1
|
Ji M, Li Z, Tian Y, Zhang K, Li M, Chen Y. A virtual phantom for patient-specific QA On A 1.5T MR-linac. J Appl Clin Med Phys 2024; 25:e14264. [PMID: 38252813 PMCID: PMC11087164 DOI: 10.1002/acm2.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/24/2024] Open
Abstract
Create a virtual ArcCHECK-MR phantom, customized for a 1.5T MR-linac, with consideration of the different density regions within the quality assurance (QA) phantom, aiming to streamline the utilization of this specialized QA device. A virtual phantom was constructed in the treatment planning system (TPS) to replicate the ArcCHECK-MR's composition, consisting of five distinct layers: "Outer" (representing the outer PMMA ring), "Complex" (simulating the printed circuit boards), "Detectors" (encompassing the detector area), "Inner" (signifying the inner PMMA ring) and "Insert" (representing the PMMA insert). These layers were defined based on geometric data and represented as contour points on a set of dummy CT images. Additionally, a setup platform was integrated as contoured structures. To determine the relative electron density (RED) values of the external and internal PMMA components, measurements were taken at 25 points in the insert using an ion chamber. A novel method for establishing the exit/entrance dose ratio (EEDR) for ArcCHECK-MR was introduced. The RED of higher density region was derived by evaluating the local gamma index passing rate results with criteria of 2% dose difference and 2 mm distance-to-agreement. The performance of the virtual phantom was assessed for Unity 7 FFF beams with a 1.5T magnetic field. The radii of the five ring structures within the virtual phantom measured 133.0 mm, 110.0 mm, 103.4 mm, 100.0 mm, and 75.0 mm for the "Outer," "Complex," "Detectors," "Inner" and "Insert" regions, respectively. The RED values were as follows: ArcCHECK-MR PMMA had a RED of 1.130, "Detectors" were assumed to have a RED of 1.000, "Complex" had a RED of 1.200, and the setup QA phantom justified a RED of 1.350. Early validation results demonstrate that the 5-layer virtual phantom, when compared to the commonly used bulk overridden phantom, offers improved capability in MR-linac environments. This enhancement led to an increase in passing rates for the local gamma index by approximately 5 ∼ 6%, when applying the criteria of 2%, 2 mm. We have successfully generated a virtual representation of the distinct regions within the ArcCHECK-MR using a TPS, addressing the challenges associated with its use in conjunction with a 1.5T MR-linac. We consistently observed favorable local gamma index passing rates across two 1.5T MR-linac and ArcCHECK-MR unit combinations. This approach has the potential to minimize uncertainties in the creation of the QA phantom for ArcCHECK-MR across various institutions.
Collapse
Affiliation(s)
| | - Zhenjiang Li
- Department of Radiation OncologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical Sciences (SDCH)JinanChina
| | - Yuan Tian
- Department of Radiation OncologyNational Cancer Center/NationalClinical Research Center for CancerCancer Hospital Chinese Academy of, Medical Sciences and Peking Union Medical College, (CAMS)BeijingBeijingChina
| | - Ke Zhang
- Department of Radiation OncologyNational Cancer Center/NationalClinical Research Center for CancerCancer Hospital Chinese Academy of, Medical Sciences and Peking Union Medical College, (CAMS)BeijingBeijingChina
| | - Minghui Li
- Department of Radiation OncologyNational Cancer Center/NationalClinical Research Center for CancerCancer Hospital Chinese Academy of, Medical Sciences and Peking Union Medical College, (CAMS)BeijingBeijingChina
| | - Yan Chen
- Elekta Ltd. Asia PacificHongkongChina
| |
Collapse
|
2
|
Cui W, Tian Y, Dai J. Novel multileaf collimator designs with tongues and grooves in leaf end and Monte Carlo simulations. Med Dosim 2024; 49:254-262. [PMID: 38402060 DOI: 10.1016/j.meddos.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 01/31/2024] [Indexed: 02/26/2024]
Abstract
In this study, we proposed 2 new multileaf collimator leaf designs to eliminate leaf gaps for closed leaf pairs so that radiation leakage can be avoided. In the new designs, multi tongues and grooves were added to the conventional multileaf collimators leaf ends. Thus, when a pair of leaves closed, tongues of a leaf can enter grooves of its opposing leaf. Consequently, there would be no radiation leakage through closed leaves. One design was named finger-shaped MLC, and another design with doubled leaf end thickness was named hand-shaped MLC. Monte Carlo simulations were performed to simulate dosimetric characteristics of the new MLC designs and comparison to conventional MLCs was performed. The simulations show that for the closed field, the new designs reduce leakage dramatically. And for the open field, the finger-shaped MLC has a larger penumbra width than conventional MLC, while the penumbra for the hand-shaped MLC is comparable to that of conventional MLC. With the application of new MLC designs, it is expected to eliminate leaf gaps for MLC usage and protect normal tissues better.
Collapse
Affiliation(s)
- Weijie Cui
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuan Tian
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jianrong Dai
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China.
| |
Collapse
|
3
|
Riis HL, Chick J, Dunlop A, Tilly D. The Quality Assurance of a 1.5 T MR-Linac. Semin Radiat Oncol 2024; 34:120-128. [PMID: 38105086 DOI: 10.1016/j.semradonc.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The recent introduction of a commercial 1.5 T MR-linac system has considerably improved the image quality of the patient acquired in the treatment unit as well as enabling online adaptive radiation therapy (oART) treatment strategies. Quality Assurance (QA) of this new technology requires new methodology that allows for the high field MR in a linac environment. The presence of the magnetic field requires special attention to the phantoms, detectors, and tools to perform QA. Due to the design of the system, the integrated megavoltage imager (MVI) is essential for radiation beam calibrations and QA. Additionally, the alignment between the MR image system and the radiation isocenter must be checked. The MR-linac system has vendor-supplied phantoms for calibration and QA tests. However, users have developed their own routine QA systems to independently check that the machine is performing as required, as to ensure we are able to deliver the intended dose with sufficient certainty. The aim of this work is therefore to review the MR-linac specific QA procedures reported in the literature.
Collapse
Affiliation(s)
- Hans Lynggaard Riis
- Department of Oncology, Odense University Hospital, Odense, Denmark; Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Joan Chick
- The Joint Department of Physics, The Royal Marsden Hospital and the Institute of Cancer Research, London, UK
| | - Alex Dunlop
- The Joint Department of Physics, The Royal Marsden Hospital and the Institute of Cancer Research, London, UK
| | - David Tilly
- Department of Immunology, Genetics and Pathology, Medical Radiation Physics, Uppsala University, Uppsala, Sweden; Medical Physics, Uppsala University Hospital, Uppsala, Sweden
| |
Collapse
|
4
|
Malkov VN, Winter JD, Mateescu D, Létourneau D. MR-linac daily semi-automated end-to-end quality control verification. J Appl Clin Med Phys 2023; 24:e13916. [PMID: 36763085 PMCID: PMC10161066 DOI: 10.1002/acm2.13916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/24/2022] [Accepted: 12/29/2022] [Indexed: 02/11/2023] Open
Abstract
PURPOSE Adaptive radiation therapy (ART) on the integrated Elekta Unity magnetic resonance (MR)-linac requires routine quality assurance to verify delivery accuracy and system data transfer. In this work, our objective was to develop and validate a novel automated end-to-end test suite that verifies data transfer between multiple software platforms and quantifies the performance of multiple machine subcomponents critical to the ART process. METHODS We designed and implemented a software tool to quantify the MR and megavoltage (MV) isocenter coincidence, treatment couch positioning consistency, isocenter shift accuracy for the adapted plan as well as the MLC and jaw position accuracy following the beam aperture adaptation. Our tool employs a reference treatment plan with a simulated isocenter shift generated on an MR image of a readily available phantom with MR and MV visible fiducials. Execution of the test occurs within the standard adapt-to-position (ATP) clinical workflow with MV images collected of the delivered treatment fields. Using descriptive statistics, we quantified uncertainty in couch positioning, isocentre shift as well as the jaw and MLC positions of the adapted fields. We also executed sensitivity measurements to evaluate the detection algorithm's performance. RESULTS We report the results of 301 daily testing instances. We demonstrated consistent tracking of the MR-to-MV alignment with respect to the established value and to detect small changes on the order of 0.2 mm following machine service events. We found couch position consistency relative to the test baseline value was within 95% CI [-0.31, 0.26 mm]. For phantom shifts that form the basis for the plan adaptation, we found agreement between MV-image-detected phantom shift and online image registration, within ± 1.5 mm in all directions with a 95% CI difference of [-1.29, 0.79 mm]. For beam aperture adaptation accuracy, we found differences between the planned and detected jaw positions had a mean value of 0.27 mm and 95% CI of [-0.29, 0.82 mm] and -0.17 mm and 95% CI of [-0.37, 0.05 mm] for the MLC positions. Automated fiducial detected accuracy was within 0.08 ± 0.20 mm of manual localization. Introduced jaw and MLC position errors (1-10 mm) were detected within 0.55 mm (within 1 mm for 15/256 instances for the jaws). Phantom shifts (1.3 or 5 mm in each cardinal direction) from a reference position were detected within 0.26 mm. CONCLUSIONS We have demonstrated the accuracy and sensitivity of a daily end-to-end test suite capable of detecting errors in multiple machine subcomponents including system data transfer. Our test suite evaluates the entire treatment workflow and has captured system communication issues prior to patient treatment. With automated processing and the use of a standard vendor-provided phantom, it is possible to expand to other Unity sites.
Collapse
Affiliation(s)
- Victor N. Malkov
- Radiation Medicine ProgramPrincess Margaret Cancer CenterTorontoOntarioCanada
| | - Jeff D. Winter
- Radiation Medicine ProgramPrincess Margaret Cancer CenterTorontoOntarioCanada
- Department of Radiation OncologyUniversity of TorontoTorontoOntarioCanada
| | - Dan Mateescu
- Radiation Medicine ProgramPrincess Margaret Cancer CenterTorontoOntarioCanada
| | - Daniel Létourneau
- Radiation Medicine ProgramPrincess Margaret Cancer CenterTorontoOntarioCanada
- Department of Radiation OncologyUniversity of TorontoTorontoOntarioCanada
| |
Collapse
|
5
|
Subashi E, Segars P, Veeraraghavan H, Deasy J, Tyagi N. A model for gastrointestinal tract motility in a 4D imaging phantom of human anatomy. Med Phys 2023; 50:3066-3075. [PMID: 36808107 PMCID: PMC10561541 DOI: 10.1002/mp.16305] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/26/2023] [Accepted: 01/29/2023] [Indexed: 02/23/2023] Open
Abstract
BACKGROUND Gastrointestinal (GI) tract motility is one of the main sources for intra/inter-fraction variability and uncertainty in radiation therapy for abdominal targets. Models for GI motility can improve the assessment of delivered dose and contribute to the development, testing, and validation of deformable image registration (DIR) and dose-accumulation algorithms. PURPOSE To implement GI tract motion in the 4D extended cardiac-torso (XCAT) digital phantom of human anatomy. MATERIALS AND METHODS Motility modes that exhibit large amplitude changes in the diameter of the GI tract and may persist over timescales comparable to online adaptive planning and radiotherapy delivery were identified based on literature research. Search criteria included amplitude changes larger than planning risk volume expansions and durations of the order of tens of minutes. The following modes were identified: peristalsis, rhythmic segmentation, high amplitude propagating contractions (HAPCs), and tonic contractions. Peristalsis and rhythmic segmentations were modeled by traveling and standing sinusoidal waves. HAPCs and tonic contractions were modeled by traveling and stationary Gaussian waves. Wave dispersion in the temporal and spatial domain was implemented by linear, exponential, and inverse power law functions. Modeling functions were applied to the control points of the nonuniform rational B-spline surfaces defined in the reference XCAT library. GI motility was combined with the cardiac and respiratory motions available in the standard 4D-XCAT phantom. Default model parameters were estimated based on the analysis of cine MRI acquisitions in 10 patients treated in a 1.5T MR-linac. RESULTS We demonstrate the ability to generate realistic 4D multimodal images that simulate GI motility combined with respiratory and cardiac motion. All modes of motility, except tonic contractions, were observed in the analysis of our cine MRI acquisitions. Peristalsis was the most common. Default parameters estimated from cine MRI were used as initial values for simulation experiments. It is shown that in patients undergoing stereotactic body radiotherapy for abdominal targets, the effects of GI motility can be comparable or larger than the effects of respiratory motion. CONCLUSION The digital phantom provides realistic models to aid in medical imaging and radiation therapy research. The addition of GI motility will further contribute to the development, testing, and validation of DIR and dose accumulation algorithms for MR-guided radiotherapy.
Collapse
Affiliation(s)
- Ergys Subashi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Paul Segars
- Department of Radiology, Duke University Medical Center, Durham, North Carolina
| | - Harini Veeraraghavan
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Joseph Deasy
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
6
|
Hilgers GC, Ikink M, Potters I, Schuring D. Beam output checks of a commercial high-field magnetic resonance-guided radiotherapy machine with its on-board megavoltage imager. Phys Imaging Radiat Oncol 2023; 25:100411. [PMID: 36687506 PMCID: PMC9852784 DOI: 10.1016/j.phro.2023.100411] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023] Open
Abstract
Beam output checks of a commercial high-field magnetic resonance-guided radiotherapy machine can be performed with its on-board megavoltage imager (MVI). This is a fast and efficient method, but only recommended for daily checks. The aim of our study was to show its suitability for weekly checks by investigating its long-term agreement with the golden standard: ionization chamber measurements in a water tank. For one year, the output deviations obtained with both methods were compared. The difference was 0.1 ± 0.3 (1SD) percentage point. This indicated an excellent agreement, and translated into a tolerance level of ± 2 %.
Collapse
Affiliation(s)
- Guido C. Hilgers
- Corresponding author at: Department of Medical Physics, Radiotherapiegroep, Behandellocatie Deventer, Postbus 123, 7400 AC Deventer, The Netherlands.
| | | | | | | |
Collapse
|
7
|
Tsuneda M, Abe K, Fujita Y, Ikeda Y, Furuyama Y, Uno T. Elekta Unity MR-linac commissioning: mechanical and dosimetry tests. JOURNAL OF RADIATION RESEARCH 2022; 64:73-84. [PMCID: PMC9855313 DOI: 10.1093/jrr/rrac072] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 06/16/2022] [Indexed: 06/26/2023]
Abstract
We report the commissioning results of Elekta Unity for the dosimetric performance and mechanical quality assurance (QA), and propose additional commissioning procedures. Mechanical tests included multi-leaf collimator (MLC) positional accuracy, radiation isocenter diameter at the center and off-center position, and coincidence between the magnetic resonance (MR) image center and radiation isocenter. Comparisons between the measurements and calculations of the simple irradiated field, intensity modulated radiation therapy (IMRT) commissioning, MLC output factor ratio, validation of independent dose calculation software and end-to-end testing were performed to evaluate dosimetric performance. The average values of the MLC positional accuracy for film- and imaging device-based analysis were −0.1 and 0.3 mm, respectively. The measured radiation isocenter size was 0.41 mm, and the off-center results were within 1 mm. The coincidence was −0.21, −1.19 and 0.49 mm along the x-, y- and z-axes, respectively. The calculated percent depth doses (PDD) and profiles agreed with the measurements. The results of independent dose calculation were within the action level recommended by American Associations of Physicist in Medicine. The gamma passing rate (GPR) for IMRT commissioning was 98.6 ± 0.9%, and end-to-end testing of adapted plans showed agreement within 2% between the measurement and calculation. We reported the results of mechanical and dosimetric performances of Elekta Unity, and proposed novel commissioning procedures. Our results should provide knowledge to the physics community for enhancing the QA programs.
Collapse
Affiliation(s)
- Masato Tsuneda
- Corresponding author. Department of Radiation Oncology, MR Linac ART Division, Graduate School of Medicine, Chiba University. 1-8-1 Inohana, Chuo-ku, Chiba, 260-8677 Japan. E-mail: , , Tel: +81-43-226-2100, Fax: +81-43-226-2101
| | - Kota Abe
- Department of Radiation Oncology, MR Linac ART Division, Graduate School of Medicine, Chiba University, Chiba, 260-8677 Japan
| | - Yukio Fujita
- Department of Radiation Oncology, MR Linac ART Division, Graduate School of Medicine, Chiba University, Chiba, 260-8677 Japan
- Department of Radiation Sciences, Komazawa University, Setagaya, Tokyo, 259-1193 Japan
| | - Yohei Ikeda
- Department of Radiology, Chiba University Hospital, Chiba, 260-8670 Japan
| | - Yoshinobu Furuyama
- Department of Radiology, Chiba University Hospital, Chiba, 260-8670 Japan
| | - Takashi Uno
- Diagnostic Radiology and Radiation Oncology, Graduate School of Medicine, Chiba University, Chiba, 260-8677 Japan
| |
Collapse
|
8
|
Subashi E, Dresner A, Tyagi N. Longitudinal assessment of quality assurance measurements in a 1.5 T MR-linac: Part II-Magnetic resonance imaging. J Appl Clin Med Phys 2022; 23:e13586. [PMID: 35332990 PMCID: PMC9398228 DOI: 10.1002/acm2.13586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/05/2022] [Accepted: 02/25/2022] [Indexed: 11/08/2022] Open
Abstract
PURPOSE To describe and report longitudinal quality assurance (QA) measurements for the magnetic resonance imaging (MRI) component of the Elekta Unity MR-linac during the first year of clinical use in our institution. MATERIALS AND METHODS The performance of the MRI component of Unity was evaluated with daily, weekly, monthly, and annual QA testing. The measurements monitor image uniformity, signal-to-noise ratio (SNR), resolution/detectability, slice position/thickness, linearity, central frequency, and geometric accuracy. In anticipation of routine use of quantitative imaging (qMRI), we characterize B0/B1 uniformity and the bias/reproducibility of longitudinal/transverse relaxation times (T1/T2) and apparent diffusion coefficient (ADC). Tolerance levels for QA measurements of qMRI biomarkers are derived from weekly monitoring of T1, T2, and ADC. RESULTS The 1-year assessment of QA measurements shows that daily variations in each MR quality metric are well below the threshold for failure. Routine testing procedures can reproducibly identify machine issues. The longitudinal three-dimensional (3D) geometric analysis reveals that the maximum distortion in a diameter of spherical volume (DSV) of 20, 30, 40, and 50 cm is 0.4, 0.6, 1.0, and 3.1 mm, respectively. The main source of distortion is gradient nonlinearity. Maximum peak-to-peak B0 inhomogeneity is 3.05 ppm, with gantry induced B0 inhomogeneities an order of magnitude smaller. The average deviation from the nominal B1 is within 2%, with minimal dependence on gantry angle. Mean ADC, T1, and T2 values are measured with high reproducibility. The median coefficient of variation for ADC, T1, and T2 is 1.3%, 1.1%, and 0.5%, respectively. The median bias for ADC, T1, and T2 is -0.8%, -0.1%, and 3.9%, respectively. CONCLUSION The MRI component of Unity operates within the guidelines and recommendations for scanner performance and stability. Our findings support the recently published guidance in establishing clinically acceptable tolerance levels for image quality. Highly reproducible qMRI measurements are feasible in Unity.
Collapse
Affiliation(s)
- Ergys Subashi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Alex Dresner
- Philips Healthcare MR Oncology, Cleveland, Ohio, USA
| | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| |
Collapse
|
9
|
Yang J, Zhang P, Tyagi N, Scripes PG, Subashi E, Liang J, Lovelock D, Mechalakos J, Li A, Lim SB. Integration of an Independent Monitor Unit Check for High-Magnetic-Field MR-Guided Radiation Therapy System. Front Oncol 2022; 12:747825. [PMID: 35359395 PMCID: PMC8963466 DOI: 10.3389/fonc.2022.747825] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
Purpose Commercial independent monitor unit (IMU) check systems for high-magnetic-field MR-guided radiation therapy (RT) systems are lacking. We investigated the feasibility of adopting an existing treatment planning system (TPS) as an IMU check for online adaptive radiotherapy using 1.5-Tesla MR-Linac. Methods The 7-MV flattening filter free (FFF) beam and multi-leaf collimator (MLC) models of a 1.5-T Elekta Unity MR-Linac within Monte Carlo-based Monaco TPS were used to generate an optimized beam model in Eclipse TPS. The MLC dosimetric leaf gap of the beam in Eclipse was determined by matching the dose distribution of Eclipse-generated intensity-modulated radiation therapy (IMRT) plans using the Analytical Anisotropic Algorithm (AAA) algorithm to Monaco plans. The plans were automatically adjusted for different source-to-axis distances (SADs) between the two systems. For IMU check, the treatment plans developed in Monaco were transferred to Eclipse to recalculate the dose using AAA. A plug-in within Eclipse was created to perform a 2D gamma analysis of the AAA and Monte Carlo dose distribution on a beam’s eye view parallel plane. Monaco dose distribution was shifted laterally by 2 mm during gamma analysis to account for the impact of magnetic field on electron trajectories. Eclipse doses for posterior beams were corrected for both the Unity couch and the posterior MR coil attenuation. Thirteen patients, each with 4–5 fractions for a variety of tumor sites (pancreas, rectum, and prostate), were tested. Results After thorough commissioning, the method was implemented as part of the standard clinical workflow. A total of 62 online plans, each with approximately 15 beams, were evaluated. The average per-beam gamma (3%/3 mm) pass rate for plans was 97.9% (range, 95.9% to 98.8%). The average pass rate per beam for all 932 beams used in these plans was 97.9% ± 1.9%, with the lowest per-beam gamma pass rate at 88.4%. The time for the process was within 3.2 ± 0.9 min. Conclusion The use of a second planning system provides an efficient way to perform IMU checks with clinically acceptable accuracy for online adaptive plans on Unity MR-Linac. This is essential for meeting the safety requirements for second checks as outlined in American Association of Physicists in Medicine Task Group (AAPM TG) reports 114 and 219.
Collapse
|
10
|
Subashi E, Lim SB, Gonzalez X, Tyagi N. Longitudinal assessment of quality assurance measurements in a 1.5T MR-linac: Part I-Linear accelerator. J Appl Clin Med Phys 2021; 22:190-201. [PMID: 34505349 PMCID: PMC8504604 DOI: 10.1002/acm2.13418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/16/2021] [Accepted: 08/29/2021] [Indexed: 01/04/2023] Open
Abstract
Purpose To describe and report longitudinal quality assurance (QA) measurements for the mechanical and dosimetric performance of an Elekta Unity MR‐linac during the first year of clinical use in our institution. Materials and methods The mechanical and dosimetric performance of the MR‐linac was evaluated with daily, weekly, monthly, and annual QA testing. The measurements monitor the size of the radiation isocenter, the MR‐to‐MV isocenter concordance, MLC and jaw position, the accuracy and reproducibility of step‐and‐shoot delivery, radiation output and beam profile constancy, and patient‐specific QA for the first 50 treatments in our institution. Results from end‐to‐end QA using anthropomorphic phantoms are also included as a reference for baseline comparisons. Measurements were performed in water or water‐equivalent plastic using ion chambers of various sizes, an ion chamber array, MR‐compatible 2D/3D diode array, portal imager, MRI, and radiochromic film. Results The diameter of the radiation isocenter and the distance between the MR/MV isocenters was (μ ± σ) 0.39 ± 0.01 mm and 0.89 ± 0.05 mm, respectively. Trend analysis shows both measurements to be well within the tolerance of 1.0 mm. MLC and jaw positional accuracy was within 1.0 mm while the dosimetric performance of step‐and‐shoot delivery was within 2.0%, irrespective of gantry angle. Radiation output and beam profile constancy were within 2.0% and 1.0%, respectively. End‐to‐end testing performed with ion‐chamber and radiochromic film showed excellent agreement with treatment plan. Patient‐specific QA using a 3D diode array identified gantry angles with low‐pass rates allowing for improvements in plan quality after necessary adjustments. Conclusion The MR‐linac operates within the guidelines of current recommendations for linear accelerator performance, stability, and safety. The analysis of the data supports the recently published guidance in establishing clinically acceptable tolerance levels for relative and absolute measurements.
Collapse
Affiliation(s)
- Ergys Subashi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Seng Boh Lim
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | - Neelam Tyagi
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|