the brain and H&N sCTs and 40 HU for the pelvis sCTs. For the brain, the mean dose difference between the sCT and the reference CT was <2%. For the H&N and pelvis, the mean dose difference was below 1% in most of the studies. Recent GAN architectures have advantages compared to generator-only, but no superiority was found in term of image or dose sCT uncertainties. Key challenges of DL-based sCT generation methods from MRI in radiotherapy is the management of movement for abdominal and thoracic localizations, the standardization of sCT evaluation, and the investigation of multicenter impacts.
Collapse
Affiliation(s)
- M Boulanger
- Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France
| | - Jean-Claude Nunes
- Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France.
| | - H Chourak
- Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France; CSIRO Australian e-Health Research Centre, Herston, Queensland, Australia
| | - A Largent
- Developing Brain Institute, Department of Diagnostic Imaging and Radiology, Children's National Hospital, Washington, DC, USA
| | - S Tahri
- Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France
| | - O Acosta
- Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France
| | - R De Crevoisier
- Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France
| | - C Lafond
- Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France
| | - A Barateau
- Univ. Rennes 1, CLCC Eugène Marquis, INSERM, LTSI - UMR 1099, F-35000 Rennes, France
| |
Collapse
|
28
|
Abu-Srhan A, Almallahi I, Abushariah MAM, Mahafza W, Al-Kadi OS. Paired-unpaired Unsupervised Attention Guided GAN with transfer learning for bidirectional brain MR-CT synthesis. Comput Biol Med 2021; 136:104763. [PMID: 34449305 DOI: 10.1016/j.compbiomed.2021.104763] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/04/2021] [Accepted: 08/10/2021] [Indexed: 11/28/2022]
Abstract
Medical image acquisition plays a significant role in the diagnosis and management of diseases. Magnetic Resonance (MR) and Computed Tomography (CT) are considered two of the most popular modalities for medical image acquisition. Some considerations, such as cost and radiation dose, may limit the acquisition of certain image modalities. Therefore, medical image synthesis can be used to generate required medical images without actual acquisition. In this paper, we propose a paired-unpaired Unsupervised Attention Guided Generative Adversarial Network (uagGAN) model to translate MR images to CT images and vice versa. The uagGAN model is pre-trained with a paired dataset for initialization and then retrained on an unpaired dataset using a cascading process. In the paired pre-training stage, we enhance the loss function of our model by combining the Wasserstein GAN adversarial loss function with a new combination of non-adversarial losses (content loss and L1) to generate fine structure images. This will ensure global consistency, and better capture of the high and low frequency details of the generated images. The uagGAN model is employed as it generates more accurate and sharper images through the production of attention masks. Knowledge from a non-medical pre-trained model is also transferred to the uagGAN model for improved learning and better image translation performance. Quantitative evaluation and qualitative perceptual analysis by radiologists indicate that employing transfer learning with the proposed paired-unpaired uagGAN model can achieve better performance as compared to other rival image-to-image translation models.
Collapse
Affiliation(s)
- Alaa Abu-Srhan
- Department of Basic Science, The Hashemite University, Zarqa, Jordan
| | - Israa Almallahi
- Department of Diagnostic Radiology, Jordan University Hospital, Amman, 11942, Jordan
| | - Mohammad A M Abushariah
- King Abdullah II School of Information Technology, The University of Jordan, Amman, 11942, Jordan
| | - Waleed Mahafza
- Department of Diagnostic Radiology, Jordan University Hospital, Amman, 11942, Jordan
| | - Omar S Al-Kadi
- King Abdullah II School of Information Technology, The University of Jordan, Amman, 11942, Jordan.
| |
Collapse
|