1
|
Chen Z, Morris HR, Polke J, Wood NW, Gandhi S, Ryten M, Houlden H, Tucci A. Repeat expansion disorders. Pract Neurol 2024:pn-2023-003938. [PMID: 39349043 DOI: 10.1136/pn-2023-003938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2024] [Indexed: 10/02/2024]
Abstract
An increasing number of repeat expansion disorders have been found to cause both rare and common neurological disease. This is exemplified in recent discoveries of novel repeat expansions underlying a significant proportion of several late-onset neurodegenerative disorders, such as CANVAS (cerebellar ataxia, neuropathy and vestibular areflexia syndrome) and spinocerebellar ataxia type 27B. Most of the 60 described repeat expansion disorders to date are associated with neurological disease, providing substantial challenges for diagnosis, but also opportunities for management in a clinical neurology setting. Commonalities in clinical presentation, overarching diagnostic features and similarities in the approach to genetic testing justify considering these disorders collectively based on their unifying causative mechanism. In this review, we discuss the characteristics and diagnostic challenges of repeat expansion disorders for the neurologist and provide examples to highlight their clinical heterogeneity. With the ready availability of clinical-grade whole-genome sequencing for molecular diagnosis, we discuss the current approaches to testing for repeat expansion disorders and application in clinical practice.
Collapse
Affiliation(s)
- Zhongbo Chen
- Department of Clinical and Movement Neuroscience, University College London Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Huw R Morris
- Department of Clinical and Movement Neuroscience, University College London Queen Square Institute of Neurology, London, UK
| | - James Polke
- The Neurogenetics Laboratory, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Nicholas W Wood
- Department of Clinical and Movement Neuroscience, University College London Queen Square Institute of Neurology, London, UK
| | - Sonia Gandhi
- Department of Clinical and Movement Neuroscience, University College London Queen Square Institute of Neurology, London, UK
- The Francis Crick Institute, London, UK
| | - Mina Ryten
- UK Dementia Research Institute at University of Cambridge, Cambridge, UK
| | - Henry Houlden
- Department of Neuromuscular Disease, University College London Queen Square Institute of Neurology, London, UK
| | - Arianna Tucci
- William Harvey Institute, Queen Mary University of London, London, UK
| |
Collapse
|
2
|
Zheng ZH, Cao CY, Cheng B, Yuan RY, Zeng YH, Guo ZB, Qiu YS, Lv WQ, Liang H, Li JL, Zhang WX, Fang MK, Sun YH, Lin W, Hong JM, Gan SR, Wang N, Chen WJ, Du GQ, Fang L. Characteristics of tandem repeat inheritance and sympathetic nerve involvement in GAA-FGF14 ataxia. J Hum Genet 2024; 69:433-440. [PMID: 38866925 DOI: 10.1038/s10038-024-01262-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/12/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Intronic GAA repeat expansion ([GAA] ≥250) in FGF14 is associated with the late-onset neurodegenerative disorder, spinocerebellar ataxia 27B (SCA27B, GAA-FGF14 ataxia). We aim to determine the prevalence of the GAA repeat expansion in FGF14 in Chinese populations presenting late-onset cerebellar ataxia (LOCA) and evaluate the characteristics of tandem repeat inheritance, radiological features and sympathetic nerve involvement. METHODS GAA-FGF14 repeat expansion was screened in an undiagnosed LOCA cohort (n = 664) and variations in repeat-length were analyzed in families of confirmed GAA-FGF14 ataxia patients. Brain magnetic resonance imaging (MRI) was used to evaluate the radiological feature in GAA-FGF14 ataxia patients. Clinical examinations and sympathetic skin response (SSR) recordings in GAA-FGF14 patients (n = 16) were used to quantify sympathetic nerve involvement. RESULTS Two unrelated probands (2/664) were identified. Genetic screening for GAA-FGF14 repeat expansion was performed in 39 family members, 16 of whom were genetically diagnosed with GAA-FGF14 ataxia. Familial screening revealed expansion of GAA repeats in maternal transmissions, but contraction upon paternal transmission. Brain MRI showed slight to moderate cerebellar atrophy. SSR amplitude was lower in GAA-FGF14 patients in pre-symptomatic stage compared to healthy controls, and further decreased in the symptomatic stage. CONCLUSIONS GAA-FGF14 ataxia was rare among Chinese LOCA cases. Parental gender appears to affect variability in GAA repeat number between generations. Reduced SSR amplitude is a prominent feature in GAA-FGF14 patients, even in the pre-symptomatic stage.
Collapse
Affiliation(s)
- Ze-Hong Zheng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Chun-Yan Cao
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Bi Cheng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Ru-Ying Yuan
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Yi-Heng Zeng
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Zhang-Bao Guo
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Yu-Sen Qiu
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Wen-Qi Lv
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Hui Liang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Jin-Lan Li
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Wei-Xiong Zhang
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China
| | - Min-Kun Fang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Yu-Hao Sun
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Wei Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Jing-Mei Hong
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Shi-Rui Gan
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Wan-Jin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China
| | - Gan-Qin Du
- The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, 471003, China.
| | - Ling Fang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
3
|
Lee S, Yoon JG, Hong J, Kim T, Kim N, Vandrovcova J, Yau WY, Cho J, Kim S, Kim MJ, Kim SY, Lee ST, Chu K, Lee SK, Kim HJ, Choi J, Moon J, Chae JH. Prevalence and Characterization of NOTCH2NLC GGC Repeat Expansions in Koreans: From a Hospital Cohort Analysis to a Population-Wide Study. Neurol Genet 2024; 10:e200147. [PMID: 38779172 PMCID: PMC11110025 DOI: 10.1212/nxg.0000000000200147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 02/16/2024] [Indexed: 05/25/2024]
Abstract
Background and Objectives GGC repeat expansions in the NOTCH2NLC gene are associated with a broad spectrum of progressive neurologic disorders, notably, neuronal intranuclear inclusion disease (NIID). We aimed to investigate the population-wide prevalence and clinical manifestations of NOTCH2NLC-related disorders in Koreans. Methods We conducted a study using 2 different cohorts from the Korean population. Patients with available brain MRI scans from Seoul National University Hospital (SNUH) were thoroughly reviewed, and NIID-suspected patients presenting the zigzag edging signs underwent genetic evaluation for NOTCH2NLC repeats by Cas9-mediated nanopore sequencing. In addition, we analyzed whole-genome sequencing data from 3,887 individuals in the Korea Biobank cohort to estimate the distribution of the repeat counts in Koreans and to identify putative patients with expanded alleles and neurologic phenotypes. Results In the SNUH cohort, among 90 adult-onset leukoencephalopathy patients with unknown etiologies, we found 20 patients with zigzag edging signs. Except for 2 diagnosed with fragile X-associated tremor/ataxia syndrome and 2 with unavailable samples, all 16 patients (17.8%) were diagnosed with NIID (repeat range: 87-217). By analyzing the Korea Biobank cohort, we estimated the distribution of repeat counts and threshold (>64) for Koreans, identifying 6 potential patients with NIID. Furthermore, long-read sequencing enabled the elucidation of transmission and epigenetic patterns of NOTCH2NLC repeats within a family affected by pediatric-onset NIID. Discussion This study presents the population-wide distribution of NOTCH2NLC repeats and the estimated prevalence of NIID in Koreans, providing valuable insights into the association between repeat counts and disease manifestations in diverse neurologic disorders.
Collapse
Affiliation(s)
| | | | | | - Taekeun Kim
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Narae Kim
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Jana Vandrovcova
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Wai Yan Yau
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Jaeso Cho
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Sheehyun Kim
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Man Jin Kim
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Soo Yeon Kim
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Soon-Tae Lee
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Kon Chu
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Sang Kun Lee
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | - Han-Joon Kim
- From the Department of Genomic Medicine (S.L., J.G.Y., Jaeso Cho, S.K., M.J.K., S.Y.K., J.M., J.-H.C.), Seoul National University Hospital; Department of Pediatrics (S.L., Jaeso Cho, S.Y.K., J.-H.C.), Seoul National University College of Medicine, Seoul National University Children's Hospital; Department of Biomedical Sciences (J.H., T.K., Jungmin Choi), Korea University College of Medicine; Department of Neurology (N.K., S.-T.L., K.C., S.K.L., H.-J.K., J.M.), Seoul National University Hospital, Korea; Department of Neuromuscular Diseases (J.V.), Institute of Neurology, University College London, United Kingdom; Perron Institute for Neurological and Translational Science (W.Y.Y.), the University of Western Australia, Nedlands, Australia; and Department of Laboratory Medicine (M.J.K.), Seoul National University Hospital, Korea
| | | | | | | |
Collapse
|
4
|
Zhang T, Chancellor A, Liem B, Turner C, Hutchinson D, Wong E, Glamuzina E, Hong JB, Cleland J, Child N, Roxburgh RH, Patel S, Lee YC, Liao YC, Anderson NE. Neuronal intranuclear inclusion disease in New Zealand: A novel discovery. J Neurol Sci 2024; 460:122987. [PMID: 38579412 DOI: 10.1016/j.jns.2024.122987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/24/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Neuronal intranuclear inclusion disease, caused by a GGC repeat expansion in the 5'-untranslated region of NOTCH2NLC, is a rare neurodegenerative condition with highly variable clinical manifestations. In recent years, the number of reported cases have increased dramatically in East Asia. We report the first four genetically confirmed cases of neuronal intranuclear inclusion disease in New Zealand, all having Polynesian ancestry (three New Zealand Māori and one Cook Island Māori). Phenotypically, they resemble cases reported from recent large East Asian cohorts.
Collapse
Affiliation(s)
- Tony Zhang
- Department of Neurology, Auckland City Hospital, Te Whatu Ora Te Toka Tumai, Auckland, New Zealand.
| | - Andrew Chancellor
- Tauranga Hospital, New Zealand Te Whatu Ora Hauora a Toi, Bay of Plenty, New Zealand
| | - Bernard Liem
- Department of Neurology, Auckland City Hospital, Te Whatu Ora Te Toka Tumai, Auckland, New Zealand
| | - Clinton Turner
- Department of Anatomical Pathology and Cytology, Auckland City Hospital, Te Whatu Ora Te Toka Tumai, Auckland, New Zealand
| | - David Hutchinson
- Department of Neurology, Auckland City Hospital, Te Whatu Ora Te Toka Tumai, Auckland, New Zealand
| | - Edward Wong
- Department of Neurology, Auckland City Hospital, Te Whatu Ora Te Toka Tumai, Auckland, New Zealand
| | - Emma Glamuzina
- Adult and Paediatric Metabolic Service, Auckland City Hospital, Te Whatu Ora Te Toka Tumai, Auckland, New Zealand
| | - Jae Beom Hong
- Department of Neurology, Auckland City Hospital, Te Whatu Ora Te Toka Tumai, Auckland, New Zealand
| | - James Cleland
- Tauranga Hospital, New Zealand Te Whatu Ora Hauora a Toi, Bay of Plenty, New Zealand
| | - Nicholas Child
- Department of Neurology, Auckland City Hospital, Te Whatu Ora Te Toka Tumai, Auckland, New Zealand
| | - Richard H Roxburgh
- Department of Neurology, Auckland City Hospital, Te Whatu Ora Te Toka Tumai, Auckland, New Zealand
| | - Shilpan Patel
- Department of Neurology, Auckland City Hospital, Te Whatu Ora Te Toka Tumai, Auckland, New Zealand
| | - Yi-Chung Lee
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Neurology and Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Yi-Chu Liao
- Department of Neurology, Neurological Institute, Taipei Veterans General Hospital, Taipei, Taiwan; Department of Neurology and Brain Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Neil E Anderson
- Department of Neurology, Auckland City Hospital, Te Whatu Ora Te Toka Tumai, Auckland, New Zealand
| |
Collapse
|
5
|
Zhang T, Bao L, Chen H. Review of Phenotypic Heterogeneity of Neuronal Intranuclear Inclusion Disease and NOTCH2NLC-Related GGC Repeat Expansion Disorders. Neurol Genet 2024; 10:e200132. [PMID: 38586597 PMCID: PMC10997217 DOI: 10.1212/nxg.0000000000200132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 01/05/2024] [Indexed: 04/09/2024]
Abstract
Neuronal intranuclear inclusion disease (NIID) is an underdiagnosed neurodegenerative disorder caused by pathogenic GGC expansions in NOTCH2NLC. However, an increasing number of reports of NOTCH2NLC GGC expansions in patients with Alzheimer disease, essential tremor, Parkinson disease, amyotrophic lateral sclerosis, and oculopharyngodistal myopathy have led to the proposal of a new concept known as NOTCH2NLC-related GGC repeat expansion disorders (NREDs). The majority of studies have mainly focused on screening for NOTCH2NLC GGC repeat variation in populations previously diagnosed with the associated disease, subsequently presenting it as a novel causative gene for the condition. These studies appear to be clinically relevant but do have their limitations because they may incorrectly regard the lack of MRI abnormalities as an exclusion criterion for NIID or overlook concomitant clinical presentations not typically observed in the associated diseases. Besides, in many instances within these reports, patients lack pathologic evidence or undergo long-term follow-up to conclusively rule out NIID. In this review, we will systematically review the research on NOTCH2NLC 5' untranslated region GGC repeat expansions and their association with related neurologic disorders, explaining the limitations of the relevant reports. Furthermore, we will integrate subsequent studies to further demonstrate that these patients actually experienced distinct clinical phenotypes of NIID.
Collapse
Affiliation(s)
- Tao Zhang
- From the Department of Neurology (T.Z., L.B., H.C.), the Affiliated Hospital of Xuzhou Medical University; and Department of Neurology (L.B.), Xuzhou Medical University, China
| | - Lei Bao
- From the Department of Neurology (T.Z., L.B., H.C.), the Affiliated Hospital of Xuzhou Medical University; and Department of Neurology (L.B.), Xuzhou Medical University, China
| | - Hao Chen
- From the Department of Neurology (T.Z., L.B., H.C.), the Affiliated Hospital of Xuzhou Medical University; and Department of Neurology (L.B.), Xuzhou Medical University, China
| |
Collapse
|
6
|
Zeng T, Chen Y, Huang H, Li S, Huang J, Xie H, Lin S, Chen S, Chen G, Yang D. Neuronal Intranuclear Inclusion Disease with NOTCH2NLC GGC Repeat Expansion: A Systematic Review and Challenges of Phenotypic Characterization. Aging Dis 2024:AD.2024.0131-1. [PMID: 38377026 DOI: 10.14336/ad.2024.0131-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/31/2024] [Indexed: 02/22/2024] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a highly clinically heterogeneous neurodegenerative disorder primarily attributed to abnormal GGC repeat expansions in the NOTCH2NLC gene. This study aims to comprehensively explore its phenotypic characteristics and genotype-phenotype correlation. A literature search was conducted in PubMed, Embase, and the Cochrane Library from September 1, 2019, to December 31, 2022, encompassing reported NIID cases confirmed by pathogenic NOTCH2NLC mutations. Linear regressions and trend analyses were performed. Analyzing 635 cases from 85 included studies revealed that familial cases exhibited significantly larger GGC repeat expansions than sporadic cases (p < 0.001), and this frequency significantly increased with expanding GGC repeats (p trend < 0.001). Age at onset (AAO) showed a negative correlation with GGC repeat expansions (p < 0.001). The predominant initial symptoms included tremor (31.70%), cognitive impairment (14.12%), and muscle weakness (10.66%). The decreased or absent tendon reflex (DTR/ATR) emerged as a notable clinical indicator of NIID due to its high prevalence. U-fiber was observed in 79.11% of patients, particularly prominent in paroxysmal disease-dominant (87.50%) and dementia-dominant cases (81.08%). Peripheral neuropathy-dominant cases exhibited larger GGC repeat expansions (median = 123.00) and an earlier AAO (median = 33.00) than other phenotypes. Moreover, a significant genetic anticipation of 3.5 years was observed (p = 0.039). This study provides a comprehensive and up-to-date compilation of genotypic and phenotypic information on NIID since the identification of the causative gene NOTCH2NLC. We contribute a novel diagnostic framework for NIID to support clinical practice.
Collapse
Affiliation(s)
- Tian Zeng
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Yiqun Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Honghao Huang
- Department of Cardiology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shengqi Li
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Jiaqi Huang
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Haobo Xie
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Shenyi Lin
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Siyao Chen
- The First School of Medicine, School of Information and Engineering, Wenzhou Medical University, Wenzhou, China
| | - Guangyong Chen
- Department of Neurology, The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Dehao Yang
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
7
|
Luo H, Gustavsson EK, Macpherson H, Dominik N, Zhelcheska K, Montgomery K, Anderson C, Yau WY, Efthymiou S, Turner C, DeTure M, Dickson DW, Josephs KA, Revesz T, Lashley T, Halliday G, Rowe DB, McCann E, Blair I, Lees AJ, Tienari PJ, Suomalainen A, Molina-Porcel L, Kovacs GG, Gelpi E, Hardy J, Haltia MJ, Tucci A, Jaunmuktane Z, Ryten M, Houlden H, Chen Z. Letter to the editor on: Hornerin deposits in neuronal intranuclear inclusion disease: direct identification of proteins with compositionally biased regions in inclusions by Park et al. (2022). Acta Neuropathol Commun 2024; 12:2. [PMID: 38167323 PMCID: PMC10759526 DOI: 10.1186/s40478-023-01706-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Affiliation(s)
- Huihui Luo
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London (UCL), London, UK
| | - Emil K Gustavsson
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Hannah Macpherson
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
| | - Natalia Dominik
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London (UCL), London, UK
| | - Kristina Zhelcheska
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London (UCL), London, UK
| | - Kylie Montgomery
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Claire Anderson
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Wai Yan Yau
- The Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Stephanie Efthymiou
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London (UCL), London, UK
| | - Chris Turner
- The National Hospital for Neurology and Neurosurgery, Queen Square, London, UK
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | | | - Keith A Josephs
- Neurodegenerative Research Group, Mayo Clinic, Rochester, MN, USA
| | - Tamas Revesz
- Queen Square Brain Bank, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, UCL, London, UK
| | - Tammaryn Lashley
- Queen Square Brain Bank, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, UCL, London, UK
| | - Glenda Halliday
- Neuroscience Research Australia, Sydney, Australia
- School of Medical Sciences, Faculty of Medicine, University of New South Wales, Sydney, Australia
- Brain and Mind Centre, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Dominic B Rowe
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Emily McCann
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Ian Blair
- Centre for Motor Neuron Disease Research, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW, Australia
| | - Andrew J Lees
- Queen Square Brain Bank, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, UCL, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, Wakefield Street, London, UK
| | - Pentti J Tienari
- Department of Neurology, Helsinki University Hospital, Helsinki, Finland
- Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Anu Suomalainen
- Research Programs Unit, Stem Cells and Metabolism, University of Helsinki, 00290, Helsinki, Finland
- Neuroscience CenterHiLife, University of Helsinki, 00290, Helsinki, Finland
- HUSlab, Helsinki University Hospital, 00290, Helsinki, Finland
| | - Laura Molina-Porcel
- Alzheimer's Disease and Other Cognitive Disorders Unit. Neurology Service, Hospital ClínicFundació de Recerca Clínic Barcelona-Institut d'Investigacions Biomediques August Pi I Sunyer (FRCB-IDIBAPS), University of Barcelona, Barcelona, Spain
- Neurological Tissue Bank of the Hospital Clinic-IFRCB-IDIBAPS-Biobank, Barcelona, Spain
| | - Gabor G Kovacs
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Canada
| | - Ellen Gelpi
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - John Hardy
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, UCL, London, UK
- Reta Lila Weston Institute, UCL Queen Square Institute of Neurology, Wakefield Street, London, UK
- Dementia Research Institute at UCL, Queen Square Institute of Neurology, UCL, London, UK
- NIHR University College London Hospitals Biomedical Research Centre, London, UK
- Institute for Advanced Study, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | - Matti J Haltia
- Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Arianna Tucci
- William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Zane Jaunmuktane
- Queen Square Brain Bank, Department of Clinical and Movement Neurosciences, Queen Square Institute of Neurology, UCL, London, UK
| | - Mina Ryten
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK
| | - Henry Houlden
- Department of Neuromuscular Disease, Queen Square Institute of Neurology, University College London (UCL), London, UK
| | - Zhongbo Chen
- Department of Genetics and Genomic Medicine, Great Ormond Street Institute of Child Health, University College London, London, UK.
- NIHR Great Ormond Street Hospital Biomedical Research Centre, University College London, London, UK.
- Department of Clinical and Movement Neuroscience, Queen Square Institute of Neurology, University College London, Queen Square House, London, WC1N 3BG, UK.
| |
Collapse
|
8
|
Ren X, Tan D, Deng J, Wang Z, Hong D. Skin biopsy and neuronal intranuclear inclusion disease. J Dermatol 2023; 50:1367-1372. [PMID: 37718652 DOI: 10.1111/1346-8138.16966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 08/04/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative disease with variable clinical phenotypes. There is a considerable delay in the definite diagnosis, which primarily depends on postmortem brain pathological examination. Although CGG repeat expansion in the 5'-untranslated region of NOTCH2NLC has been identified as a disease-associated variant, the pathological diagnosis is still required in certain NIID cases. Intranuclear inclusions found in the skin tissue of patients with NIID dramatically increased its early detection rate. Skin biopsy, as a minimally invasive method, has become widely accepted as a routine examination to confirm the pathogenicity of the repeat expansion in patients with suspected NIID. In addition, the shared developmental origin of the skin and nerve system provided a new insight into the pathological changes observed in patients with NIID. In this review, we systematically discuss the role of skin biopsy for NIID diagnosis, the procedure of skin biopsy, and the pathophysiological mechanism of intranuclear inclusion in the skin.
Collapse
Affiliation(s)
- Xiao Ren
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Multidisciplinary collaborative group for cutaneous neuropathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Dandan Tan
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Multidisciplinary collaborative group for cutaneous neuropathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Multidisciplinary collaborative group for cutaneous neuropathology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
9
|
Liu M, Gao Y, Yuan Y, Liu X, Wang Y, Li L, Zhang X, Jiang C, Wang Q, Wang Y, Shi C, Xu Y, Yang J. A comprehensive study of clinicopathological and genetic features of neuronal intranuclear inclusion disease. Neurol Sci 2023; 44:3545-3556. [PMID: 37184590 DOI: 10.1007/s10072-023-06845-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 05/07/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND The discovery of skin intranuclear inclusions and GGC repeat expansion of NOTCH2NLC has greatly promoted the diagnosis of neuronal intranuclear inclusion disease (NIID). With highly heterogeneous clinical manifestations, NIID patients tend to be underdiagnosed at early stages. METHODS This study comprehensively studied clinical manifestations, magnetic resonance imaging (MRI), and peripheral nerve conduction in 24 NIID and 166 other neurodegenerative disease (ND) subjects. The nomogram was plotted using the "rms" package, and the t-distributed stochastic neighbor embedding algorithm was performed. Associations between skin intranuclear inclusions and NOTCH2NLC GGC repeats were further analyzed. RESULTS The clinical, MRI, and peripheral nerve conduction features seriously overlapped in NIID and ND patients; they were assigned variables according to their frequency and specificity in NIID patients. A nomogram that could distinguish NIID from ND was constructed according to the assigned variables and cutoff values of the above features. The occurrence of skin intranuclear inclusions and NOTCH2NLC GGC repeats ≥ 60 showed 100% consistency, and intranuclear inclusion frequency positively correlated with NOTCH2NLC GGC repeats. A hierarchical diagnostic flowchart for definite NIID was further established. CONCLUSION We provide a novel nomogram with the potential to realize early identification and update the diagnostic flowchart for definitive diagnosis. Moreover, this is the first study to define the association between skin pathology and NOTCH2NLC genetics in NIID.
Collapse
Affiliation(s)
- Minglei Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Yuan Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yanpeng Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaojing Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Yangyang Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Lanjun Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Xiaoyun Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Chenyang Jiang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
| | - Qingzhi Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
| | - Yanlin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China.
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China.
- Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, China.
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1 Eastern Jianshe Road, Zhengzhou, 450052, Henan, China.
- NHC Key Laboratory of Prevention and Treatment of Cerebrovascular Disease, Zhengzhou, Henan, China.
- Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
10
|
Podar IV, Gutmann DAP, Harmuth F, Haack TB, Ossowski S, Hengel H, Bornemann A, Schöls L, Neuhaus O. First case of adult onset neuronal intranuclear inclusion disease with both typical radiological signs and NOTCH2NLC repeat expansions in a Caucasian individual. Eur J Neurol 2023; 30:2854-2858. [PMID: 37271829 DOI: 10.1111/ene.15905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/27/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
BACKGROUND AND PURPOSE Adult onset neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative disorder with a heterogeneous clinical presentation that can mimic stroke and various forms of dementia. To date, it has been described almost exclusively in Asian individuals. METHODS This case presentation includes magnetic resonance imaging (MRI) of the neurocranium, histology by skin biopsy, and long-read genome sequencing. RESULTS A 75-year-old Caucasian female presented with paroxysmal encephalopathy twice within a 14-month period. Brain MRI revealed high-intensity signals at the cerebral corticomedullary junction (diffusion-weighted imaging) and the paravermal area (fluid-attenuated inversion recovery), a typical distribution observed in adult onset NIID. The diagnosis was corroborated by skin biopsy, which demonstrated eosinophilic intranuclear inclusion bodies, and confirmed by long-read genome sequencing, showing an expansion of the GGC repeat in exon 1 of NOTCH2NLC. CONCLUSIONS Our case proves adult onset NOTCH2NLC-GGC-positive NIID with typical findings on MRI and histology in a Caucasian patient and underscores the need to consider this diagnosis in non-Asian individuals.
Collapse
Affiliation(s)
- Iulian V Podar
- Department of Diagnostic and Interventional Radiology, SRH Krankenhaus Sigmaringen, Sigmaringen, Germany
| | - Daniel A P Gutmann
- Department of Diagnostic and Interventional Radiology, SRH Krankenhaus Sigmaringen, Sigmaringen, Germany
| | - Florian Harmuth
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, Tübingen, Germany
| | - Tobias B Haack
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, Tübingen, Germany
- Centre for Rare Diseases, Eberhard Karls University, Tübingen, Germany
| | - Stephan Ossowski
- Institute of Medical Genetics and Applied Genomics, Eberhard Karls University, Tübingen, Germany
| | - Holger Hengel
- Centre for Rare Diseases, Eberhard Karls University, Tübingen, Germany
- Department of Neurology and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
- German Centre for Neurodegenerative Diseases, Tübingen, Germany
| | - Antje Bornemann
- Department of Neuropathology, Eberhard Karls University, Tübingen, Germany
| | - Ludger Schöls
- Centre for Rare Diseases, Eberhard Karls University, Tübingen, Germany
- Department of Neurology and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
- German Centre for Neurodegenerative Diseases, Tübingen, Germany
| | - Oliver Neuhaus
- Department of Neurology, SRH Krankenhaus Sigmaringen, Sigmaringen, Germany
| |
Collapse
|
11
|
Fitrah YA, Higuchi Y, Hara N, Tokutake T, Kanazawa M, Sanpei K, Taneda T, Nakajima A, Koide S, Tsuboguchi S, Watanabe M, Fukumoto J, Ando S, Sato T, Iwafuchi Y, Sato A, Hayashi H, Ishiguro T, Takeda H, Takahashi T, Fukuhara N, Kasuga K, Miyashita A, Onodera O, Ikeuchi T. Heterogenous Genetic, Clinical, and Imaging Features in Patients with Neuronal Intranuclear Inclusion Disease Carrying NOTCH2NLC Repeat Expansion. Brain Sci 2023; 13:955. [PMID: 37371433 DOI: 10.3390/brainsci13060955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/09/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder that is caused by the abnormal expansion of non-coding trinucleotide GGC repeats in NOTCH2NLC. NIID is clinically characterized by a broad spectrum of clinical presentations. To date, the relationship between expanded repeat lengths and clinical phenotype in patients with NIID remains unclear. Thus, we aimed to clarify the genetic and clinical spectrum and their association in patients with NIID. For this purpose, we genetically analyzed Japanese patients with adult-onset NIID with characteristic clinical and neuroimaging findings. Trinucleotide repeat expansions of NOTCH2NLC were examined by repeat-primed and amplicon-length PCR. In addition, long-read sequencing was performed to determine repeat size and sequence. The expanded GGC repeats ranging from 94 to 361 in NOTCH2NLC were found in all 15 patients. Two patients carried biallelic repeat expansions. There were marked heterogenous clinical and imaging features in NIID patients. Patients presenting with cerebellar ataxia or urinary dysfunction had a significantly larger GGC repeat size than those without. This significant association disappeared when these parameters were compared with the total trinucleotide repeat number. ARWMC score was significantly higher in patients who had a non-glycine-type trinucleotide interruption within expanded poly-glycine motifs than in those with a pure poly-glycine expansion. These results suggested that the repeat length and sequence in NOTCH2NLC may partly modify some clinical and imaging features of NIID.
Collapse
Affiliation(s)
- Yusran Ady Fitrah
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Yo Higuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Neurology, Joetsu General Hospital, Joetsu 943-0172, Japan
| | - Norikazu Hara
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Takayoshi Tokutake
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masato Kanazawa
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Kazuhiro Sanpei
- Department of Neurology, Sado General Hospital, Sado 952-1209, Japan
| | - Tomone Taneda
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Akihiko Nakajima
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Shin Koide
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Shintaro Tsuboguchi
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Midori Watanabe
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Junki Fukumoto
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Shoichiro Ando
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Tomoe Sato
- Department of Neurology, Tsubame Rosai Hospital, Tsubame 959-1228, Japan
| | - Yohei Iwafuchi
- Department of Neurology, Niigata City General Hospital, Niigata 950-1197, Japan
| | - Aki Sato
- Department of Neurology, Niigata City General Hospital, Niigata 950-1197, Japan
| | - Hideki Hayashi
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Neurology, Sado General Hospital, Sado 952-1209, Japan
| | - Takanobu Ishiguro
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
- Department of Neurology, Sado General Hospital, Sado 952-1209, Japan
| | - Hayato Takeda
- Department of Neurology, Tsukuba University, Tsukuba 950-1197, Japan
| | | | - Nobuyoshi Fukuhara
- Department of Neurology, Joetsu General Hospital, Joetsu 943-0172, Japan
| | - Kensaku Kasuga
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Akinori Miyashita
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Takeshi Ikeuchi
- Department of Molecular Genetics, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| |
Collapse
|
12
|
Bu JT, Torres D, Robinson A, Malone C, Vera JC, Daghighi S, Dunn-Pirio A, Khoromi S, Nowell J, Léger GC, Ciacci JD, Goodwill VS, Estrella M, Coughlin DG, Guo Y, Farid N. Case report: Neuronal intranuclear inclusion disease presenting with acute encephalopathy. Front Neurol 2023; 14:1184612. [PMID: 37332983 PMCID: PMC10272712 DOI: 10.3389/fneur.2023.1184612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 05/10/2023] [Indexed: 06/20/2023] Open
Abstract
Neuronal intranuclear inclusion disease (NIID), a neurodegenerative disease previously thought to be rare, is increasingly recognized despite heterogeneous clinical presentations. NIID is pathologically characterized by ubiquitin and p-62 positive intranuclear eosinophilic inclusions that affect multiple organ systems, including the brain, skin, and other tissues. Although the diagnosis of NIID is challenging due to phenotypic heterogeneity, a greater understanding of the clinical and imaging presentations can improve accurate and early diagnosis. Here, we present three cases of pathologically proven adult-onset NIID, all presenting with episodes of acute encephalopathy with protracted workups and lengthy time between symptom onset and diagnosis. Case 1 highlights challenges in the diagnosis of NIID when MRI does not reveal classic abnormalities and provides a striking example of hyperperfusion in the setting of acute encephalopathy, as well as unique pathology with neuronal central chromatolysis, which has not been previously described. Case 2 highlights the progression of MRI findings associated with multiple NIID-related encephalopathic episodes over an extended time period, as well as the utility of skin biopsy for antemortem diagnosis.
Collapse
Affiliation(s)
- Julia Ting Bu
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Dolores Torres
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Adam Robinson
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Corey Malone
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Juan Carlos Vera
- Sharp Rees-Stealy, Department of Radiology, San Diego, CA, United States
| | - Shadi Daghighi
- Department of Radiology, State University of New York Upstate Medical University, Syracuse, NY, United States
| | - Anastasie Dunn-Pirio
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Suzan Khoromi
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Justin Nowell
- Sharp Rees-Stealy, Department of Neurology, San Diego, CA, United States
| | - Gabriel C. Léger
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Joseph D. Ciacci
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Vanessa S. Goodwill
- Department of Pathology, University of California, San Diego, La Jolla, CA, United States
| | - Melanie Estrella
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - David G. Coughlin
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, United States
| | - Yueyang Guo
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| | - Nikdokht Farid
- Department of Radiology, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
13
|
Jagota P, Lim S, Pal PK, Lee J, Kukkle PL, Fujioka S, Shang H, Phokaewvarangkul O, Bhidayasiri R, Mohamed Ibrahim N, Ugawa Y, Aldaajani Z, Jeon B, Diesta C, Shambetova C, Lin C. Genetic Movement Disorders Commonly Seen in Asians. Mov Disord Clin Pract 2023; 10:878-895. [PMID: 37332644 PMCID: PMC10272919 DOI: 10.1002/mdc3.13737] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 02/27/2023] [Accepted: 03/21/2023] [Indexed: 11/21/2023] Open
Abstract
The increasing availability of molecular genetic testing has changed the landscape of both genetic research and clinical practice. Not only is the pace of discovery of novel disease-causing genes accelerating but also the phenotypic spectra associated with previously known genes are expanding. These advancements lead to the awareness that some genetic movement disorders may cluster in certain ethnic populations and genetic pleiotropy may result in unique clinical presentations in specific ethnic groups. Thus, the characteristics, genetics and risk factors of movement disorders may differ between populations. Recognition of a particular clinical phenotype, combined with information about the ethnic origin of patients could lead to early and correct diagnosis and assist the development of future personalized medicine for patients with these disorders. Here, the Movement Disorders in Asia Task Force sought to review genetic movement disorders that are commonly seen in Asia, including Wilson's disease, spinocerebellar ataxias (SCA) types 12, 31, and 36, Gerstmann-Sträussler-Scheinker disease, PLA2G6-related parkinsonism, adult-onset neuronal intranuclear inclusion disease (NIID), and paroxysmal kinesigenic dyskinesia. We also review common disorders seen worldwide with specific mutations or presentations that occur frequently in Asians.
Collapse
Affiliation(s)
- Priya Jagota
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
| | - Shen‐Yang Lim
- Division of Neurology, Department of Medicine, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of MedicineUniversity of MalayaKuala LumpurMalaysia
| | - Pramod Kumar Pal
- Department of NeurologyNational Institute of Mental Health & Neurosciences (NIMHANS)BengaluruIndia
| | - Jee‐Young Lee
- Department of NeurologySeoul Metropolitan Government‐Seoul National University Boramae Medical Center & Seoul National University College of MedicineSeoulRepublic of Korea
| | - Prashanth Lingappa Kukkle
- Center for Parkinson's Disease and Movement DisordersManipal HospitalBangaloreIndia
- Parkinson's Disease and Movement Disorders ClinicBangaloreIndia
| | - Shinsuke Fujioka
- Department of Neurology, Fukuoka University, Faculty of MedicineFukuokaJapan
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare Diseases CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Onanong Phokaewvarangkul
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
| | - Roongroj Bhidayasiri
- Chulalongkorn Centre of Excellence for Parkinson's Disease and Related Disorders, Department of Medicine, Faculty of MedicineChulalongkorn University and King Chulalongkorn Memorial Hospital, Thai Red Cross SocietyBangkokThailand
- The Academy of Science, The Royal Society of ThailandBangkokThailand
| | - Norlinah Mohamed Ibrahim
- Neurology Unit, Department of Medicine, Faculty of MedicineUniversiti Kebangsaan MalaysiaKuala LumpurMalaysia
| | - Yoshikazu Ugawa
- Deprtment of Human Neurophysiology, Faculty of MedicineFukushima Medical UniversityFukushimaJapan
| | - Zakiyah Aldaajani
- Neurology Unit, King Fahad Military Medical ComplexDhahranSaudi Arabia
| | - Beomseok Jeon
- Department of NeurologySeoul National University College of MedicineSeoulRepublic of Korea
- Movement Disorder CenterSeoul National University HospitalSeoulRepublic of Korea
| | - Cid Diesta
- Section of Neurology, Department of NeuroscienceMakati Medical Center, NCRMakatiPhilippines
| | | | - Chin‐Hsien Lin
- Department of NeurologyNational Taiwan University HospitalTaipeiTaiwan
| |
Collapse
|
14
|
Katayama T, Takahashi K, Yahara O, Sawada J, Ishida KI, Asanome A, Endo H, Saito T, Hasebe N, Kishibe M, Kanno H, Ishiko S, Sone J. NOTCH2NLC mutation-positive neuronal intranuclear inclusion disease with retinal dystrophy: A case report and literature review. Medicine (Baltimore) 2023; 102:e33789. [PMID: 37171294 PMCID: PMC10174370 DOI: 10.1097/md.0000000000033789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/13/2023] Open
Abstract
INTRODUCTION Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder that produces a broad spectrum of clinical conditions such as dementia, upper motor neuron involvement, extrapyramidal symptoms, and neuropathy. Some studies have reported ophthalmological conditions associated with the disease; however, the details of these conditions remain unclear. PATIENT CONCERNS We report a 63-year-old Japanese female with cognitive decline, blurred vision, photophobia, and color blindness at 52 years of age who was diagnosed with cone dystrophy. She also had anxiety, insomnia, depression, delusions, hallucinations, a wide-based gait with short steps, and urinary incontinence. DIAGNOSES, INTERVENTIONS, AND OUTCOMES Magnetic resonance imaging revealed diffuse cerebral white matter changes and subcortical hyperintensity on diffusion-weighted imaging. Skin biopsy showed p62-positive intranuclear inclusions in sweat glands. NOTCH2NLC gene analysis revealed abnormal GGC expansion; therefore, NIID was diagnosed. CONCLUSION NOTCH2NLC mutation-positive NIID may be associated with retinal dystrophy. Brain magnetic resonance imaging and skin biopsy are helpful diagnostic clues, and gene analysis is crucial for accurate diagnosis and appropriate management.
Collapse
Affiliation(s)
| | - Kae Takahashi
- Department of Neurology, Asahikawa City Hospital, Japan
| | - Osamu Yahara
- Department of Neurology, Asahikawa City Hospital, Japan
| | - Jun Sawada
- Division of Neurology, First Department of Internal Medicine, Asahikawa Medical University, Japan
| | - Ken-Ichi Ishida
- Division of Neurology, First Department of Internal Medicine, Asahikawa Medical University, Japan
| | - Asuka Asanome
- Division of Neurology, First Department of Internal Medicine, Asahikawa Medical University, Japan
| | - Hisako Endo
- Division of Neurology, First Department of Internal Medicine, Asahikawa Medical University, Japan
| | - Tsukasa Saito
- Division of Neurology, First Department of Internal Medicine, Asahikawa Medical University, Japan
| | - Naoyuki Hasebe
- Division of Neurology, First Department of Internal Medicine, Asahikawa Medical University, Japan
| | - Mari Kishibe
- Department of Dermatology, Asahikawa Medical University, Japan
| | - Harumi Kanno
- Department of Ophthalmology, Asahikawa City Hospital, Japan
| | - Satoshi Ishiko
- Department of Ophthalmology, Asahikawa Medical University, Japan
| | - Jun Sone
- Institute for Medical Science of Aging, Aichi Medical University, Japan
| |
Collapse
|
15
|
Tai H, Wang A, Zhang Y, Liu S, Pan Y, Li K, Zhao G, Wang M, Wu G, Niu S, Pan H, Chen B, Li W, Wang X, Dong G, Li W, Zhang Y, Guo S, Liu X, Li M, Liang H, Huang M, Chen W, Zhang Z. Clinical Features and Classification of Neuronal Intranuclear Inclusion Disease. NEUROLOGY GENETICS 2023; 9:e200057. [PMID: 37090934 PMCID: PMC10117695 DOI: 10.1212/nxg.0000000000200057] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 12/20/2022] [Indexed: 03/04/2023]
Abstract
Background and ObjectivesNeuronal intranuclear inclusion body disease (NIID) is a neurodegenerative disease with highly heterogeneous clinical manifestations. The present study aimed to characterize clinical features and propose a classification system based on a large cohort of NIID in China.MethodsThe Chinese NIID registry was launched from 2017, and participants' demographics and clinical features were recorded. Brain MRI, skin pathologies, and the number of GGC repeat expansions in the 5′ untranslated region of theNOTCH2NLCgene were evaluated in all patients.ResultsIn total, 223 patients (64.6% female) were recruited; the mean (SD) onset age was 56.7 (10.3) years. The most common manifestations were cognitive impairment (78.5%) and autonomic dysfunction (70.9%), followed by episodic symptoms (51.1%), movement disorders (50.7%), and muscle weakness (25.6%). Imaging markers included hyperintensity signals along the corticomedullary junction on diffusion-weighted imaging (96.6%), white matter lesions (98.1%), paravermis (55.0%), and focal cortical lesions (10.1%). The median size of the expanded GGC repeats in these patients was 115 (range, 70–525), with 2 patients carrying >300 GGC repeats. A larger number of GGC repeats was associated with younger age at onset (r= −0.329,p< 0.0001). According to the proposed clinical classification based on the most prominent manifestations, the patients were designated into 5 distinct types: cognitive impairment-dominant type (34.1%, n = 76), episodic neurogenic event-dominant type (32.3%, n = 72), movement disorder-dominant type (17.5%, n = 39), autonomic dysfunction-dominant type (8.5%, n = 19), and neuromuscular disease-dominant type (7.6%, n = 17). Notably, 32.3% of the episodic neurogenic event-dominant type of NIID has characteristic focal cortical lesions on brain MRI presenting localized cortical edema or atrophy. The mean onset age of the neuromuscular disease-dominant type was 47.2 (17.6) years, younger than the other types (p< 0.001). There was no significant difference in the sizes of GGC repeats among the patients in the 5 types (p= 0.547, Kruskal-Wallis test).DiscussionThis observational study of NIID establishes an overall picture of the disease regarding clinical, imaging, and genetic characteristics. The proposed clinical classification of NIID based on the most prominent manifestation divides patients into 5 types.
Collapse
Affiliation(s)
- Hongfei Tai
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - An Wang
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Yumei Zhang
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Shaocheng Liu
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Yunzhu Pan
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Kai Li
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Guixian Zhao
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Mengwen Wang
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Guode Wu
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Songtao Niu
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Hua Pan
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Bin Chen
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Wei Li
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Xingao Wang
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Gehong Dong
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Wei Li
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Ying Zhang
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Sheng Guo
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Xiaoyun Liu
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Mingxia Li
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Hui Liang
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Ming Huang
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Wei'an Chen
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| | - Zaiqiang Zhang
- Department of Neurology (H.T., A.W., S.L., Y.P., S.N., H.P., B.C., X.W., Z.Z.), Beijing Tiantan Hospital, Capital Medical University; China National Clinical Research Center for Neurological Diseases (H.T., A.W., Yumei Zhang, S.L., Y.P., S.N., H.P., B.C., X.W., G.D., Z.Z.), Beijing; Monogenic Disease Research Center for Neurological Disorders (Yumei Zhang), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (K.L.), Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences; Department of Neurology (G.Z.), Huashan Hospital, Shanghai Medical College, Fudan University; Department of Neurology (M.W.), The First Affiliated Hospital of Fujian Medical University, Fujian Medical University, Fuzhou; Department of Neurology (G.W.), Lanzhou University Second Hospital; Department of Pathology (G.D.), Beijing Tiantan Hospital, Capital Medical University; Department of Neurology (W.L.), Army Medical Center of People's Liberation Army, Chongqing; Department of Neurology (Ying Zhang), The First People's Hospital of Shangqiu; Department of Neurology (S.G.), The First Affiliated Hospital of Xinxiang Medical University; Department of Neurology (X.L.), Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan; Department of Neurology (M.L.), The First People's Hospital of Huaihua City; Department of Neurology (H.L.), The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou; Department of Neurology (M.H.), Hubei Provincial Hospital of Integrated Chinese & Western Medicine, Wuhan; and Department of Neurology (W.C.), First Affiliated Hospital of Wenzhou Medical University, China
| |
Collapse
|
16
|
Ishiura H, Tsuji S, Toda T. Recent advances in CGG repeat diseases and a proposal of fragile X-associated tremor/ataxia syndrome, neuronal intranuclear inclusion disease, and oculophryngodistal myopathy (FNOP) spectrum disorder. J Hum Genet 2023; 68:169-174. [PMID: 36670296 PMCID: PMC9968658 DOI: 10.1038/s10038-022-01116-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/21/2022] [Accepted: 12/21/2022] [Indexed: 01/22/2023]
Abstract
While whole genome sequencing and long-read sequencing have become widely available, more and more focuses are on noncoding expanded repeats. Indeed, more than half of noncoding repeat expansions related to diseases have been identified in the five years. An exciting aspect of the progress in this field is an identification of a phenomenon called repeat motif-phenotype correlation. Repeat motif-phenotype correlation in noncoding repeat expansion diseases is first found in benign adult familial myoclonus epilepsy. The concept is extended in the research of CGG repeat expansion diseases. In this review, we focus on newly identified CGG repeat expansion diseases, update the concept of repeat motif-phenotype correlation in CGG repeat expansion diseases, and propose a clinical concept of FNOP (fragile X-associated tremor/ataxia syndrome, neuronal intranuclear inclusion disease, and oculopharyngodistal myopathy)-spectrum disorder, which shares clinical features and thus probably share some common disease pathophysiology, to further facilitate discussion and progress in this field.
Collapse
Affiliation(s)
- Hiroyuki Ishiura
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan.
- Department of Neurology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama, Japan.
| | - Shoji Tsuji
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Institute of Medical Genomics, International University of Health and Welfare, Narita, Japan
| | - Tatsushi Toda
- Department of Neurology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
17
|
Kurokawa R, Kurokawa M, Mitsutake A, Nakaya M, Baba A, Nakata Y, Moritani T, Abe O. Clinical and neuroimaging review of triplet repeat diseases. Jpn J Radiol 2023; 41:115-130. [PMID: 36169768 PMCID: PMC9889482 DOI: 10.1007/s11604-022-01343-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/18/2022] [Indexed: 02/04/2023]
Abstract
Triplet repeat diseases (TRDs) refer to a group of diseases caused by three nucleotide repeats elongated beyond a pathologic threshold. TRDs are divided into the following four groups depending on the pathomechanisms, although the pathomechanisms of several diseases remain unelucidated: polyglutamine disorders, caused by a pathologic repeat expansion of CAG (coding the amino acid glutamine) located within the exon; loss-of-function repeat disorders, characterized by the common feature of a loss of function of the gene within which they occur; RNA gain-of-function disorders, involving the production of a toxic RNA species; and polyalanine disorders, caused by a pathologic repeat expansion of GCN (coding the amino acid alanine) located within the exon. Many of these TRDs manifest through neurologic symptoms; moreover, neuroimaging, especially brain magnetic resonance imaging, plays a pivotal role in the detection of abnormalities, differentiation, and management of TRDs. In this article, we reviewed the clinical and neuroimaging features of TRDs. An early diagnosis of TRDs through clinical and imaging approaches is important and may contribute to appropriate medical intervention for patients and their families.
Collapse
Affiliation(s)
- Ryo Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan ,Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109 USA
| | - Mariko Kurokawa
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan ,Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109 USA
| | - Akihiko Mitsutake
- Department of Neurology, International University of Health and Welfare, Mita Hospital, 1-4-3 Mita, Minato-ku, Tokyo, 108-8329 Japan
| | - Moto Nakaya
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| | - Akira Baba
- Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109 USA
| | - Yasuhiro Nakata
- Department of Neuroradiology, Tokyo Metropolitan Neurological Hospital, 2-6-1 Musashidai, Fuchu, Tokyo 183-0042 Japan
| | - Toshio Moritani
- Division of Neuroradiology, Department of Radiology, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109 USA
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-8655 Japan
| |
Collapse
|
18
|
Mao C, Zhou L, Li J, Pang J, Chu S, Jin W, Huang X, Wang J, Liu C, Liu Q, Hao H, Zhou Y, Hou B, Feng F, Shen L, Tang B, Peng B, Cui L, Gao J. Clinical-neuroimaging-pathological relationship analysis of adult onset Neuronal Intranuclear Inclusion Disease (NIID). BMC Neurol 2022; 22:486. [PMID: 36522621 PMCID: PMC9753287 DOI: 10.1186/s12883-022-03025-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Neuronal Intranuclear Inclusion Disease (NIID) is a degenerative disease with heterogeneous clinical manifestations. We aim to analysis the relationship between clinical manifestations, neuroimaging and skin pathology in a Chinese NIID cohort. METHODS Patients were recruited from a Chinese cohort. Detail clinical information were collected. Visual rating scale was used for evaluation of neuroimaging. The relationship between clinical presentations and neuroimaging, as well as skin pathology was statistically analyzed. RESULTS Thirty-two patients were recruited. The average onset age was 54.3 y/o. 28.1% had positive family history. Dementia, autonomic nervous system dysfunction, episodic attacks were three main presentations. CSF analysis including Aβ42 and tau level was almost normal. The most frequently involved on MRI was periventricular white matter (100%), frontal subcortical and deep white matter (96.6%), corpus callosum (93.1%) and external capsule (72.4%). Corticomedullary junction DWI high intensity was found in 87.1% patients. Frontal and external capsule DWI high intensity connected to form a "kite-like" specific image. Severity of dementia was significantly related to leukoencephalopathy (r = 0.465, p = 0.0254), but not cortical atrophy and ventricular enlargement. Grey matter lesions were significantly associated with encephalopathy like attacks (p = 0.00077) but not stroke like attacks. The density of intranuclear inclusions in skin biopsy was not associated with disease duration, severity of leukoencephalopathy and dementia. CONCLUSIONS Specific distribution of leukoencephalopathy and DWI high intensity were indicative. Leukoencephalopathy and subcortical mechanism were critical in pathogenesis of NIID. Irrelevant of inclusion density and clinical map suggested the direct pathogenic factor need further investigation.
Collapse
Affiliation(s)
- Chenhui Mao
- grid.413106.10000 0000 9889 6335Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730 China
| | - Liangrui Zhou
- grid.413106.10000 0000 9889 6335Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, 100730 China
| | - Jie Li
- grid.413106.10000 0000 9889 6335Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730 China
| | - Junyi Pang
- grid.413106.10000 0000 9889 6335Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, 100730 China
| | - Shanshan Chu
- grid.413106.10000 0000 9889 6335Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730 China
| | - Wei Jin
- grid.413106.10000 0000 9889 6335Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730 China
| | - Xinying Huang
- grid.413106.10000 0000 9889 6335Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730 China
| | - Jie Wang
- grid.413106.10000 0000 9889 6335Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730 China
| | - Caiyan Liu
- grid.413106.10000 0000 9889 6335Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730 China
| | - Qing Liu
- grid.413106.10000 0000 9889 6335Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730 China
| | - Honglin Hao
- grid.413106.10000 0000 9889 6335Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730 China
| | - Yan Zhou
- grid.413106.10000 0000 9889 6335Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730 China
| | - Bo Hou
- grid.413106.10000 0000 9889 6335Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, 100730 China
| | - Feng Feng
- grid.413106.10000 0000 9889 6335Department of Radiology, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Beijing, 100730 China
| | - Lu Shen
- grid.452223.00000 0004 1757 7615Department of Neurology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Beisha Tang
- grid.452223.00000 0004 1757 7615Department of Neurology, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008 Hunan China
| | - Bin Peng
- grid.413106.10000 0000 9889 6335Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730 China
| | - Liying Cui
- grid.413106.10000 0000 9889 6335Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730 China
| | - Jing Gao
- grid.413106.10000 0000 9889 6335Department of Neurology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science/Peking Union Medical College, Shuaifuyuan 1St, Dongcheng District, Beijing, 100730 China
| |
Collapse
|
19
|
Liu Y, Zeng L, Yuan Y, Wang Y, Chen K, Chen Y, Bai J, Xiao F, Xu Y, Yang J, Tan S. Case report: Two siblings with neuronal intranuclear inclusion disease exhibiting distinct clinicoradiological findings. Front Neurol 2022; 13:1013213. [DOI: 10.3389/fneur.2022.1013213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a rare neurodegenerative disorder characterized by the presence of eosinophilic hyaline intranuclear inclusions. Owing to its widely varying clinical manifestations, NIID is frequently misdiagnosed or overlooked. However, a characteristic high-intensity corticomedullary junction signal on diffusion-weighted imaging (DWI) is often indicative of NIID. In this study, we described the case of two sisters with NIID who presented with distinct symptoms and imaging data. The younger sister showed symptoms similar to those of mitochondrial encephalopathy, with a reversible high-intensity signal from the cortex on T2 and DWI. The elder sister showed a characteristic high-signal “ribbon sign” in the corticomedullary junction on DWI. Skin biopsy confirmed that both had neuronal intranuclear inclusion. Two years later, the younger sister also developed the characteristic high-signal “ribbon sign” in the corticomedullary junction on DWI. This case study provides new insights into the complexity of NIID. The findings suggest that patients with this condition, including those belonging to the same family, may exhibit varying clinical and imaging features at different times.
Collapse
|
20
|
Liu Y, Li H, Liu X, Wang B, Yang H, Wan B, Sun M, Xu X. Clinical and mechanism advances of neuronal intranuclear inclusion disease. Front Aging Neurosci 2022; 14:934725. [PMID: 36177481 PMCID: PMC9513122 DOI: 10.3389/fnagi.2022.934725] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Due to the high clinical heterogeneity of neuronal intranuclear inclusion disease (NIID), it is easy to misdiagnose this condition and is considered to be a rare progressive neurodegenerative disease. More evidence demonstrates that NIID involves not only the central nervous system but also multiple systems of the body and shows a variety of symptoms, which makes a clinical diagnosis of NIID more difficult. This review summarizes the clinical symptoms in different systems and demonstrates that NIID is a multiple-system intranuclear inclusion disease. In addition, the core triad symptoms in the central nervous system, such as dementia, parkinsonism, and psychiatric symptoms, are proposed as an important clue for the clinical diagnosis of NIID. Recent studies have demonstrated that expanded GGC repeats in the 5′-untranslated region of the NOTCH2NLC gene are the cause of NIID. The genetic advances and possible underlying mechanisms of NIID (expanded GGC repeat-induced DNA damage, RNA toxicity, and polyglycine-NOTCH2NLC protein toxicity) are briefly summarized in this review. Interestingly, inflammatory cell infiltration and inflammation were observed in the affected tissues of patients with NIID. As a downstream pathological process of NIID, inflammation could be a therapeutic target for NIID.
Collapse
Affiliation(s)
- Yueqi Liu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Hao Li
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xuan Liu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bin Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Hao Yang
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bo Wan
- Institute of Neuroscience, Soochow University, Suzhou, China
- Bo Wan,
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Miao Sun,
| | - Xingshun Xu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
- *Correspondence: Xingshun Xu,
| |
Collapse
|
21
|
Zhou Y, Huang P, Huang Z, Peng Y, Zheng Y, Yu Y, Zhu M, Deng J, Wang Z, Hong D. Urine cytological study in patients with clinicopathologically confirmed neuronal intranuclear inclusion disease. Front Aging Neurosci 2022; 14:977604. [PMID: 36172483 PMCID: PMC9510843 DOI: 10.3389/fnagi.2022.977604] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 08/25/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveThe diagnosis of neuronal intranuclear inclusion disease (NIID) is currently based on CGG repeat expansion in the 5′UTR of the NOTCH2NLC gene, or p62-positive intranuclear inclusions in skin biopsy. The purpose of this study is to explore the value of non-invasive pathological findings in urine sediment cells from NIID patients.Materials and methodsTen patients with clinically suspected NIID were enrolled for skin biopsy and gene screening. Morning urine (500 ml) was collected from each patient, and cell sediment was obtained by centrifugation. Urine cytology, including Giemsa staining, p62 immunostaining, and electron microscopic examination, were conducted on cell sediment.ResultsThe main clinical symptoms of 10 patients included episodic disturbance of consciousness, cognitive impairment, tremor, limb weakness, and so on. Cerebral MRI showed that 9 patients had linear DWI high signal in the corticomedullary junction. Genetic testing found that the number of CGG repeat ranged from 96 to 158 in the NOTCH2NLC gene. Skin biopsy revealed that all patients showed p62-positive intranuclear inclusions in 18.5 ± 6.3% of the duct epithelial cells of sweat gland. In contrast, urine sediment smears revealed that only 3 patients had p62 positive intranuclear inclusions in 3.5 ± 1.2% of the sedimentary cells. Ultrastructural examinations showed that intranuclear inclusions were also identified in the cell sediment of the 3 patients.ConclusionUrine cytology may be a new and non-invasive pathological diagnosis technique for some NIID patients, although the positive rate is not as high as that of skin biopsy, which is a sensitive and reliable pathological method for NIID.
Collapse
Affiliation(s)
- Yiyi Zhou
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pengcheng Huang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhaojun Huang
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yun Peng
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yilei Zheng
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yaqing Yu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Zhu
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China
- *Correspondence: Daojun Hong,
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Department of Medical Genetics, The First Affiliated Hospital of Nanchang University, Nanchang, China
- Zhaoxia Wang,
| |
Collapse
|
22
|
Cao Y, Wu J, Yue Y, Zhang C, Liu S, Zhong P, Wang S, Huang X, Deng W, Pan J, Zheng L, Liu Q, Shang L, Zhang B, Yang J, Chen G, Chen S, Cao L, Luan X. Expanding the clinical spectrum of adult-onset neuronal intranuclear inclusion disease. Acta Neurol Belg 2022; 122:647-658. [PMID: 33625684 DOI: 10.1007/s13760-021-01622-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 01/31/2021] [Indexed: 12/22/2022]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a heterogeneous neurodegenerative disease with multiple clinical subtypes. Recent breakthroughs on neuroimaging, skin biopsy and genetic testing have facilitated the diagnosis. We aim to investigate the clinical characteristics of Chinese NIID patients to further refine the spectrum. We analyzed the clinical features of 25 NIID patients from 24 unrelated families and performed skin biopsy and/or sural nerve biopsy on 24 probands. Repeat-primed PCR and fluorescence amplicon length PCR were conducted to detect GGC repeats of NOTCH2NLC. Onset age ranged from 24 to 72 years old, and the disease duration ranged from 12 h to 25 years with the mode of onset characterized as acute, recurrent or chronic progressive type. Tremor was a common phenotype, often observed in the early stages, next to dementia and paroxysmal encephalopathy. Symptoms infrequently reported such as oromandibular dystonia, recurrent vomiting, dizziness and headache of unknown origin, as well as pure peripheral neuropathy were also suggestive of NIID. Reversible leukoencephalopathy following encephalitic episodes and the absence of apparent DWI abnormality were noticed. Two genetically confirmed NIID patients failed to be identified intranuclear inclusions, and one patient was simultaneously found significant mitochondrial swelling and fingerprint profiles depositing in lysosomes. All the patients were identified abnormal GGC repeats of NOTCH2NLC. We identify some atypical clinicopathological features and consider that pathological examinations combined with genetic testing is the gold standard for diagnosis. Whether lysosomal and mitochondrial dysfunction is involved in the pathogenesis of NIID deserves further study.
Collapse
|
23
|
Liufu T, Zheng Y, Yu J, Yuan Y, Wang Z, Deng J, Hong D. The polyG diseases: a new disease entity. Acta Neuropathol Commun 2022; 10:79. [PMID: 35642014 PMCID: PMC9153130 DOI: 10.1186/s40478-022-01383-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 05/16/2022] [Indexed: 12/20/2022] Open
Abstract
Recently, inspired by the similar clinical and pathological features shared with fragile X-associated tremor/ataxia syndrome (FXTAS), abnormal expansion of CGG repeats in the 5' untranslated region has been found in neuronal intranuclear inclusion disease (NIID), oculopharyngeal myopathy with leukoencephalopathy (OPML), and oculopharyngodistal myopathy (OPDMs). Although the upstream open reading frame has not been elucidated in OPML and OPDMs, polyglycine (polyG) translated by expanded CGG repeats is reported to be as a primary pathogenesis in FXTAS and NIID. Collectively, these findings indicate a new disease entity, the polyG diseases. In this review, we state the common clinical manifestations, pathological features, mechanisms, and potential therapies in these diseases, and provide preliminary opinions about future research in polyG diseases.
Collapse
Affiliation(s)
- Tongling Liufu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yilei Zheng
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Jiaxi Yu
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Yun Yuan
- Department of Neurology, Peking University First Hospital, Beijing, China
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing, China.,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing, China. .,Beijing Key Laboratory of Neurovascular Disease Discovery, Beijing, China.
| | - Daojun Hong
- Department of Neurology, The First Affiliated Hospital of Nanchang University, Nanchang, China. .,Department of Medical Genetics, The First Affiliated Hospital of Nanchang University, Nanchang, China.
| |
Collapse
|
24
|
Moon J. Rare genetic causes of meningitis and encephalitis. ENCEPHALITIS 2022; 2:29-35. [PMID: 37469651 PMCID: PMC10295911 DOI: 10.47936/encephalitis.2021.00164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 07/21/2023] Open
Abstract
Differential diagnosis of meningitis and encephalitis is often very challenging because it cannot be determined based on symptoms, and the diseases have various causes. This article explains rare genetic causes of meningitis and encephalitis. Autoinflammatory disorders include cryopyrin-associated periodic syndromes, familial Mediterranean fever, and tumor necrosis factor receptor-associated periodic syndrome. Furthermore, other genetic disorders, such as complement factor I deficiency, phosphatidylinositol glycan anchor biosynthesis class T mutation, and neuronal intranuclear inclusion disease, can present as meningitis and encephalitis.
Collapse
Affiliation(s)
- Jangsup Moon
- Rare Disease Center, Departments of Genomic Medicine and Neurology, Seoul National University Hospital, Seoul, Korea
| |
Collapse
|
25
|
Miki Y, Kamata K, Goto S, Sakuraba H, Mori F, Yamagata K, Kijima H, Fukuda S, Wakabayashi K. The clinical and neuropathological picture of adult neuronal intranuclear inclusion disease with no radiological abnormality. Neuropathology 2022; 42:204-211. [PMID: 35274390 DOI: 10.1111/neup.12792] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/29/2021] [Accepted: 11/02/2021] [Indexed: 11/30/2022]
Abstract
In typical adult neuronal intranuclear inclusion disease (NIID) with predilection for the basal ganglia or cerebral cortex, not only neurons but also glial cells harbor intranuclear inclusions. In addition, these inclusions are present in the peripheral autonomic nervous system, visceral organs and skin. In NIID cases with an expansion of GGC repeats in the 5'-untranslated region (5'-UTR) of the Notch 2 N-terminal like C (NOTCH2NLC) gene, these repeats are located in an upstream open reading frame (uN2C) and result in the production of a polyglycine-containing protein called uN2CpolyG. Typically, patients with adult NIID show high-intensity signals at the corticomedullary junction on diffusion-weighted brain magnetic resonance imaging. We report a case of adult NIID in a 78-year-old Japanese male, who suffered from mild, non-progressive tremor during life but showed no radiographic abnormalities suggestive of adult NIID. Pathologically, ubiquitin-, p62- and uN2CpolyG-positive neuronal intranuclear inclusions were particularly frequent in the hippocampal formation, but were also seen in the enteric plexuses, kidney and cardiac muscles. By contrast, glial intranuclear inclusions were barely evident in the affected regions. The present case also had an immunohistochemical profile differing from that of typical adult NIID. The findings in this case suggest that adult NIID can show clinical, radiographic and pathological heterogeneity.
Collapse
Affiliation(s)
- Yasuo Miki
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kosuke Kamata
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shintaro Goto
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Hirotake Sakuraba
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Fumiaki Mori
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Kazufumi Yamagata
- Department of Bioscience and Laboratory Medicine, Hirosaki University Graduate School of Health Sciences, Hirosaki, Japan
| | - Hiroshi Kijima
- Department of Pathology and Bioscience, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Shinsaku Fukuda
- Department of Gastroenterology and Hematology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| | - Koichi Wakabayashi
- Department of Neuropathology, Hirosaki University Graduate School of Medicine, Hirosaki, Japan
| |
Collapse
|
26
|
Park H, Yamanaka T, Toyama Y, Fujita A, Doi H, Nirasawa T, Murayama S, Matsumoto N, Shimogori T, Ikegawa M, Haltia MJ, Nukina N. Hornerin deposits in neuronal intranuclear inclusion disease: direct identification of proteins with compositionally biased regions in inclusions. Acta Neuropathol Commun 2022; 10:28. [PMID: 35246273 PMCID: PMC8895595 DOI: 10.1186/s40478-022-01333-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/16/2022] [Indexed: 11/10/2022] Open
Abstract
Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disorder, characterized by the presence of eosinophilic inclusions (NIIs) within nuclei of central and peripheral nervous system cells. This study aims to identify the components of NIIs, which have been difficult to analyze directly due to their insolubility. In order to establish a method to directly identify the components of NIIs, we first analyzed the huntingtin inclusion-rich fraction obtained from the brains of Huntington disease model mice. Although the sequence with expanded polyglutamine could not be identified by liquid-chromatography mass spectrometry, amino acid analysis revealed that glutamine of the huntingtin inclusion-rich fraction increased significantly. This is compatible with the calculated amino acid content of the transgene product. Therefore, we applied this method to analyze the NIIs of diseased human brains, which may have proteins with compositionally biased regions, and identified a serine-rich protein called hornerin. Since the analyzed NII-rich fraction was also serine-rich, we suggested hornerin as a major component of the NIIs. A specific distribution of hornerin in NIID was also investigated by Matrix-assisted laser desorption/ionization imaging mass spectrometry and immunofluorescence. Finally, we confirmed a variant of hornerin by whole-exome sequencing and DNA sequencing. This study suggests that hornerin may be related to the pathological process of this NIID, and the direct analysis of NIIs, especially by amino acid analysis using the NII-rich fractions, would contribute to a deeper understanding of the disease pathogenesis.
Collapse
Affiliation(s)
- Hongsun Park
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, 1-3 Miyakodanitatara, Kyotanabe-shi, Kyoto, 610-0394, Japan
| | - Tomoyuki Yamanaka
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, 1-3 Miyakodanitatara, Kyotanabe-shi, Kyoto, 610-0394, Japan
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yumiko Toyama
- Department of Life and Medical Systems, Doshisha University, Kyoto, Japan
| | - Atsushi Fujita
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Hiroshi Doi
- Department of Neurology and Stroke Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | | | - Shigeo Murayama
- The Brain Bank for Aging Research, Tokyo Metropolitan Geriatric Hospital and Institute of Gerontology, Tokyo, Japan
| | - Naomichi Matsumoto
- Department of Human Genetics, Yokohama City University Graduate School of Medicine, Yokohama, Japan
| | - Tomomi Shimogori
- Molecular Mechanisms of Brain Development, RIKEN Center for Brain Science, Saitama, Japan
| | - Masaya Ikegawa
- Department of Life and Medical Systems, Doshisha University, Kyoto, Japan
| | - Matti J Haltia
- Department of Pathology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Nobuyuki Nukina
- Laboratory of Structural Neuropathology, Doshisha University Graduate School of Brain Science, 1-3 Miyakodanitatara, Kyotanabe-shi, Kyoto, 610-0394, Japan.
- Laboratory for Structural Neuropathology, RIKEN Brain Science Institute, Saitama, Japan.
| |
Collapse
|
27
|
Boivin M, Charlet-Berguerand N. Trinucleotide CGG Repeat Diseases: An Expanding Field of Polyglycine Proteins? Front Genet 2022; 13:843014. [PMID: 35295941 PMCID: PMC8918734 DOI: 10.3389/fgene.2022.843014] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/31/2022] [Indexed: 12/30/2022] Open
Abstract
Microsatellites are repeated DNA sequences of 3–6 nucleotides highly variable in length and sequence and that have important roles in genomes regulation and evolution. However, expansion of a subset of these microsatellites over a threshold size is responsible of more than 50 human genetic diseases. Interestingly, some of these disorders are caused by expansions of similar sequences, sizes and localizations and present striking similarities in clinical manifestations and histopathological features, which suggest a common mechanism of disease. Notably, five identical CGG repeat expansions, but located in different genes, are the causes of fragile X-associated tremor/ataxia syndrome (FXTAS), neuronal intranuclear inclusion disease (NIID), oculopharyngodistal myopathy type 1 to 3 (OPDM1-3) and oculopharyngeal myopathy with leukoencephalopathy (OPML), which are neuromuscular and neurodegenerative syndromes with overlapping symptoms and similar histopathological features, notably the presence of characteristic eosinophilic ubiquitin-positive intranuclear inclusions. In this review we summarize recent finding in neuronal intranuclear inclusion disease and FXTAS, where the causing CGG expansions were found to be embedded within small upstream ORFs (uORFs), resulting in their translation into novel proteins containing a stretch of polyglycine (polyG). Importantly, expression of these polyG proteins is toxic in animal models and is sufficient to reproduce the formation of ubiquitin-positive intranuclear inclusions. These data suggest the existence of a novel class of human genetic pathology, the polyG diseases, and question whether a similar mechanism may exist in other diseases, notably in OPDM and OPML.
Collapse
|
28
|
Cutaneous Findings of Sporadic, Adult-Onset Neuronal Intranuclear Inclusion Disease. Am J Dermatopathol 2022; 44:1-6. [PMID: 34889810 DOI: 10.1097/dad.0000000000001955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
ABSTRACT Neuronal intranuclear inclusion disease is a rare, progressive neurodegenerative disease whose hallmark histopathologic finding is the presence of ubiquitin-positive hyaline intranuclear inclusions in neuronal and non-neuronal cells. We present a case of neuronal intranuclear inclusion disease in a 61-year-old Asian man with a history of repeated episodes of altered mental status, long-standing bladder dysfunction, and cerebrovascular accidents. The patient had characteristic magnetic imaging findings of high signal along the cortico-medullary junction on diffusion-weighted sequences and symmetric T2 hyperintensity in the paravermal area of the cerebellum. Skin biopsies showed characteristic histopathologic findings of ubiquitin-positive intranuclear inclusions that ultrastructurally composed of filamentous material without limiting membrane within eccrine epithelium and dermal fibroblasts. Our case highlights the utility of readily accessible skin biopsy in the diagnosis of this rare neurodegenerative disease.
Collapse
|
29
|
Zhong S, Lian Y, Luo W, Luo R, Wu X, Ji J, Ji Y, Ding J, Wang X. Upstream open reading frame with NOTCH2NLC GGC expansion generates polyglycine aggregates and disrupts nucleocytoplasmic transport: implications for polyglycine diseases. Acta Neuropathol 2021; 142:1003-1023. [PMID: 34694469 DOI: 10.1007/s00401-021-02375-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 08/30/2021] [Accepted: 09/25/2021] [Indexed: 12/13/2022]
Abstract
Neuronal intranuclear inclusion disease (NIID) is neurodegenerative disease characterized by widespread inclusions. Despite the identification of GGC repeat expansion in 5'UTR of NOTCH2NLC gene in adult-onset NIIDs, its pathogenic mechanism remains unclear. Gain-of-function poly-amino-acid proteins generated by unconventional translation have been revealed in nucleotide repeat expansion disorders, inspiring us to explore the possibility of unconventional translation in NIID. Here we demonstrated that NOTCH2NLC 5'UTR triggers the translation of a polyglycine (polyG)-containing protein, N2NLCpolyG. N2NLCpolyG accumulates in p62-positive inclusions in cultured cells, mouse models, and NIID patient tissues with NOTCH2NLC GGC expansion. Translation of N2NLCpolyG is initiated by an upstream open reading frame (uORF) embedding the GGC repeats. N2NLCpolyG tends to aggregate with the increase of GGC repeat units, and displays phase separation properties. N2NLCpolyG aggregation impairs nuclear lamina and nucleocytoplasmic transport but does not necessarily cause acute death on neuronal cells. Our study suggests a similarity of pathogenic mechanisms between NIID and another GGC-repeat disease, fragile X-associated tremor ataxia syndrome. These findings expand our knowledge of protein gain-of-function in NIID, and further highlight evidence for a novel spectrum of diseases caused by aberrant polyG protein aggregation, namely the polyG diseases.
Collapse
Affiliation(s)
- Shaoping Zhong
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Yangye Lian
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Wenyi Luo
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaoling Wu
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China
| | - Jun Ji
- Department of Nephrology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jing Ding
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- CAS Center for Excellence in Brain Science and Intelligence Technology, Shanghai, China.
| | - Xin Wang
- Department of Neurology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, China.
- Department of The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, China.
| |
Collapse
|
30
|
Huang XR, Tang BS, Jin P, Guo JF. The Phenotypes and Mechanisms of NOTCH2NLC-Related GGC Repeat Expansion Disorders: a Comprehensive Review. Mol Neurobiol 2021; 59:523-534. [PMID: 34718964 DOI: 10.1007/s12035-021-02616-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 10/24/2021] [Indexed: 01/11/2023]
Abstract
The human-specific gene NOTCH2NLC is primarily expressed in radial glial cells and plays an important role in neuronal differentiation and cortical neurogenesis. Increasing studies were conducted to verify the relationship between NOTCH2NLC gene and many neurological diseases, such as neuronal intranuclear inclusion disease, essential tremor, multiple system atrophy, Parkinson's disease, Alzheimer's disease, and even oculopharyngodistal myopathy. Thus, we support the concept, NOTCH2NLC-related GGC repeat expansion disorders (NRED), to summarize all diseases with the GGC repeat expansion in the 5'UTR of NOTCH2NLC gene, regardless of their various clinical phenotypes. Here, we discuss the reported cases to analyze the clinical features of NOTCH2NLC-related GGC repeat expansion disorders, including dementia, parkinsonism, peripheral neuropathy and myopathy, leukoencephalopathy, and essential tremor. In addition, we outline radiological and pathological manifestations of NOTCH2NLC-related GGC repeat expansion disorders, and then present possible mechanisms, such as toxic polyG protein, toxic repeat RNA, the GGC repeat size, and the size and types of trinucleotide interruption. Therefore, this review provides a systematic description of NOTCH2NLC-related GGC repeat expansion disorders and emphasizes the significance for understanding this type of repeat expansion disease.
Collapse
Affiliation(s)
- Xiu-Rong Huang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China
| | - Bei-Sha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China.,Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China
| | - Peng Jin
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Ji-Feng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, China. .,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China. .,Centre for Medical Genetics and Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, Hunan, China. .,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, Hunan, China.
| |
Collapse
|
31
|
Fan Y, Xu Y, Shi C. NOTCH2NLC-related disorders: the widening spectrum and genotype-phenotype correlation. J Med Genet 2021; 59:1-9. [PMID: 34675123 DOI: 10.1136/jmedgenet-2021-107883] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 09/06/2021] [Indexed: 11/04/2022]
Abstract
GGC repeat expansion in the 5' untranslated region of NOTCH2NLC is the most common causative factor in neuronal intranuclear inclusion disease (NIID) in Asians. Such expanded GGC repeats have been identified in patients with leukoencephalopathy, essential tremor (ET), multiple system atrophy, Parkinson's disease (PD), amyotrophic lateral sclerosis and oculopharyngodistal myopathy (OPDM). Herein, we review the recently reported NOTCH2NLC-related disorders and potential disease-causing mechanisms. We found that visual abnormalities may be NOTCH2NLC-specific and should be investigated in other patients with NOTCH2NLC mutations. NOTCH2NLC GGC repeat expansion was rarely identified in patients of European ancestry, whereas the actual prevalence of the expansion in European patients may be potentially higher than reported, and the CGG repeats in LRP12/GIPC1 are suggested to be screened in European patients with NIID. The repeat size and interruptions in NOTCH2NLC GGC expansion confer pleiotropic effects on clinical phenotype, a pure and stable ET phenotype may be an early symptom of NIID, and GGC repeats in NOTCH2NLC possibly give rise to ET. An association may also exist between intermediate-length NOTCH2NLC GGC repeat expansion and patients affected by PD and ET. NOTCH2NLC-OPDM highly resembles NOTCH2NLC-NIID, the two disorders may be the variations of a single neurodegenerative disease, and there may be a disease-causing upper limit in size of GGC repeats in NOTCH2NLC, repeats over which may be non-pathogenic. The haploinsufficiency of NOTCH2NLC may not be primarily involved in NOTCH2NLC-related disorders and a toxic gain-of-function mechanism possibly drives the pathogenesis of neurodegeneration in patients with NOTCH2NLC-associated disorders.
Collapse
Affiliation(s)
- Yu Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China .,Henan Key Laboratory of Cerebrovascular Diseases, Zhengzhou University, Zhengzhou, Henan, People's Republic of China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| |
Collapse
|
32
|
Cao L, Yan Y, Zhao G. NOTCH2NLC-related repeat expansion disorders: an expanding group of neurodegenerative disorders. Neurol Sci 2021; 42:4055-4062. [PMID: 34333668 DOI: 10.1007/s10072-021-05498-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/18/2021] [Indexed: 12/22/2022]
Abstract
The NOTCH2NLC gene 5' untranslated region (UTR) GGC repeat expansion mutations were identified as a genetic contributor of neuronal intranuclear inclusion disease (NIID) in 2019. Since then, the number of reported cases with NOTCH2NLC GGC repeat expansion in Asian and European populations has increased rapidly, indicating that the expanded mutation not only leads to the onset or progression of the NIID, but also may play an important role in multiple progressive neurological disorders, including Parkinson's disease, essential tremor, multiple system atrophy, Alzheimer's disease, frontotemporal dementia, amyotrophic lateral sclerosis, leukoencephalopathy, and oculopharyngodistal myopathy type 3. Nevertheless, the underlying pathogenic mechanism of the NOTCH2NLC 5' UTR region GGC repeat expansion in these disorders remains largely unknown. This review aims to present recent breakthroughs on this mutation and improve our knowledge of a newly defined spectrum of disease: NOTCH2NLC-related repeat expansion disorder.
Collapse
Affiliation(s)
- Lanxiao Cao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, N1 Shangcheng Avenue, Yiwu, 322000, Zhejiang Province, China
| | - Yaping Yan
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, China.
| | - Guohua Zhao
- Department of Neurology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, N1 Shangcheng Avenue, Yiwu, 322000, Zhejiang Province, China.
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No.88 Jiefang Road, Hangzhou, 310009, Zhejiang Province, China.
| |
Collapse
|
33
|
Klotz S, Gelpi E. [Neuropathology of dementia]. Wien Med Wochenschr 2021; 171:257-273. [PMID: 34129141 PMCID: PMC8397629 DOI: 10.1007/s10354-021-00848-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 04/14/2021] [Indexed: 11/09/2022]
Abstract
Demenz ist die klinische Folge verschiedener neurologischer Erkrankungen mit einer Vielzahl von Ätiologien. Dabei ist die genaue Kenntnis der zugrunde liegenden pathologischen Veränderungen entscheidend für die passgenaue Versorgung der Patienten und für die Entwicklung geeigneter Krankheitsbiomarker. Eine definitive Diagnose vieler dieser Erkrankungen, insbesondere der neurodegenerativen Formen, kann nur nach gründlicher postmortaler neuropathologischer Untersuchung gestellt werden. Dies unterstreicht die Wichtigkeit der Durchführung einer Gehirnautopsie und die Relevanz einer engen Zusammenarbeit zwischen Klinikern, Neuroradiologen und Neuropathologen sowie mit Grundlagenforschern. Ziel der vorliegenden Arbeit ist es, einen kurzen Überblick über die Neuropathologie der Demenz mit Schwerpunkt auf neurodegenerative Erkrankungen zu geben, um die interdisziplinäre Zusammenarbeit weiter zu fördern.
Collapse
Affiliation(s)
- Sigrid Klotz
- Abteilung für Neuropathologie und Neurochemie, Universitätsklinik für Neurologie, Medizinischer Universitätscampus Wien, Ebene 4J, Währinger Gürtel 18-20, 1090, Wien, Österreich.,Österreichisches Referenzzentrum zur Erfassung und Dokumentation menschlicher Prionen-Erkrankungen (ÖRPE), Wien, Österreich
| | - Ellen Gelpi
- Abteilung für Neuropathologie und Neurochemie, Universitätsklinik für Neurologie, Medizinischer Universitätscampus Wien, Ebene 4J, Währinger Gürtel 18-20, 1090, Wien, Österreich. .,Österreichisches Referenzzentrum zur Erfassung und Dokumentation menschlicher Prionen-Erkrankungen (ÖRPE), Wien, Österreich.
| |
Collapse
|
34
|
Pang J, Yang J, Yuan Y, Gao Y, Shi C, Fan S, Xu Y. The Value of NOTCH2NLC Gene Detection and Skin Biopsy in the Diagnosis of Neuronal Intranuclear Inclusion Disease. Front Neurol 2021; 12:624321. [PMID: 34017298 PMCID: PMC8129528 DOI: 10.3389/fneur.2021.624321] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 03/30/2021] [Indexed: 12/12/2022] Open
Abstract
The clinical manifestations of neuronal intranuclear inclusion disease (NIID) are heterogeneous, and the premortem diagnosis is mainly based on skin biopsy findings. Abnormal GGC repeat expansions in NOTCH2NLC was recently identified in familial and sporadic NIID. The comparison of diagnostic value between abnormal GGC repeat expansions of NOTCH2NLC and skin biopsy has not been conducted yet. In this study, skin biopsy was performed in 10 suspected adult NIID patients with clinical and imaging manifestations, and GGC repeat size in NOTCH2NLC was also screened by repeat primed-PCR and GC-rich PCR. We found that five cases had ubiquitin-immunolabelling intranuclear inclusion bodies by skin biopsy, and all of them were identified with abnormal GGC repeat expansions in NOTCH2NLC, among whom four patients showed typical linear hyperintensity at corticomedullary junction on DWI. Five (5/10) NIID patients were diagnosed by combination of NOTCH2NLC gene detection, skin biopsy or combination of NOTCH2NLC, and typical MRI findings. The diagnostic performance of NOTCH2NLC gene detection was highly consistent with that of skin biopsy (Kappa = 1). The unexplained headache was firstly reported as a new early phenotype of NIID. These findings indicate that NOTCH2NLC gene detection is needed to be a supplement in the diagnose flow of NIID and also may be used as an alternative method to skin biopsy especially in Asian population.
Collapse
Affiliation(s)
- Jie Pang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Jing Yang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,National Health Commission Key Laboratory of Cerebrovascular Disease, Zhengzhou University, Zhengzhou, China
| | - Yanpeng Yuan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Yuan Gao
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,National Health Commission Key Laboratory of Cerebrovascular Disease, Zhengzhou University, Zhengzhou, China
| | - Changhe Shi
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Shiheng Fan
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Yuming Xu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China.,National Health Commission Key Laboratory of Cerebrovascular Disease, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
35
|
Boivin M, Deng J, Pfister V, Grandgirard E, Oulad-Abdelghani M, Morlet B, Ruffenach F, Negroni L, Koebel P, Jacob H, Riet F, Dijkstra AA, McFadden K, Clayton WA, Hong D, Miyahara H, Iwasaki Y, Sone J, Wang Z, Charlet-Berguerand N. Translation of GGC repeat expansions into a toxic polyglycine protein in NIID defines a novel class of human genetic disorders: The polyG diseases. Neuron 2021; 109:1825-1835.e5. [PMID: 33887199 PMCID: PMC8186563 DOI: 10.1016/j.neuron.2021.03.038] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Revised: 01/08/2021] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
Neuronal intranuclear inclusion disease (NIID) is a neurodegenerative disease characterized by the presence of intranuclear inclusions of unknown origin. NIID is caused by an expansion of GGC repeats in the 5′ UTR of the NOTCH2NLC (N2C) gene. We found that these repeats are embedded in a small upstream open reading frame (uORF) (uN2C), resulting in their translation into a polyglycine-containing protein, uN2CpolyG. This protein accumulates in intranuclear inclusions in cell and mouse models and in tissue samples of individuals with NIID. Furthermore, expression of uN2CpolyG in mice leads to locomotor alterations, neuronal cell loss, and premature death of the animals. These results suggest that translation of expanded GGC repeats into a novel and pathogenic polyglycine-containing protein underlies the presence of intranuclear inclusions and neurodegeneration in NIID. NIID is a neurodegenerative disease caused by expansion of GGC repeats in NOTCH2NLC These GGC repeats are translated into a polyglycine (polyG) protein The polyG protein is toxic and forms intranuclear inclusions in cells and animals Similarities between FXTAS and NIID define a new set of disorders: polyG diseases
Collapse
Affiliation(s)
- Manon Boivin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Jianwen Deng
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Véronique Pfister
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Erwan Grandgirard
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Mustapha Oulad-Abdelghani
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Bastien Morlet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Frank Ruffenach
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Luc Negroni
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Pascale Koebel
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Hugues Jacob
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Fabrice Riet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France
| | - Anke A Dijkstra
- Department of Pathology, Amsterdam University Medical Centre, Amsterdam Neuroscience, VUmc, Amsterdam, the Netherlands
| | - Kathryn McFadden
- Department of Pathology, IWK Health Centre, Halifax, NS B3K 6R8, Canada
| | - Wiley A Clayton
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Daojun Hong
- Department of Neurology, First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hiroaki Miyahara
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan
| | - Jun Sone
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Nagakute, Japan; Department of Neurology, Suzuka National Hospital, Suzuka 513-8501, Japan
| | - Zhaoxia Wang
- Department of Neurology, Peking University First Hospital, Beijing 100034, China
| | - Nicolas Charlet-Berguerand
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U 1258, CNRS UMR 7104, University of Strasbourg, 67404 Illkirch, France.
| |
Collapse
|
36
|
Yau WY, Chen Z, Sullivan R, Vandrovcova J, Houlden H. Reply: Genetic heterogeneity of neuronal intranuclear inclusion disease. What about the infantile variant? Ann Clin Transl Neurol 2021; 8:1002-1004. [PMID: 33780167 PMCID: PMC8045916 DOI: 10.1002/acn3.51330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 02/11/2021] [Indexed: 11/23/2022] Open
Affiliation(s)
- Wai Yan Yau
- Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Zhongbo Chen
- Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUnited Kingdom
- Department of Neurodegenerative DiseasesUCL Queen Square Institute of NeurologyUniversity College LondonLondonUnited Kingdom
| | - Roisin Sullivan
- Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Jana Vandrovcova
- Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Henry Houlden
- Department of Neuromuscular DiseasesUCL Queen Square Institute of NeurologyLondonUnited Kingdom
- Neurogenetics UnitNational Hospital for Neurology and NeurosurgeryLondonUnited Kingdom
| |
Collapse
|
37
|
Sikora J, Jedlickova I, Pristoupilova A, Stranecky V, Honzik T. Genetic heterogeneity of neuronal intranuclear inclusion disease: What about the infantile variant? Ann Clin Transl Neurol 2021; 8:994-1001. [PMID: 33780169 PMCID: PMC8045947 DOI: 10.1002/acn3.51332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/28/2021] [Indexed: 11/16/2022] Open
Affiliation(s)
- Jakub Sikora
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic.,Institute of Pathology, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Ivana Jedlickova
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Anna Pristoupilova
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Viktor Stranecky
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| | - Tomas Honzik
- Research Unit for Rare Diseases, Department of Paediatrics and Inherited Metabolic Disorders, First Faculty of Medicine, Charles University and General University Hospital, Prague, Czech Republic
| |
Collapse
|
38
|
Neuronal intranuclear inclusion disease: recognition and update. J Neural Transm (Vienna) 2021; 128:295-303. [PMID: 33599827 DOI: 10.1007/s00702-021-02313-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023]
Abstract
Neuronal intranuclear inclusion disease (NIID) used to be considered as a neurodegenerative disease. Due to the availability of skin biopsy, the diagnostic efficiency of the disease has been greatly improved. Recently, researchers have successfully identified that the GGC repeat expansion in the 5'-untranslated region of the NOTCH2NLC gene is the causative mutation of NIID. Besides the typical phenotype of brain degeneration, peripheral neuropathy, and autonomic disturbance, the gene mutation is also associated with Alzheimer's disease, frontotemporal dementia, Parkinson's disease, multiple system atrophy, essential tremor, adult leukoencephalopathy, and oculopharyngodistal myopathy. However, it still needs more studies to elucidate whether those variable NIID phenotypes can categorize into NOTCH2NLC repeat expansion related disorders. We update the discovery milestone, clinical phenotype, laboratory examinations, as well as new insight into the diagnosis and treatment of NIID. NIID is an unusual degenerative disease that can involve multiple systems, especially involves the nervous system. Originally, it is named after the pathological characteristics with extensive intranuclear eosinophilic inclusions in central and peripheral nervous tissues, as well as in multiple other organs (Sone et al., Brain 139:3170-3186, 2016). In 2019, several research teams from China and Japan have simultaneously identified that the GGC repeat expansion in the 5'-untranslated region (5'UTR) of the NOTCH2NLC gene is the pathogenic mutation of NIID (Ishiura et al., Nat Genet 51:1222-1232, 2019; Deng et al., J Med Genet 56:758-764, 2019; Sone et al., Nat Genet 51:1215-1221, 2019; Sun et al., Brain 143:222-233, 2020; Tian et al., Am J Hum Genet 105:166-176, 2019). Since then, the number of reported NIID cases is rapidly increasing, and the spectrum of NOTCH2NLC repeat expansion related disorders is significantly broadening (Westenberger and Klein, Brain 143:5-8, 2020). However, the NIID associated with GGC repeat expansion of the NOTCH2NLC gene might be account for a part of patients, probably more frequently in the Asian population, because this expansion has not been identified in an European series with postmortem confirmed NIID cases (Chen et al., Ann Clin Transl Neurol 2020). In order to better understand of the disease, we need to revisit the current state of NIID in combination with the findings based on our experiences in recent years and update the concepts about the clinical and pathogenic progression of NIID.
Collapse
|
39
|
Shi CH, Fan Y, Xu YM. Reply to "NOTCH2NLC Intermediate-Length Repeat Expansions Are Associated with Parkinson Disease". Ann Neurol 2021; 89:635. [PMID: 33377207 DOI: 10.1002/ana.26005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Chang-He Shi
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| | - Yu Fan
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Academy of Medical Sciences of Zhengzhou University, Zhengzhou, China
| | - Yu-Ming Xu
- Department of Neurology, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Henan Key Laboratory of Cerebrovascular Diseases, First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, China.,Institute of Neuroscience, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
40
|
Chen Z, Ryten M, Houlden H. Reply to: No evidence supports genetic heterogeneity of neuronal intranuclear inclusion disease. Ann Clin Transl Neurol 2020; 7:2544-2545. [PMID: 33124767 PMCID: PMC7732245 DOI: 10.1002/acn3.51222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/28/2020] [Indexed: 11/29/2022] Open
Affiliation(s)
- Zhongbo Chen
- Department of Neurodegenerative DiseaseQueen Square Institute of NeurologyUniversity College London (UCL)LondonUK
| | - Mina Ryten
- Department of Neurodegenerative DiseaseQueen Square Institute of NeurologyUniversity College London (UCL)LondonUK
| | - Henry Houlden
- Department of Neuromuscular DiseaseQueen Square Institute of NeurologyUCLLondonUK
| |
Collapse
|
41
|
Li H, Sun M, Wan B, Xu X. No evidence supports the genetic heterogeneity of Neuronal intranuclear inclusion disease. Ann Clin Transl Neurol 2020; 7:2542-2543. [PMID: 33124781 PMCID: PMC7732237 DOI: 10.1002/acn3.51223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 09/18/2020] [Indexed: 11/22/2022] Open
Affiliation(s)
- Hao Li
- Departments of Neurology, the First Affiliated Hospital of Soochow University, Suzhou City, China.,Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Miao Sun
- The Institute of Fetology, the First Affiliated Hospital of Soochow University, Suzhou City, China
| | - Bo Wan
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Xingshun Xu
- Departments of Neurology, the First Affiliated Hospital of Soochow University, Suzhou City, China.,Institute of Neuroscience, Soochow University, Suzhou City, China
| |
Collapse
|