1
|
Kusnierova P, Revendova KZ, Karasova K, Zeman D, Bunganic R, Hradilek P, Volny O, Ganesh A, Kovacova I, Stejskal D. Neurofilament heavy chain and chitinase 3-like 1 as markers for monitoring therapeutic response in multiple sclerosis. Mult Scler Relat Disord 2024; 91:105915. [PMID: 39383686 DOI: 10.1016/j.msard.2024.105915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/11/2024]
Abstract
AIMS The aim of this study was to evaluate the association of serum neurofilament heavy chain (sNfH) and chitinase 3-like 1 (sCHI3L1) with treatment response and disease activity in multiple sclerosis (MS). METHODS This single-center, prospective, observational cohort study was conducted at the MS Centre, University Hospital Ostrava, Czech Republic, from May 2020 to August 2023. sNfH and sCHI3L1 were determined using ELISA. A mixed-effects linear model with a log-transformed outcome variable was applied. RESULTS We analyzed 459 samples from 57 people with MS. Patients were sampled an average of 8.05 times during 21.9 months of follow-up. Those experiencing a relapse at sampling had a sNfH concentration 50 % higher than those in remission (exp(β) 1.5, 95 % CI 1.15-1.96). A longer duration of treatment was associated with lower sNfH (exp(β) 0.95, 95 % CI 0.94-0.96). Patients switched from low- to high-efficacy disease-modifying therapies (DMTs) had higher sNfH than patients treated with low-efficacy DMTs only (exp(β) 1.95, 95 % CI 1.35-2.81). Higher sCHI3L1 was associated with older age (exp(β) 1.01, 95 % CI 1.00-1.02) and longer DMT use (exp(β) 1.01, 95 % CI 1.00-1.02). sCHI3L1 values were not associated with relapse at the time of sampling, renal function, sex, or type of DMT. CONCLUSION In contrast to sCHI3L1, sNfH may be a potential biomarker for monitoring treatment response and confirming clinical relapse in MS. Further research is needed to determine the long-term dynamics of sNfH and develop related treatment strategies.
Collapse
Affiliation(s)
- P Kusnierova
- University Hospital Ostrava, Institute of Laboratory Medicine, Department of Clinical Biochemistry, Ostrava, Czech Republic; University of Ostrava, Institute of Laboratory Medicine, Ostrava, Czech Republic
| | - K Zondra Revendova
- University Hospital Ostrava, Department of Neurology, Ostrava, Czech Republic; University of Ostrava, Department of Clinical Neurosciences, Ostrava, Czech Republic.
| | - K Karasova
- University of Ostrava, Department of Clinical Neurosciences, Ostrava, Czech Republic
| | - D Zeman
- University Hospital Ostrava, Institute of Laboratory Medicine, Department of Clinical Biochemistry, Ostrava, Czech Republic; University of Ostrava, Institute of Laboratory Medicine, Ostrava, Czech Republic
| | - R Bunganic
- University Hospital Ostrava, Department of Neurology, Ostrava, Czech Republic; University of Ostrava, Department of Clinical Neurosciences, Ostrava, Czech Republic
| | - P Hradilek
- University Hospital Ostrava, Department of Neurology, Ostrava, Czech Republic; University of Ostrava, Department of Clinical Neurosciences, Ostrava, Czech Republic
| | - O Volny
- University Hospital Ostrava, Department of Neurology, Ostrava, Czech Republic; University of Ostrava, Department of Clinical Neurosciences, Ostrava, Czech Republic
| | - A Ganesh
- University of Calgary Cumming School of Medicine, the Hotchkiss Brain Institute and the O'Brien Institute for Public Health, Departments of Clinical Neurosciences and Community Health Sciences, Calgary, Canada
| | - I Kovacova
- University Hospital Ostrava, Department of Hematooncology, Ostrava, Czech Republic
| | - D Stejskal
- University Hospital Ostrava, Institute of Laboratory Medicine, Department of Clinical Biochemistry, Ostrava, Czech Republic; University of Ostrava, Institute of Laboratory Medicine, Ostrava, Czech Republic
| |
Collapse
|
2
|
Mondésert E, Schraen-Maschke S, Quadrio I, Bousiges O, Bouvier D, Delaby C, Bedel A, Lehmann S, Fourier A. A French multicenter analytical evaluation of the automated Lumipulse G sNfL blood assay (Fujirebio®) and its comparison to four other immunoassays for serum neurofilament light chain assessment in clinical settings. Clin Chim Acta 2024; 565:120007. [PMID: 39454987 DOI: 10.1016/j.cca.2024.120007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
OBJECTIVES Measurement of serum neurofilament light chain (sNfL) protein is becoming a key biomarker for many neurological diseases. Several immunoassays have been developed to meet these clinical needs, revealing significant differences in terms of variability and results. Here, we propose a French multicenter comparison of 5 sNfL assays. METHODS 6 replicates of 3 pools with low (10 pg/mL), medium (30 pg/mL) and high (100 pg/mL) sNfL values and one replicate of 12 samples with growing sNfL values were analyzed by six independent French clinical laboratories. The analytical performances of the sNfL blood assay (Fujirebio®) on Lumipulse G were first evaluated then compared to four other immunoassays: NF-light V2 (Quanterix®) on SiMOA HD-X, Human NF-L (Biotechne®) on Ella, R-Plex Human Neurofilament L (MSD®) on Sector 2400; manual ELISA test using Uman Diagnostic/Quanterix®. RESULTS Inter-center comparison of the Lumipulse blood assay revealed limited but significant differences in the mean sNfL values across low, medium, and high pools between each city (p < 0.001) and between the two different batches used. Coefficients of variation of pools ranged from 2.0 to 16.9 %. Z-score of sNfL results of the 12 samples ranged from -1.70 to +1.71. Inter-technique comparison showed a systematic difference of sNfL values, with a overestimation of MSD and Ella over other tests. Nonetheless, results were all significantly correlated (p < 0.001). CONCLUSION The automated Lumipulse assay produced comparable sNfL values across laboratories; but further adjustments are needed to harmonize sNfL results. Biologists and physicians should be aware of the variability in results between different immunoassay suppliers.
Collapse
Affiliation(s)
- Etienne Mondésert
- Laboratoire de Biochimie Protéomique Clinique (LBPC), Université de Montpellier, CHU de Montpellier, Institut des Neurosciences de Montpellier (INM), INSERM, Montpellier, France; Département de Biochimie, Université de Montpellier, CHU de Montpellier, Montpellier, France.
| | - Susanna Schraen-Maschke
- Univ. Lille, Inserm, CHU Lille, UMR-S-U1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, Lille, France
| | - Isabelle Quadrio
- Biochimie et Biologie Moléculaire-LBMMS, Unité de diagnostic des pathologies dégénératives, Centre de Biologie et Pathologie Est, Groupement Hospitalier Est, Lyon, France; Equipe BIORAN, Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, INSERM U1028, Université Lyon 1, Bron, France
| | - Olivier Bousiges
- Laboratoire de biochimie et biologie moléculaire (LBBM), Pôle de biologie Hôpital de Hautepierre-CHU de Strasbourg, CNRS, laboratoire ICube UMR 7357 et FMTS (Fédération de Médecine Translationnelle de Strasbourg), équipe IMIS, Strasbourg, France
| | - Damien Bouvier
- Service de Biochimie et Génétique Moléculaire, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Constance Delaby
- Laboratoire de Biochimie Protéomique Clinique (LBPC), Université de Montpellier, CHU de Montpellier, Institut des Neurosciences de Montpellier (INM), INSERM, Montpellier, France; Hospital de la Santa Creu i Sant Pau, Biomedical Research Institute Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Aurélie Bedel
- Université de Bordeaux, INSERM BRIC U1312, Eq 8 BioGO, France; Service de Biochimie, CHU Bordeaux, France
| | - Sylvain Lehmann
- Laboratoire de Biochimie Protéomique Clinique (LBPC), Université de Montpellier, CHU de Montpellier, Institut des Neurosciences de Montpellier (INM), INSERM, Montpellier, France
| | - Anthony Fourier
- Biochimie et Biologie Moléculaire-LBMMS, Unité de diagnostic des pathologies dégénératives, Centre de Biologie et Pathologie Est, Groupement Hospitalier Est, Lyon, France; Equipe BIORAN, Centre de Recherche en Neurosciences de Lyon, CNRS UMR 5292, INSERM U1028, Université Lyon 1, Bron, France
| |
Collapse
|
3
|
Pelisek O, Kusnierova P, Hradilek P, Horakova J, Svub K, Siprova K, Sobek O, Ganesh A, Hanzlikova P, Volny O, Revendova KZ. Comparison of SIMOA and VEUS technologies for serum neurofilament light chain measurement in multiple sclerosis. Mult Scler Relat Disord 2024; 90:105815. [PMID: 39146894 DOI: 10.1016/j.msard.2024.105815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 08/10/2024] [Indexed: 08/17/2024]
Abstract
INTRODUCTION The gold standard for serum neurofilament light chain (sNfL) determination is the single molecule array (SIMOA), the use of which is limited by availability and cost. The VEUS method is a fully automated, user-friendly diagnostic system requiring no sample preparation, with high reported sensitivity, multiplexing capability, and rapid diagnostics. The aim of this study was to compare the SIMOA and VEUS methods for determining sNfL levels in patients with multiple sclerosis (MS). METHODOLOGY A single-centre cross-sectional study was conducted at the MS Centre of University Hospital Ostrava. Patients were enrolled in the study from January 18 to January 31, 2024. Inclusion criteria were: 1) diagnosis of MS according to the revised 2017 McDonald criteria, 2) age ≥18 years, and 3) signed informed consent. The NF-light V2 diagnostic kit (SIMOA, Quanterix) and the Singleplex Neurology assay kit (VEUDx, EZDiatech) were used to determine sNfL concentrations. The two methods were compared by use of Spearman correlation, Passing-Bablok regression, and Bland-Altman analysis. RESULTS A total of 49 patients were included in the study, of whom 39 (79.6 %) were female. The median sNfL concentration was 7.73 (IQR 5.80-9.93) ng/L determined by SIMOA and 1.31 (IQR 1.18-1.65) ng/L by VEUS. We did not find a correlation between SIMOA and VEUS (rs = 0.025, p = 0.866). Passing-Bablok regression demonstrated a systematic and proportional difference between the two methods. A significant disagreement between them was also confirmed by the Bland-Altman plots. On average, sNfL values measured by SIMOA were 3.56 ng/L (95 % CI 0.78 to 6.34) higher than those measured by VEUS. CONCLUSION Our investigation uncovered noteworthy disparities between the SIMOA and VEUS techniques in determining sNfL levels. Specifically, the VEUS technique systematically produces lower estimates of sNFL levels. This substantial variance emphasizes the importance of carefully evaluating assay methods when quantifying sNfL.
Collapse
Affiliation(s)
- Ondrej Pelisek
- Department of Neurology, University Hospital Ostrava, Ostrava, Czech Republic; Centre of Clinical Neurosciences, University of Ostrava, Ostrava, Czech Republic
| | - Pavlina Kusnierova
- Institute of Laboratory Medicine, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic; Institute of Laboratory Medicine, University Hospital Ostrava, Ostrava, Czech Republic
| | - Pavel Hradilek
- Department of Neurology, University Hospital Ostrava, Ostrava, Czech Republic; Centre of Clinical Neurosciences, University of Ostrava, Ostrava, Czech Republic; Institute of Laboratory Medicine, Faculty of Medicine, University of Ostrava, Ostrava, Czech Republic
| | - Jana Horakova
- Department of Neurology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Krystof Svub
- Department of Neurology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Katerina Siprova
- Department of Neurology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Ondrej Sobek
- Topelex Ltd., Laboratory for CSF, Neuroimmunology, Pathology and Special Diagnostics, Prague, Czech Republic
| | - Aravind Ganesh
- Departments of Clinical Neurosciences and Community Health Sciences, the Hotchkiss Brain Institute and the O'Brien Institute for Public Health, University of Calgary Cumming School of Medicine, Calgary, Canada
| | - Pavla Hanzlikova
- Department of Radiology, University Hospital Ostrava, Ostrava, Czech Republic
| | - Ondrej Volny
- Department of Neurology, University Hospital Ostrava, Ostrava, Czech Republic; Centre of Clinical Neurosciences, University of Ostrava, Ostrava, Czech Republic
| | - Kamila Zondra Revendova
- Department of Neurology, University Hospital Ostrava, Ostrava, Czech Republic; Centre of Clinical Neurosciences, University of Ostrava, Ostrava, Czech Republic.
| |
Collapse
|
4
|
Hafsteinsdóttir B, Farman H, Lagerström N, Zetterberg H, Andersen O, Novakova L, Nellgård B, Rosén H, Malmeström C, Rosenstein I, Lycke J, Axelsson M. Neurofilament light chain as a diagnostic and prognostic biomarker in Guillain-Barré syndrome. J Neurol 2024:10.1007/s00415-024-12679-5. [PMID: 39249104 DOI: 10.1007/s00415-024-12679-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/25/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
BACKGROUND Elevated neurofilament light chain (NfL) levels are associated with worse prognosis in Guillain-Barré syndrome (GBS). Our objectives were to determine the utility of serum NfL (sNfL), cerebrospinal fluid (CSF)/serum NfL ratio and NfL index as prognostic and diagnostic biomarkers for GBS. METHODS We measured NfL in serum and/or CSF obtained from 96 GBS patients between 1989 and 2014 in western Sweden. The sNfL Z-scores, NfL ratios and NfL indices were calculated. Outcome was determined with the GBS disability scale (GBSDS) at 3 and 12 months. NfL parameters in GBS were compared with healthy controls (HC), multiple sclerosis (MS), and amyotrophic lateral sclerosis (ALS). RESULTS The sNfL Z-score was higher for GBSDS > 2 at 3 months (median [IQR], 3.5 ng/L [3.2-4.0], vs 2.6 [1.7-3.4], p = 0.008) and at 12 months (3.6 ng/L [3.5-3.8] vs 2.6 [1.8-3.5], p = 0.049). NfL ratio and index were not associated with outcome. The area under the curve (AUC) for sNfL Z-score was 0.76 (95% CI 0.58-0.93, p < 0.0001) for GBSDS > 2 at 3 months. NfL ratio and index were lower in GBS than HC, MS, and ALS. The AUC for the NfL ratio was 0.66 (95% CI 0.55-0.78, p = 0.0018) and for the NfL index 0.86 (95% CI 0.78-0.93, p < 0.0001). DISCUSSION Our results confirm sNfL as prognostic biomarker for GBS and the precision was improved using the age-adjusted sNfL Z score. NfL index and Qalb are potential diagnostic biomarkers for GBS.
Collapse
Affiliation(s)
- Brynhildur Hafsteinsdóttir
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
- Department of Neurology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Helen Farman
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Nina Lagerström
- Department of Neurology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, School of Medicine and Public Health, University of Wisconsin, University of Wisconsin-Madison, Madison, WI, USA
| | - Oluf Andersen
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Lenka Novakova
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Bengt Nellgård
- Department of Anesthesiology and Intensive Care, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Anesthesiology and Intensive Care, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hans Rosén
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Clas Malmeström
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Igal Rosenstein
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Jan Lycke
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | - Markus Axelsson
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Neurology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| |
Collapse
|
5
|
Banks SA, Decker P, Flanagan EP, Zekeridou A, Go RS, Abeykoon JP, Goyal G, Young JR, Koster MJ, Vassallo R, Ryu JH, Davidge-Pitts CJ, Ravindran A, Sartori Valinotti JC, Bennani NN, Shah MV, Rech KL, Bach CR, Eckel-Passow JE, Tobin WO. Blood neurofilament light chain measurements in adults with CNS histiocytic neoplasms. Blood Cancer J 2024; 14:153. [PMID: 39237493 PMCID: PMC11377705 DOI: 10.1038/s41408-024-01118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/24/2024] [Accepted: 07/29/2024] [Indexed: 09/07/2024] Open
Affiliation(s)
| | - Paul Decker
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | - Eoin P Flanagan
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Rochester, MN, USA
| | - Anastasia Zekeridou
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
- Department of Laboratory medicine and Pathology, Mayo Clinic, Rochester, MN, USA
- Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Rochester, MN, USA
| | - Ronald S Go
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | | | - Gaurav Goyal
- Division of Hematology-Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jason R Young
- Department of Radiology, at Mayo Clinic in Jacksonville, Jacksonville, FL, USA
| | | | - Robert Vassallo
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | - Jay H Ryu
- Division of Pulmonary and Critical Care Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Aishwarya Ravindran
- Division of Laboratory Medicine-Hematopathology, Department of Pathology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | | | - Mithun V Shah
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
| | - Karen L Rech
- Division of Hematopathology, Mayo Clinic, Rochester, MN, USA
| | - Corrie R Bach
- Department of Radiology, at Mayo Clinic in Jacksonville, Jacksonville, FL, USA
| | | | - W Oliver Tobin
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
- Mayo Clinic Center for Multiple Sclerosis and Autoimmune Neurology, Rochester, MN, USA.
| |
Collapse
|
6
|
Di Filippo M, Gaetani L, Centonze D, Hegen H, Kuhle J, Teunissen CE, Tintoré M, Villar LM, Willemse EA, Zetterberg H, Parnetti L. Fluid biomarkers in multiple sclerosis: from current to future applications. THE LANCET REGIONAL HEALTH. EUROPE 2024; 44:101009. [PMID: 39444698 PMCID: PMC11496979 DOI: 10.1016/j.lanepe.2024.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/21/2024] [Accepted: 07/09/2024] [Indexed: 10/25/2024]
Abstract
Multiple sclerosis (MS) is an immune-mediated inflammatory and degenerative disorder of the central nervous system (CNS) with heterogeneous clinical manifestations. In the last decade, the landscape of cerebrospinal fluid (CSF) and blood biomarkers as potential key tools for MS diagnosis, prognosis and treatment monitoring has evolved considerably, alongside magnetic resonance imaging (MRI). CSF analysis has the potential not only to provide information on the underlying immunopathology of the disease and exclude differential diagnoses, but also to predict the risk of future relapses and disability accrual, guide therapeutic decisions and thus improve patient outcomes. This Series article overviews the biological framework and current applicability of fluid biomarkers for MS, exploring their potential role in the molecular characterisation of the disease. We discuss recent advances in the field of neurochemistry that enabled the detection of brain-derived proteins in blood, opening the door to much more efficient longitudinal disease monitoring. Furthermore, we identify the current challenges in the application of fluid biomarkers for MS in a real-world setting, while offering recommendations for harnessing their full potential as key paraclinical tools to improve patient management and personalise treatment.
Collapse
Affiliation(s)
- Massimiliano Di Filippo
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lorenzo Gaetani
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Diego Centonze
- IRCCS Neuromed, Pozzilli, IS, Italy
- Department of Systems Medicine, Tor Vergata University, Rome, Italy
| | - Harald Hegen
- Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Jens Kuhle
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Mar Tintoré
- Multiple Sclerosis Centre of Catalonia (Cemcat), Department of Neurology, Hospital Universitari Vall D'Hebron, Universitat Autònoma de Barcelona, Universitat de Vic-Universitat Central de Catalunya (UVic-UCC), Barcelona, Spain
| | - Luisa M. Villar
- Departments of Immunology and Neurology, Multiple Sclerosis Unit, Hospital Ramon y Cajal, (IRYCIS), Madrid, Spain
| | - Eline A.J. Willemse
- Department of Neurology, University Hospital and University of Basel, Basel, Switzerland
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital and University of Basel, Basel, Switzerland
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience & Physiology, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, Queen Square Institute of Neurology, University College London, London, UK
- UK Dementia Research Institute, University College London, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- UW Department of Medicine, School of Medicine and Public Health, Madison, WI, USA
| | - Lucilla Parnetti
- Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| |
Collapse
|
7
|
Witzel S, Huss A, Nagel G, Rosenbohm A, Rothenbacher D, Peter RS, Bäzner H, Börtlein A, Dempewolf S, Schabet M, Hecht M, Kohler A, Opherk C, Naegele A, Sommer N, Lindner A, Alexudis C, Bachhuber F, Halbgebauer S, Brenner D, Ruf W, Weiland U, Mayer B, Schuster J, Dorst J, Tumani H, Ludolph AC. Population-Based Evidence for the Use of Serum Neurofilaments as Individual Diagnostic and Prognostic Biomarkers in Amyotrophic Lateral Sclerosis. Ann Neurol 2024. [PMID: 39177232 DOI: 10.1002/ana.27054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/04/2024] [Accepted: 07/31/2024] [Indexed: 08/24/2024]
Abstract
OBJECTIVE Neurofilament light chains (NfL) and phosphorylated neurofilament heavy chains (pNfH), established as diagnostic and prognostic biomarkers in hospital-based amyotrophic lateral sclerosis (ALS) cohorts, are now surrogate markers in clinical trials. This study extends their evaluation to a population level, with the aim of advancing their full establishment and assessing the transferability of biomarker findings from controlled cohorts to real-world ALS populations. METHODS We measured serum NfL and pNfH levels in all ALS patients (n = 790) and general population controls (n = 570) with available baseline samples participating in the epidemiological ALS Registry Swabia, providing platform-specific (ELLA™) reference data and Z-scores for controls, as well as reference data, disease-specific Z-scores and longitudinal data in ALS. We evaluated the diagnostic and prognostic utility of neurofilaments and quantified the impact of ALS-related factors and non-ALS confounders. RESULTS Neurofilaments showed high diagnostic and prognostic utility at the population level, with NfL superior to pNfH. The novel concept of a population-based ALS Z-score significantly improved the prognostic utility compared to absolute raw values. Both biomarkers increased more strongly with age in controls than in ALS, and age adjustment improved diagnostic accuracy. Our data show that disease progression rates, ALS phenotype, body mass index (BMI), and renal function need to be considered when interpreting neurofilament levels; longitudinal neurofilament levels were generally stable in individual patients, especially when adjusted for age and baseline levels. INTERPRETATION Population-based assessment enhances the utility of particularly serum NfL as a diagnostic and prognostic biomarker in ALS and improves the translation of findings from controlled cohorts to real-world populations. ANN NEUROL 2024.
Collapse
Affiliation(s)
- Simon Witzel
- Department of Neurology, Ulm University, Ulm, Germany
| | - André Huss
- Department of Neurology, Ulm University, Ulm, Germany
| | - Gabriele Nagel
- Institute for Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | | | | | - Raphael S Peter
- Institute for Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Hansjörg Bäzner
- Department of Neurology, Klinikum Stuttgart, Katharinenhospital, Stuttgart, Germany
| | - Axel Börtlein
- Department of Neurology, Klinikum Stuttgart, Katharinenhospital, Stuttgart, Germany
| | - Silke Dempewolf
- Department of Neurology, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany
| | - Martin Schabet
- Department of Neurology, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany
| | - Martin Hecht
- Department of Neurology, Klinikum Kaufbeuren, Kliniken Ostallgaeu-Kaufbeuren, Kaufbeuren, Germany
| | - Andreas Kohler
- Department of Neurology, Klinikum am Gesundbrunnen Heilbronn, Heilbronn, Germany
| | - Christian Opherk
- Department of Neurology, Klinikum am Gesundbrunnen Heilbronn, Heilbronn, Germany
| | - Andrea Naegele
- Department of Neurology, Christophsbad Goeppingen, Göppingen, Germany
| | - Norbert Sommer
- Department of Neurology, Christophsbad Goeppingen, Göppingen, Germany
| | - Alfred Lindner
- Department of Neurology, Marienhospital Stuttgart, Stuttgart, Germany
| | | | | | - Steffen Halbgebauer
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Ulm, Ulm, Germany
| | - David Brenner
- Department of Neurology, Ulm University, Ulm, Germany
| | - Wolfgang Ruf
- Department of Neurology, Ulm University, Ulm, Germany
| | | | - Benjamin Mayer
- Institute for Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | - Joachim Schuster
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Ulm, Ulm, Germany
| | | | - Hayrettin Tumani
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Ulm, Ulm, Germany
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Ulm, Ulm, Germany
| |
Collapse
|
8
|
Song Z, Zhang S, Pan H, Hu B, Liu X, Cui J, Zhang L. Global research trends on the links between NfL and neurological disorders: A bibliometric analysis and review. Heliyon 2024; 10:e34720. [PMID: 39157316 PMCID: PMC11327529 DOI: 10.1016/j.heliyon.2024.e34720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 06/22/2024] [Accepted: 07/15/2024] [Indexed: 08/20/2024] Open
Abstract
Background The global incidence of neurological diseases has been on the rise, creating an urgent need for a validated marker. Neurofilament Light Chain (NfL) holds promise as such a marker and has garnered significant attention in the field of neurological diseases over the past decades. Methods Corresponding articles from 2013 to 2023 were collected from the Web of Science database, and data were analyzed by CiteSpace and VOSviewer software. Results A total of 1350 articles were collected from 296 countries/regions, involving 7246 research organizations. Since 2013, among the top ten institutions and authors with the highest number of published papers, the most are from the US and the UK. The United States leads in the number of published papers, but England holds a more momentous position, because it has higher IF. Henrik Zetterberg is the most influential scholar in the field. Conclusions The output of papers mainly relies on researchers from developed countries, and scholars from the United States and England have contributed the largest number of papers. Until now, the importance of NfL in neurological diseases has attracted global attention. In addition, NfL contributes to the potential diagnosis of various neurological disorders and can be used to improve the accuracy of differential diagnosis and prognostic assessment as well as predict the response to treatments. More and more in-depth studies are highly needed in the future.
Collapse
Affiliation(s)
- Zhengxi Song
- Department of Neurology, The People' s Hospital of Jianyang city, Jianyang, 641400 China
| | - Shan Zhang
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - HongYu Pan
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - Bingshuang Hu
- School of Clinical Medicine, Chengdu Medical College, Chengdu, 610500, China
| | - XinLian Liu
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, 610500, China
| | - Jia Cui
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, 610500, China
| | - LuShun Zhang
- Development and Regeneration Key Laboratory of Sichuan Province, Institute of Neuroscience, Department of Pathology and Pathophysiology, Chengdu Medical College, Chengdu, 610500, China
| |
Collapse
|
9
|
Bavato F, Barro C, Schnider LK, Simrén J, Zetterberg H, Seifritz E, Quednow BB. Introducing neurofilament light chain measure in psychiatry: current evidence, opportunities, and pitfalls. Mol Psychiatry 2024; 29:2543-2559. [PMID: 38503931 PMCID: PMC11412913 DOI: 10.1038/s41380-024-02524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/29/2024] [Accepted: 03/07/2024] [Indexed: 03/21/2024]
Abstract
The recent introduction of new-generation immunoassay methods allows the reliable quantification of structural brain markers in peripheral matrices. Neurofilament light chain (NfL), a neuron-specific cytoskeletal component released in extracellular matrices after neuroaxonal impairment, is considered a promising blood marker of active brain pathology. Given its sensitivity to a wide range of neuropathological alterations, NfL has been suggested for the use in clinical practice as a highly sensitive, but unspecific tool to quantify active brain pathology. While large efforts have been put in characterizing its clinical profile in many neurological conditions, NfL has received far less attention as a potential biomarker in major psychiatric disorders. Therefore, we briefly introduce NfL as a marker of neuroaxonal injury, systematically review recent findings on cerebrospinal fluid and blood NfL levels in patients with primary psychiatric conditions and highlight the opportunities and pitfalls. Current evidence suggests an elevation of blood NfL levels in patients with major depression, bipolar disorder, psychotic disorders, anorexia nervosa, and substance use disorders compared to physiological states. However, blood NfL levels strongly vary across diagnostic entities, clinical stage, and patient subgroups, and are influenced by several demographic, clinical, and analytical factors, which require accurate characterization. Potential clinical applications of NfL measure in psychiatry are seen in diagnostic and prognostic algorithms, to exclude neurodegenerative disease, in the assessment of brain toxicity for different pharmacological compounds, and in the longitudinal monitoring of treatment response. The high inter-individual variability of NfL levels and the lack of neurobiological understanding of its release are some of the main current limitations. Overall, this primer aims to introduce researchers and clinicians to NfL measure in the psychiatric field and to provide a conceptual framework for future research directions.
Collapse
Affiliation(s)
- Francesco Bavato
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland.
| | - Christian Barro
- Ann Romney Center for Neurologic Diseases, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laura K Schnider
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Erich Seifritz
- Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| | - Boris B Quednow
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy and Psychosomatics; Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich, University of Zurich and Swiss Federal Institute of Technology Zurich, Zurich, Switzerland
| |
Collapse
|
10
|
Salafia G, Carandina A, Sacco RM, Ferri E, Montano N, Arosio B, Tobaldini E. Soluble Triggering Receptors Expressed on Myeloid Cells (sTREM) in Acute Ischemic Stroke: A Potential Pathway of sTREM-1 and sTREM-2 Associated with Disease Severity. Int J Mol Sci 2024; 25:7611. [PMID: 39062850 PMCID: PMC11277504 DOI: 10.3390/ijms25147611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/28/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
In 2022, stroke emerged as the most significant cerebrovascular disorder globally, causing 6.55 million deaths. Microglia, crucial for CNS preservation, can exacerbate brain damage in ischemic stroke by triggering neuroinflammation. This process is mediated by receptors on microglia, triggering receptors expressed on myeloid cells (TREM-1 and TREM-2), which have contrasting roles in neuroinflammation. In this study, we recruited 38 patients within 4.5 h from the onset of ischemic stroke. The degree of severity was evaluated by means of the National Institutes of Health Stroke Scale (NIHSS) at admission (T0) and after one week of ischemic events (TW) and the Modified Rankin Scale (mRS) at three months. The plasma concentration of TREMs (sTREM) was analyzed by next-generation ELISA at T0 and TW. The sTREM-1 concentrations at T0 were associated with mRS, while the sTREM-2 concentrations at T0 were associated with both the NIHSS at T0 and the mRS. A strong correlation between sTREM-1 and sTREM-2 was observed, suggesting a dependent modulation of the levels. This study provides insights into the potential pathway of TREM-1 and TREM-2 as a future biomarker for stratifying high-risk patients with ischemic stroke.
Collapse
Affiliation(s)
- Greta Salafia
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023–2027, University of Milan, 20122 Milan, Italy; (G.S.); (A.C.); (N.M.); (B.A.)
| | - Angelica Carandina
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023–2027, University of Milan, 20122 Milan, Italy; (G.S.); (A.C.); (N.M.); (B.A.)
| | - Roberto Maria Sacco
- Emergency Department, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Evelyn Ferri
- Geriatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Nicola Montano
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023–2027, University of Milan, 20122 Milan, Italy; (G.S.); (A.C.); (N.M.); (B.A.)
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Beatrice Arosio
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023–2027, University of Milan, 20122 Milan, Italy; (G.S.); (A.C.); (N.M.); (B.A.)
| | - Eleonora Tobaldini
- Department of Clinical Sciences and Community Health, Dipartimento di Eccellenza 2023–2027, University of Milan, 20122 Milan, Italy; (G.S.); (A.C.); (N.M.); (B.A.)
- Department of Internal Medicine, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| |
Collapse
|
11
|
Zeng X, Chen Y, Sehrawat A, Lee J, Lafferty TK, Kofler J, Berman SB, Sweet RA, Tudorascu DL, Klunk WE, Ikonomovic MD, Pfister A, Zetterberg H, Snitz BE, Cohen AD, Villemagne VL, Pascoal TA, Kamboh ML, Lopez OI, Blennow K, Karikari TK. Alzheimer blood biomarkers: practical guidelines for study design, sample collection, processing, biobanking, measurement and result reporting. Mol Neurodegener 2024; 19:40. [PMID: 38750570 PMCID: PMC11095038 DOI: 10.1186/s13024-024-00711-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/13/2024] [Indexed: 05/19/2024] Open
Abstract
Alzheimer's disease (AD), the most common form of dementia, remains challenging to understand and treat despite decades of research and clinical investigation. This might be partly due to a lack of widely available and cost-effective modalities for diagnosis and prognosis. Recently, the blood-based AD biomarker field has seen significant progress driven by technological advances, mainly improved analytical sensitivity and precision of the assays and measurement platforms. Several blood-based biomarkers have shown high potential for accurately detecting AD pathophysiology. As a result, there has been considerable interest in applying these biomarkers for diagnosis and prognosis, as surrogate metrics to investigate the impact of various covariates on AD pathophysiology and to accelerate AD therapeutic trials and monitor treatment effects. However, the lack of standardization of how blood samples and collected, processed, stored analyzed and reported can affect the reproducibility of these biomarker measurements, potentially hindering progress toward their widespread use in clinical and research settings. To help address these issues, we provide fundamental guidelines developed according to recent research findings on the impact of sample handling on blood biomarker measurements. These guidelines cover important considerations including study design, blood collection, blood processing, biobanking, biomarker measurement, and result reporting. Furthermore, the proposed guidelines include best practices for appropriate blood handling procedures for genetic and ribonucleic acid analyses. While we focus on the key blood-based AD biomarkers for the AT(N) criteria (e.g., amyloid-beta [Aβ]40, Aβ42, Aβ42/40 ratio, total-tau, phosphorylated-tau, neurofilament light chain, brain-derived tau and glial fibrillary acidic protein), we anticipate that these guidelines will generally be applicable to other types of blood biomarkers. We also anticipate that these guidelines will assist investigators in planning and executing biomarker research, enabling harmonization of sample handling to improve comparability across studies.
Collapse
Affiliation(s)
- Xuemei Zeng
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Yijun Chen
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anuradha Sehrawat
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Jihui Lee
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Tara K Lafferty
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Julia Kofler
- Department of Pathology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Sarah B Berman
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Robert A Sweet
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Dana L Tudorascu
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - William E Klunk
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Milos D Ikonomovic
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
- Geriatric Research Education and Clinical Center, VA Pittsburgh HS, Pittsburgh, PA, USA
| | - Anna Pfister
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Beth E Snitz
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Anne D Cohen
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Victor L Villemagne
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
| | - Tharick A Pascoal
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - M. llyas Kamboh
- Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Oscar I Lopez
- Department of Neurology, School of Medicine, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Thomas K Karikari
- Department of Psychiatry, School of Medicine, University of Pittsburgh, 3811 O'Hara Street, Pittsburgh, PA, 15213, USA.
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mölndal, Sweden.
| |
Collapse
|
12
|
Lista S, Mapstone M, Caraci F, Emanuele E, López-Ortiz S, Martín-Hernández J, Triaca V, Imbimbo C, Gabelle A, Mielke MM, Nisticò R, Santos-Lozano A, Imbimbo BP. A critical appraisal of blood-based biomarkers for Alzheimer's disease. Ageing Res Rev 2024; 96:102290. [PMID: 38580173 DOI: 10.1016/j.arr.2024.102290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/18/2024] [Accepted: 03/31/2024] [Indexed: 04/07/2024]
Abstract
Biomarkers that predict the clinical onset of Alzheimer's disease (AD) enable the identification of individuals in the early, preclinical stages of the disease. Detecting AD at this point may allow for more effective therapeutic interventions and optimized enrollment for clinical trials of novel drugs. The current biological diagnosis of AD is based on the AT(N) classification system with the measurement of brain deposition of amyloid-β (Aβ) ("A"), tau pathology ("T"), and neurodegeneration ("N"). Diagnostic cut-offs for Aβ1-42, the Aβ1-42/Aβ1-40 ratio, tau and hyperphosphorylated-tau concentrations in cerebrospinal fluid have been defined and may support AD clinical diagnosis. Blood-based biomarkers of the AT(N) categories have been described in the AD continuum. Cross-sectional and longitudinal studies have shown that the combination of blood biomarkers tracking neuroaxonal injury (neurofilament light chain) and neuroinflammatory pathways (glial fibrillary acidic protein) enhance sensitivity and specificity of AD clinical diagnosis and improve the prediction of AD onset. However, no international accepted cut-offs have been identified for these blood biomarkers. A kit for blood Aβ1-42/Aβ1-40 is commercially available in the U.S.; however, it does not provide a diagnosis, but simply estimates the risk of developing AD. Although blood-based AD biomarkers have a great potential in the diagnostic work-up of AD, they are not ready for the routine clinical use.
Collapse
Affiliation(s)
- Simone Lista
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Mark Mapstone
- Department of Neurology, Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA 92697, USA.
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, Catania 95125, Italy; Neuropharmacology and Translational Neurosciences Research Unit, Oasi Research Institute-IRCCS, Troina 94018, Italy.
| | | | - Susana López-Ortiz
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Juan Martín-Hernández
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain.
| | - Viviana Triaca
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council (CNR), Rome 00015, Italy.
| | - Camillo Imbimbo
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia 27100, Italy.
| | - Audrey Gabelle
- Memory Resources and Research Center, Montpellier University of Excellence i-site, Montpellier 34295, France.
| | - Michelle M Mielke
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest University School of Medicine, Winston-Salem, NC 27101, USA.
| | - Robert Nisticò
- School of Pharmacy, University of Rome "Tor Vergata", Rome 00133, Italy; Laboratory of Pharmacology of Synaptic Plasticity, EBRI Rita Levi-Montalcini Foundation, Rome 00143, Italy.
| | - Alejandro Santos-Lozano
- i+HeALTH Strategic Research Group, Department of Health Sciences, Miguel de Cervantes European University (UEMC), Valladolid 47012, Spain; Physical Activity and Health Research Group (PaHerg), Research Institute of the Hospital 12 de Octubre ('imas12'), Madrid 28041, Spain.
| | - Bruno P Imbimbo
- Department of Research and Development, Chiesi Farmaceutici, Parma 43122, Italy.
| |
Collapse
|
13
|
Berends M, Nienhuis HLA, Adams D, Karam C, Luigetti M, Polydefkis M, Reilly MM, Sekijima Y, Hazenberg BPC. Neurofilament Light Chains in Systemic Amyloidosis: A Systematic Review. Int J Mol Sci 2024; 25:3770. [PMID: 38612579 PMCID: PMC11011627 DOI: 10.3390/ijms25073770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/08/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Peripheral and autonomic neuropathy are common disease manifestations in systemic amyloidosis. The neurofilament light chain (NfL), a neuron-specific biomarker, is released into the blood and cerebrospinal fluid after neuronal damage. There is a need for an early and sensitive blood biomarker for polyneuropathy, and this systematic review provides an overview on the value of NfL in the early detection of neuropathy, central nervous system involvement, the monitoring of neuropathy progression, and treatment effects in systemic amyloidosis. A literature search in PubMed, Embase, and Web of Science was performed on 14 February 2024 for studies investigating NfL levels in patients with systemic amyloidosis and transthyretin gene-variant (TTRv) carriers. Only studies containing original data were included. Included were thirteen full-text articles and five abstracts describing 1604 participants: 298 controls and 1306 TTRv carriers or patients with or without polyneuropathy. Patients with polyneuropathy demonstrated higher NfL levels compared to healthy controls and asymptomatic carriers. Disease onset was marked by rising NfL levels. Following the initiation of transthyretin gene-silencer treatment, NfL levels decreased and remained stable over an extended period. NfL is not an outcome biomarker, but an early and sensitive disease-process biomarker for neuropathy in systemic amyloidosis. Therefore, NfL has the potential to be used for the early detection of neuropathy, monitoring treatment effects, and monitoring disease progression in patients with systemic amyloidosis.
Collapse
Affiliation(s)
- Milou Berends
- Department of Internal Medicine, Amyloidosis Center of Expertise, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (M.B.); (H.L.A.N.)
| | - Hans L. A. Nienhuis
- Department of Internal Medicine, Amyloidosis Center of Expertise, University Medical Center Groningen, 9700 RB Groningen, The Netherlands; (M.B.); (H.L.A.N.)
| | - David Adams
- Service de Neurologie, CHU Bicêtre, Assistance Publique—Hôpitaux de Paris, University Paris-Saclay, CERAMIC, Le Kremlin-Bicêtre, 94270 Paris, France;
| | - Chafic Karam
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Marco Luigetti
- UOC Neurologia, Fondazione Policlinico A. Gemelli IRCCS, 00168 Rome, Italy;
- Dipartimento di Neuroscienze, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Michael Polydefkis
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA;
| | - Mary M. Reilly
- Centre for Neuromuscular Diseases, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London WC1N 3BG, UK;
| | - Yoshiki Sekijima
- Department of Medicine (Neurology and Rheumatology), Shinshu University School of Medicine, Matsumoto 390-8621, Japan;
| | - Bouke P. C. Hazenberg
- Department of Rheumatology & Clinical Immunology, Amyloidosis Center of Expertise, University Medical Center Groningen, 9700 RB Groningen, The Netherlands
| |
Collapse
|
14
|
Kodal LS, Witt AM, Pedersen BS, Aagaard MM, Dysgaard T. Prognostic value of neurofilament light in blood in patients with polyneuropathy: A systematic review. J Peripher Nerv Syst 2024; 29:17-27. [PMID: 38066727 DOI: 10.1111/jns.12608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/27/2023]
Abstract
Neurofilament light protein (NfL) is a part of the neuronal skeleton, primarily expressed in axons, and is released when nerves are damaged. NfL has been found to be a potential diagnostic biomarker in different types of polyneuropathies. However, whether NfL levels can be used as a predictor for the risk of disease progression is currently less understood. We searched MEDLINE (PubMed), Embase, Cochrane Library, and Web of Science Searches and included longitudinal studies with a baseline and follow-up examination of adult patients with polyneuropathy and NfL measured in blood. Twenty studies investigating NfL as a predictor of disease progression were identified, examining eight polyneuropathy subtypes. The results from studies in Chronic Inflammatory Demyelinating Polyneuropathy (CIDP) patients were divergent, with two out of five studies finding a significant association between NfL levels and clinical outcomes. Meta-analysis of the three Guillian-Barré Syndrome (GBS) studies found higher odds for the inability to run after 1 year in patients with high levels of NfL (odds ratio 2.18, 95% confidence interval 1.04-4.56). Results from studies examining other subacute or chronic polyneuropathies like Charcot-Marie-Tooth (CMT) varied in study design and results. Our findings suggest NfL can be used as a predictor of disease progression, particularly in polyneuropathies such as CIDP and GBS. However, NfL may not serve as a reliable and cost-effective biomarker for slowly progressive polyneuropathies like CMT. Future standardized studies considering NfL as a prognostic blood biomarker in patients with different types of polyneuropathies are warranted.
Collapse
Affiliation(s)
- Louise Sloth Kodal
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Anne Møller Witt
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Britt Staevnsbo Pedersen
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Morten Müller Aagaard
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Tina Dysgaard
- Copenhagen Neuromuscular Center, Department of Neurology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| |
Collapse
|
15
|
Vecchio D, Puricelli C, Malucchi S, Virgilio E, Martire S, Perga S, Passarelli F, Valentino P, Di Sapio A, Cantello R, Dianzani U, Comi C. Serum and cerebrospinal fluid neurofilament light chains measured by SIMOA™, Ella™, and Lumipulse™ in multiple sclerosis naïve patients. Mult Scler Relat Disord 2024; 82:105412. [PMID: 38198989 DOI: 10.1016/j.msard.2023.105412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Neurofilament light chains (NfL) are cytoskeletal biomarkers of axonal damage, about 40-fold higher in cerebrospinal fluid (CSF) compared to serum, and requiring ultrasensitive techniques to be measured in this latter fluid. OBJECTIVES To compare CSF and serum NfL levels in multiple sclerosis (MS) patients using different platforms. METHODS 60 newly diagnosed relapsing-remitting MS patients (38 females; median age: 36.5 years, range: 15-60) were enrolled before steroid or disease-modifying treatments. CSF and serum NfL were measured with: the commercial Ella™ microfluidic platform (Bio-Techne), the Lumipulse™ Chemiluminescent Enzyme ImmunoAssay (Fujirebio), and the SIMOA™ on the SR-X instrument using NF-light assays (Quanterix). RESULTS CSF and serum NfL absolute levels strongly correlated between assays, although being more elevated with Ella™. Passing-Bablok regression showed high agreement in measuring CSF NfL between assays (with greater proportional difference using Ella™), and very high agreement for serum comparing SIMOA™ and Lumipulse™. Similarly, the Bland-Altman comparison evidenced lower biases for Lumipulse™ for both fluids. CONCLUSIONS CSF and serum NfL in naïve MS patients are reliably measured with all assays. Although not interchangeable, SIMOA™ and Lumipulse™ showed high agreement for serum and CSF values.
Collapse
Affiliation(s)
- D Vecchio
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità University Hospital, University of Piemonte Orientale, Corso Mazzini 18, Novara 28100, Italy.
| | - C Puricelli
- Clinical Biochemistry Laboratory, Department of Health Sciences, Maggiore della Carità University Hospital, University of Piemonte Orientale, Novara, Italy
| | - S Malucchi
- Neurology Unit, CRESM University Hospital San Luigi Gonzaga, Orbassano, Italy
| | - E Virgilio
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità University Hospital, University of Piemonte Orientale, Corso Mazzini 18, Novara 28100, Italy
| | - S Martire
- Neuroscience Institute Cavalieri Ottolenghi (NICO) and CRESM Biobank, University Hospital San Luigi Gonzaga, Orbassano, Italy
| | - S Perga
- Clinical Biochemistry Laboratory, Department of Health Sciences, Maggiore della Carità University Hospital, University of Piemonte Orientale, Novara, Italy
| | - F Passarelli
- Clinical Biochemistry Laboratory, Department of Health Sciences, Maggiore della Carità University Hospital, University of Piemonte Orientale, Novara, Italy
| | - P Valentino
- Clinical Biochemistry Laboratory, Department of Health Sciences, Maggiore della Carità University Hospital, University of Piemonte Orientale, Novara, Italy
| | - A Di Sapio
- Neurology Unit, CRESM University Hospital San Luigi Gonzaga, Orbassano, Italy
| | - R Cantello
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità University Hospital, University of Piemonte Orientale, Corso Mazzini 18, Novara 28100, Italy
| | - U Dianzani
- Clinical Biochemistry Laboratory, Department of Health Sciences, Maggiore della Carità University Hospital, University of Piemonte Orientale, Novara, Italy
| | - C Comi
- Neurology Unit, Department of Translational Medicine, Maggiore della Carità University Hospital, University of Piemonte Orientale, Corso Mazzini 18, Novara 28100, Italy
| |
Collapse
|
16
|
Chertcoff A, Schneider R, Azevedo CJ, Sicotte N, Oh J. Recent Advances in Diagnostic, Prognostic, and Disease-Monitoring Biomarkers in Multiple Sclerosis. Neurol Clin 2024; 42:15-38. [PMID: 37980112 DOI: 10.1016/j.ncl.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
Multiple sclerosis (MS) is a highly heterogeneous disease. Currently, a combination of clinical features, MRI, and cerebrospinal fluid markers are used in clinical practice for diagnosis and treatment decisions. In recent years, there has been considerable effort to develop novel biomarkers that better reflect the pathologic substrates of the disease to aid in diagnosis and early prognosis, evaluation of ongoing inflammatory activity, detection and monitoring of disease progression, prediction of treatment response, and monitoring of disease-modifying treatment safety. In this review, the authors provide an overview of promising recent developments in diagnostic, prognostic, and disease-monitoring/treatment-response biomarkers in MS.
Collapse
Affiliation(s)
- Anibal Chertcoff
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, 30 Bond Street, PGT 17-742, Toronto, Ontario M5B 1W8, Canada
| | - Raphael Schneider
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, 30 Bond Street, PGT 17-742, Toronto, Ontario M5B 1W8, Canada
| | - Christina J Azevedo
- Department of Neurology, Keck School of Medicine, University of Southern California, HCT 1520 San Pablo Street, Health Sciences Campus, Los Angeles, CA 90033, USA
| | - Nancy Sicotte
- Department of Neurology, Cedars-Sinai Medical Center, 127 S San Vicente Boulevard, 6th floor, Suite A6600, Los Angeles, CA 90048, USA
| | - Jiwon Oh
- Division of Neurology, Department of Medicine, St. Michael's Hospital, University of Toronto, 30 Bond Street, PGT 17-742, Toronto, Ontario M5B 1W8, Canada; Department of Neurology, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
17
|
Wilson D, Chan D, Chang L, Mathis R, Verberk I, Montalban X, Comabella M, Fissolo N, Bielekova B, Masvekar R, Chitnis T, Ziemssen T, Akgün K, Blennow K, Zetterberg H, Brück W, Giovannoni G, Gnanapavan S, Bittner S, Zipp F, Comi G, Furlan R, Lehmann S, Thebault S, Freedman M, Bar-Or A, Kramer M, Otto M, Halbgebauer S, Hrusovsky K, Plavina T, Khalil M, Piehl F, Wiendl H, Kappos L, Maceski A, Willemse E, Leppert D, Teunissen C, Kuhle J. Development and multi-center validation of a fully automated digital immunoassay for neurofilament light chain: toward a clinical blood test for neuronal injury. Clin Chem Lab Med 2024; 62:322-331. [PMID: 37702323 DOI: 10.1515/cclm-2023-0518] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/17/2023] [Indexed: 09/14/2023]
Abstract
OBJECTIVES Neurofilament light chain (NfL) has emerged as a promising biomarker for detecting and monitoring axonal injury. Until recently, NfL could only be reliably measured in cerebrospinal fluid, but digital single molecule array (Simoa) technology has enabled its precise measurement in blood samples where it is typically 50-100 times less abundant. We report development and multi-center validation of a novel fully automated digital immunoassay for NfL in serum for informing axonal injury status. METHODS A 45-min immunoassay for serum NfL was developed for use on an automated digital analyzer based on Simoa technology. The analytical performance (sensitivity, precision, reproducibility, linearity, sample type) was characterized and then cross validated across 17 laboratories in 10 countries. Analytical performance for clinical NfL measurement was examined in individual patients with relapsing remitting multiple sclerosis (RRMS) after 3 months of disease modifying treatment (DMT) with fingolimod. RESULTS The assay exhibited a lower limit of detection (LLoD) of 0.05 ng/L, a lower limit of quantification (LLoQ) of 0.8 ng/L, and between-laboratory imprecision <10 % across 17 validation sites. All tested samples had measurable NfL concentrations well above the LLoQ. In matched pre-post treatment samples, decreases in NfL were observed in 26/29 RRMS patients three months after DMT start, with significant decreases detected in a majority of patients. CONCLUSIONS The sensitivity characteristics and reproducible performance across laboratories combined with full automation make this assay suitable for clinical use for NfL assessment, monitoring in individual patients, and cross-comparisons of results across multiple sites.
Collapse
Affiliation(s)
| | | | | | | | - Inge Verberk
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam, University Medical Centers, Amsterdam, The Netherlands
| | - Xavier Montalban
- Laboratori de Neuroinmunologia Clinica Centre d'Esclerosi Múltiple de Catalunya (Cemcat) Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Manuel Comabella
- Laboratori de Neuroinmunologia Clinica Centre d'Esclerosi Múltiple de Catalunya (Cemcat) Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Nicolas Fissolo
- Laboratori de Neuroinmunologia Clinica Centre d'Esclerosi Múltiple de Catalunya (Cemcat) Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Bibi Bielekova
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ruturaj Masvekar
- National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Tanuja Chitnis
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Tjalf Ziemssen
- MS Center Dresden, Center of Clinical Neuroscience, Department of Neurology, Dresden University of Technology, Dresden, Germany
| | - Katja Akgün
- MS Center Dresden, Center of Clinical Neuroscience, Department of Neurology, Dresden University of Technology, Dresden, Germany
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
| | - Wolfgang Brück
- Institute for Neuropathology at the University Medical Center, Göttingen, Germany
| | - Gavin Giovannoni
- Department of Neurology, Barts Health NHS Trust, The Royal London Hospital, E1 1FR, London, UK
| | - Sharmilee Gnanapavan
- Department of Neurology, Barts Health NHS Trust, The Royal London Hospital, E1 1FR, London, UK
| | - Stefan Bittner
- University Medical Center Mainz, Department of Neurology, Mainz, Germany
| | - Frauke Zipp
- University Medical Center Mainz, Department of Neurology, Mainz, Germany
| | - Giancarlo Comi
- Institute of Experimental Neurology, Division of Neuroscience, University Vita e Salute San Raffaele and IRCCS San Raffaele Hospital, Milan, Italy
| | - Roberto Furlan
- Institute of Experimental Neurology, Division of Neuroscience, University Vita e Salute San Raffaele and IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Simon Thebault
- University of Ottawa, Department of Medicine, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Mark Freedman
- University of Ottawa, Department of Medicine, The Ottawa Hospital Research Institute, Ottawa, Canada
| | - Amit Bar-Or
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Markus Otto
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Steffen Halbgebauer
- Department of Neurology, Ulm University Hospital, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE e.V.), Ulm, Germany
| | | | | | - Michael Khalil
- Department of Neurology, Medical University of Graz, Graz, Austria
| | - Fredrik Piehl
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Heinz Wiendl
- Department of Neurology, University of Münster, Münster, Germany
| | - Ludwig Kappos
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel, Departments of Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Aleksandra Maceski
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Eline Willemse
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - David Leppert
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| | - Charlotte Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam, University Medical Centers, Amsterdam, The Netherlands
| | - Jens Kuhle
- Multiple Sclerosis Centre and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel and University of Basel, Basel, Switzerland
| |
Collapse
|
18
|
González-Moreno J, Gragera-Martínez Á, Rodríguez A, Borrachero-Garro C, García-Garrido S, Barceló C, Manovel-Sánchez A, Ribot-Sansó MA, Ibargüen-González L, Gomila R, Muñoz-Beamud F, Losada-López I, Cisneros-Barroso E. Biomarkers of axonal damage to favor early diagnosis in variant transthyretin amyloidosis (A-ATTRv). Sci Rep 2024; 14:581. [PMID: 38182630 PMCID: PMC10770310 DOI: 10.1038/s41598-023-50212-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/16/2023] [Indexed: 01/07/2024] Open
Abstract
Early identification of ATTRv amyloidosis disease onset is still often delayed due to the lack of validated biomarkers of this disease. Light chain neurofilament (NfL) have shown promising results in early diagnosis in this disease, but data is still needed, including with alternative measuring methods. Our aim was to study the levels of NfL measured by ELISA. Furthermore, interstitial matrix metalloproteinase type 1 (MMP-1) serum levels were measured as a potential new biomarker in ATTRv. Serum NfL and MMP-1 were measured using ELISA assays in 90 participants (29 ATTR-V30M patients, 31 asymptomatic V30M-TTR variant carriers and 30 healthy controls). Median NfL levels among ATTRv amyloidosis patients were significantly higher (116 pg/mL vs 0 pg/mL in both comparison groups). The AUC comparing ATTRv amyloidosis patients and asymptomatic carriers was 0.90 and the NfL concentration of 93.55 pg/mL yielded a sensitivity of 79% and a specificity of 87%. NfL levels had a significant positive correlation with NIS values among patients. We found a negative significant correlation between eGFR and NfL levels. Finally, MMP1 levels were not different between groups. Evidence of NfL use for early diagnosis of ATTR-PN amyloidosis is growing. ELISA seems a reliable and available technique for it quantification. Decreased GFR could influence NfL plasma levels.
Collapse
Affiliation(s)
- Juan González-Moreno
- Balearic Research Group in Genetic Cardiopathies, Sudden Death and TTR Amyloidosis, Health Research Institute of the Balearic Islands (IdISBa), Palma, Balearic Islands, Spain
- Internal Medicine Department, Hospital Universitario Son Llàtzer, Crta Manacor Km 4, 07198, Palma, Balearic Islands, Spain
| | - Álvaro Gragera-Martínez
- Clinical Analysis Department, Genetic Unit, Hospital Universitario Juan Ramón Jiménez, Huelva, Spain
- Cardiology Department, Hospital Universitario Juan Ramón Jiménez, Huelva, Spain
| | - Adrián Rodríguez
- Balearic Research Group in Genetic Cardiopathies, Sudden Death and TTR Amyloidosis, Health Research Institute of the Balearic Islands (IdISBa), Palma, Balearic Islands, Spain
| | - Cristina Borrachero-Garro
- Internal Medicine Department, Hospital Universitario Juan Ramón Jiménez, Huelva, Spain
- Cardiology Department, Hospital Universitario Juan Ramón Jiménez, Huelva, Spain
| | | | - Carles Barceló
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Ana Manovel-Sánchez
- Cardiology Department, Hospital Universitario Juan Ramón Jiménez, Huelva, Spain
- Multidisciplinary ATTR Unit, Hospital Universitario Juan Ramón Jiménez, Huelva, Spain
| | - Maria Antonia Ribot-Sansó
- Balearic Research Group in Genetic Cardiopathies, Sudden Death and TTR Amyloidosis, Health Research Institute of the Balearic Islands (IdISBa), Palma, Balearic Islands, Spain
- Internal Medicine Department, Hospital Universitario Son Llàtzer, Crta Manacor Km 4, 07198, Palma, Balearic Islands, Spain
| | - Lesly Ibargüen-González
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), Palma, Spain
| | - Rosa Gomila
- Department of Chemistry, Universitat de les Illes Balears, Crta de Valldemossa Km 7.5, 07122, Palma de Mallorca, Baleares, Spain
| | - Francisco Muñoz-Beamud
- Internal Medicine Department, Hospital Universitario Juan Ramón Jiménez, Huelva, Spain
- Cardiology Department, Hospital Universitario Juan Ramón Jiménez, Huelva, Spain
| | - Inés Losada-López
- Balearic Research Group in Genetic Cardiopathies, Sudden Death and TTR Amyloidosis, Health Research Institute of the Balearic Islands (IdISBa), Palma, Balearic Islands, Spain
- Internal Medicine Department, Hospital Universitario Son Llàtzer, Crta Manacor Km 4, 07198, Palma, Balearic Islands, Spain
| | - Eugenia Cisneros-Barroso
- Balearic Research Group in Genetic Cardiopathies, Sudden Death and TTR Amyloidosis, Health Research Institute of the Balearic Islands (IdISBa), Palma, Balearic Islands, Spain.
- Servicio de Medicina Interna, Hospital Universitario Son Llàtzer, Crta Manacor Km 4, 07198, Palma, Spain.
| |
Collapse
|
19
|
Romano A, Primiano G, Antonini G, Ceccanti M, Fenu S, Forcina F, Gentile L, Inghilleri M, Leonardi L, Manganelli F, Obici L, Sabino A, Sciarrone MA, Tozza S, Vitali F, Luigetti M. Serum neurofilament light chain: a promising early diagnostic biomarker for hereditary transthyretin amyloidosis? Eur J Neurol 2024; 31:e16070. [PMID: 37724995 PMCID: PMC11235699 DOI: 10.1111/ene.16070] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/26/2023] [Accepted: 09/06/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND AND PURPOSE Hereditary transthyretin amyloidosis (ATTRv) is a life-threatening disease caused by mutations in the gene encoding transthyretin (TTR). The recent therapeutic advances have underlined the importance of easily accessible, objective biomarkers of both disease onset and progression. Preliminary evidence suggests a potential role in this respect for neurofilament light chain (NfL). In this study, the aim was to determine serum NfL (sNfL) levels in a late-onset ATTRv population and evaluate whether it might represent a reliable biomarker of disease onset (i.e., 'conversion' from the asymptomatic status to symptomatic disease in TTR mutation carriers). METHODS In all, 111 individuals harbouring a pathogenic TTR variant (61 symptomatic ATTRv patients and 50 presymptomatic carriers) were consecutively enrolled. Fifty healthy volunteers were included as the control group. Ella™ apparatus was used to assess sNfL levels. RESULTS Serum NfL levels were increased in ATTRv patients compared to both presymptomatic carriers and healthy controls, whilst not differing between carriers and healthy controls. An sNfL cut-off of 37.10 pg/mL could discriminate between asymptomatic and symptomatic individuals with high diagnostic accuracy (area under the curve 0.958; p < 0.001), sensitivity (81.4%) and specificity (100%). CONCLUSIONS Serum NfL seems to be a promising biomarker of peripheral nerve involvement in ATTRv amyloidosis and might become a reliable, objective measure to detect the transition from the presymptomatic stage to the onset of symptomatic disease. Further longitudinal studies are needed to confirm such a role and determine whether it could equally represent a biomarker of disease progression and response to therapy.
Collapse
Affiliation(s)
- Angela Romano
- Dipartimento di NeuroscienzeOrgani di Senso e ToraceFondazione Policlinico Universitario Agostino Gemelli IRCCSRomeItaly
| | - Guido Primiano
- Dipartimento di NeuroscienzeOrgani di Senso e ToraceFondazione Policlinico Universitario Agostino Gemelli IRCCSRomeItaly
- Dipartimento di NeuroscienzeUniversità Cattolica del Sacro CuoreRomeItaly
| | - Giovanni Antonini
- Dipartimento di NeuroscienzeSalute Mentale e Organi di Senso (NESMOS)Sapienza Università di RomaRomeItaly
| | - Marco Ceccanti
- Dipartimento di Neuroscienze UmaneSapienza Università di RomaRomeItaly
| | - Silvia Fenu
- S.C. Malattie Neurologiche RareDipartimento di Neuroscienze ClinicheFondazione IRCCS Istituto Neurologico Carlo BestaMilanItaly
| | - Francesca Forcina
- Dipartimento di NeuroscienzeSalute Mentale e Organi di Senso (NESMOS)Sapienza Università di RomaRomeItaly
| | - Luca Gentile
- U.O.C. Neurologia e Malattie NeuromuscolariDipartimento di Medicina Clinica e SperimentaleUniversità degli Studi di MessinaMessinaItaly
| | | | - Luca Leonardi
- Dipartimento di NeuroscienzeSalute Mentale e Organi di Senso (NESMOS)Sapienza Università di RomaRomeItaly
| | - Fiore Manganelli
- Department of NeuroscienceReproductive and Odontostomatological ScienceUniversity of Naples ‘Federico II’NaplesItaly
| | - Laura Obici
- Centro per lo Studio e la Cura delle Amiloidosi SistemicheFondazione IRCCS Policlinico San MatteoPaviaItaly
| | - Andrea Sabino
- Dipartimento di NeuroscienzeUniversità Cattolica del Sacro CuoreRomeItaly
| | | | - Stefano Tozza
- Department of NeuroscienceReproductive and Odontostomatological ScienceUniversity of Naples ‘Federico II’NaplesItaly
| | - Francesca Vitali
- Dipartimento di NeuroscienzeUniversità Cattolica del Sacro CuoreRomeItaly
| | - Marco Luigetti
- Dipartimento di NeuroscienzeOrgani di Senso e ToraceFondazione Policlinico Universitario Agostino Gemelli IRCCSRomeItaly
- Dipartimento di NeuroscienzeUniversità Cattolica del Sacro CuoreRomeItaly
| |
Collapse
|
20
|
Stavropoulou De Lorenzo S, Bakirtzis C, Konstantinidou N, Kesidou E, Parissis D, Evangelopoulos ME, Elsayed D, Hamdy E, Said S, Grigoriadis N. How Early Is Early Multiple Sclerosis? J Clin Med 2023; 13:214. [PMID: 38202221 PMCID: PMC10780129 DOI: 10.3390/jcm13010214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/22/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
The development and further optimization of the diagnostic criteria for multiple sclerosis (MS) emphasize the establishment of an early and accurate diagnosis. So far, numerous studies have revealed the significance of early treatment administration for MS and its association with slower disease progression and better late outcomes of the disease with regards to disability accumulation. However, according to current research results, both neuroinflammatory and neurodegenerative processes may exist prior to symptom initiation. Despite the fact that a significant proportion of individuals with radiologically isolated syndrome (RIS) progress to MS, currently, there is no available treatment approved for RIS. Therefore, our idea of "early treatment administration" might be already late in some cases. In order to detect the individuals who will progress to MS, we need accurate biomarkers. In this review, we present notable research results regarding the underlying pathology of MS, as well as several potentially useful laboratory and neuroimaging biomarkers for the identification of high-risk individuals with RIS for developing MS. This review aims to raise clinicians' awareness regarding "subclinical" MS, enrich their understanding of MS pathology, and familiarize them with several potential biomarkers that are currently under investigation and might be used in clinical practice in the future for the identification of individuals with RIS at high risk for conversion to definite MS.
Collapse
Affiliation(s)
- Sotiria Stavropoulou De Lorenzo
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (N.K.); (E.K.); (D.P.); (N.G.)
| | - Christos Bakirtzis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (N.K.); (E.K.); (D.P.); (N.G.)
| | - Natalia Konstantinidou
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (N.K.); (E.K.); (D.P.); (N.G.)
| | - Evangelia Kesidou
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (N.K.); (E.K.); (D.P.); (N.G.)
| | - Dimitrios Parissis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (N.K.); (E.K.); (D.P.); (N.G.)
| | | | - Dina Elsayed
- Department of Neuropsychiatry, Faculty of Medicine, Alexandria University, Alexandria 21311, Egypt; (D.E.); (E.H.); (S.S.)
| | - Eman Hamdy
- Department of Neuropsychiatry, Faculty of Medicine, Alexandria University, Alexandria 21311, Egypt; (D.E.); (E.H.); (S.S.)
| | - Sameh Said
- Department of Neuropsychiatry, Faculty of Medicine, Alexandria University, Alexandria 21311, Egypt; (D.E.); (E.H.); (S.S.)
| | - Nikolaos Grigoriadis
- Multiple Sclerosis Center, Second Department of Neurology, School of Medicine, Aristotle University of Thessaloniki, 54621 Thessaloniki, Greece; (S.S.D.L.); (N.K.); (E.K.); (D.P.); (N.G.)
| |
Collapse
|
21
|
Flotats-Bastardas M, Bitzan L, Grell C, Martakis K, Winter B, Zemlin M, Wurster CD, Uzelac Z, Weiß C, Hahn A. Paradoxical increase of neurofilaments in SMA patients treated with onasemnogene abeparvovec-xioi. Front Neurol 2023; 14:1269406. [PMID: 38162454 PMCID: PMC10756901 DOI: 10.3389/fneur.2023.1269406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 10/30/2023] [Indexed: 01/03/2024] Open
Abstract
Background/Objective Neurofilament light chain (NfL) has been proposed as a biomarker reflecting disease severity and therapy response in children with spinal muscular atrophy type 1 and 2 (SMA1 and 2). The objective of this study was to examine how serum NfL changes after gene replacement therapy (GRT) with onasemnogene abeparvovec-xioi. Methods We measured NfL in serum probes from 19 patients (10 SMA 1 and 6 SMA 2; 15 previously treated with nusinersen or risdiplam; 12 male) before and at variable time points after GRT. These values were related to motor scores (CHOP-Intend, HFMSE and RULM). Results Median age at GRT was 19 months (range 2-46 months). Median NfL of all patients before GRT was 39 pg/ml (range 0-663 pg/ml; normal values <25 pg/ml), increased significantly to 297 pg/ml (range 61-1,696 pg/ml; p<0,002) 1 month after GRT, and decreased to 49 pg/ml (range 24-151 pg/ml) after 6 months. Subjects pre-treated with nusinersen or risdiplam had lower baseline NfL levels than naïve patients (p<0,005), but absolute increases of NfL were similar in both groups. While motor scores were improved in 14 out of 18 SMA patients (78%) 6 months after GRT NfL values differed not significantly from those measured at baseline (p = 0,959). Conclusion Serum NfL showed a paradoxical transient increase after GRT in both, pre-treated and naïve patients, which may reflect an immunological reaction in the CNS related to transfection of neuronal cells by AAV9. The clinical meaning of this increase should be assessed in future studies. Our findings encourage regular monitoring of NfL in OA treated patients.
Collapse
Affiliation(s)
- Marina Flotats-Bastardas
- Department of Pediatric Neurology, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Lisa Bitzan
- Department of Pediatric Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Charlotte Grell
- Department of Child Neurology, Justus Liebig University Giessen, Giessen, Germany
| | - Kyriakos Martakis
- Department of Child Neurology, Justus Liebig University Giessen, Giessen, Germany
- Department of Pediatrics, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| | - Benedikt Winter
- Department of Child Neurology, Mannheim University, Mannheim, Germany
| | - Michael Zemlin
- Department of General Pediatrics and Neonatology, Saarland University Medical Center, Saarland University, Homburg, Germany
| | | | - Zeljko Uzelac
- Department of Neurology, Ulm University, Ulm, Germany
| | - Claudia Weiß
- Department of Pediatric Neurology, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas Hahn
- Department of Child Neurology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
22
|
Teunissen CE, Kimble L, Bayoumy S, Bolsewig K, Burtscher F, Coppens S, Das S, Gogishvili D, Fernandes Gomes B, Gómez de San José N, Mavrina E, Meda FJ, Mohaupt P, Mravinacová S, Waury K, Wojdała AL, Abeln S, Chiasserini D, Hirtz C, Gaetani L, Vermunt L, Bellomo G, Halbgebauer S, Lehmann S, Månberg A, Nilsson P, Otto M, Vanmechelen E, Verberk IMW, Willemse E, Zetterberg H. Methods to Discover and Validate Biofluid-Based Biomarkers in Neurodegenerative Dementias. Mol Cell Proteomics 2023; 22:100629. [PMID: 37557955 PMCID: PMC10594029 DOI: 10.1016/j.mcpro.2023.100629] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/11/2023] Open
Abstract
Neurodegenerative dementias are progressive diseases that cause neuronal network breakdown in different brain regions often because of accumulation of misfolded proteins in the brain extracellular matrix, such as amyloids or inside neurons or other cell types of the brain. Several diagnostic protein biomarkers in body fluids are being used and implemented, such as for Alzheimer's disease. However, there is still a lack of biomarkers for co-pathologies and other causes of dementia. Such biofluid-based biomarkers enable precision medicine approaches for diagnosis and treatment, allow to learn more about underlying disease processes, and facilitate the development of patient inclusion and evaluation tools in clinical trials. When designing studies to discover novel biofluid-based biomarkers, choice of technology is an important starting point. But there are so many technologies to choose among. To address this, we here review the technologies that are currently available in research settings and, in some cases, in clinical laboratory practice. This presents a form of lexicon on each technology addressing its use in research and clinics, its strengths and limitations, and a future perspective.
Collapse
Affiliation(s)
- Charlotte E Teunissen
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Neurochemistry Lab, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands.
| | - Leighann Kimble
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; KIN Center for Digital Innovation, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Sherif Bayoumy
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Neurochemistry Lab, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Katharina Bolsewig
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Neurochemistry Lab, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Felicia Burtscher
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - Salomé Coppens
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; National Measurement Laboratory at LGC, Teddington, United Kingdom
| | - Shreyasee Das
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; ADx NeuroSciences, Gent, Belgium
| | - Dea Gogishvili
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Bárbara Fernandes Gomes
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Nerea Gómez de San José
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Department of Neurology, University of Ulm, Ulm, Germany
| | - Ekaterina Mavrina
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; KIN Center for Digital Innovation, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Francisco J Meda
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Pablo Mohaupt
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; LBPC-PPC, IRMB CHU Montpellier, INM INSERM, Université de Montpellier, Montpellier, France
| | - Sára Mravinacová
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Katharina Waury
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Anna Lidia Wojdała
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Sanne Abeln
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Department of Computer Science, Vrije Universiteit Amsterdam, Amsterdam, Netherlands
| | - Davide Chiasserini
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Section of Physiology and Biochemistry, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Christophe Hirtz
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; LBPC-PPC, IRMB CHU Montpellier, INM INSERM, Université de Montpellier, Montpellier, France
| | - Lorenzo Gaetani
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Lisa Vermunt
- Neurochemistry Lab, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Giovanni Bellomo
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Section of Neurology, Department of Medicine and Surgery, University of Perugia, Perugia, Italy
| | - Steffen Halbgebauer
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Department of Neurology, University of Ulm, Ulm, Germany; German Center for Neurodegenerative Diseases (DZNE e.V.), Ulm, Germany
| | - Sylvain Lehmann
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; LBPC-PPC, IRMB CHU Montpellier, INM INSERM, Université de Montpellier, Montpellier, France
| | - Anna Månberg
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Peter Nilsson
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
| | - Markus Otto
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Department of Neurology, University of Ulm, Ulm, Germany; Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| | - Eugeen Vanmechelen
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; ADx NeuroSciences, Gent, Belgium
| | - Inge M W Verberk
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Neurochemistry Lab, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Eline Willemse
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Neurochemistry Lab, Department of Laboratory Medicine, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit, Amsterdam, Netherlands
| | - Henrik Zetterberg
- MIRIADE Consortium, Multiomics Interdisciplinary Research Integration to Address DEmentia diagnosis, Amsterdam, The Netherlands; Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China; Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
23
|
Brocard G, Casey R, Dufay N, Marignier R, Michel L, Hisbergues M, Ayrignac X, Lehmann S, Thouvenot E, Gallot G, Collongues N, Herpe YE, Lebrun-Frenay C, Cotton F, De Sèze J, Guillemin F, Moreau T, Pelletier J, Stankoff B, Vukusic S, Zephir H, Laplaud D. The biological sample collection of the OFSEP French MS registry: An essential tool dedicated to researchers. Mult Scler Relat Disord 2023; 77:104872. [PMID: 37453261 DOI: 10.1016/j.msard.2023.104872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/28/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Today's medicine strives to be personalized, preventive, predictive and participatory. This implies to have access to multimodal data to better characterize patients groups and to combine clinical and imaging data with high-quality biological samples. Collecting such data is one of the objectives of the Observatoire français de la sclérose en plaques (OFSEP), the French MS registry. On December 2022, the OFSEP biocollection includes 4,888 patients with scientific characteristics and about 90,000 samples. Thanks to its richness, this biocollection open for the scientific community, contributes to address unmet needs in MS through identification of multiomics determinants of MS activity, progression and secondary effects.
Collapse
Affiliation(s)
- Guillaume Brocard
- Lyon University, University Claude Bernard Lyon 1, F-69000, Lyon, France; Hospices Civils de Lyon, Neurology Department, Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, F-69677, Bron, France; Observatoire Français de la Sclérose en Plaques, Centre de Recherche en Neurosciences de Lyon, INSERM 1028 and CNRS UMR 5292, F-69003, Lyon, France; EUGENE DEVIC EDMUS Foundation against Multiple Sclerosis, State-Approved Foundation, F-69677, Bron, France
| | - Romain Casey
- Lyon University, University Claude Bernard Lyon 1, F-69000, Lyon, France; Hospices Civils de Lyon, Neurology Department, Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, F-69677, Bron, France; Observatoire Français de la Sclérose en Plaques, Centre de Recherche en Neurosciences de Lyon, INSERM 1028 and CNRS UMR 5292, F-69003, Lyon, France; EUGENE DEVIC EDMUS Foundation against Multiple Sclerosis, State-Approved Foundation, F-69677, Bron, France
| | - Nathalie Dufay
- Hospices Civils de Lyon, Biological Ressource Center (BRIF N BB-0033-00046), F-69677, Bron, France
| | - Romain Marignier
- Lyon University, University Claude Bernard Lyon 1, Research on Healthcare Performance (RESHAPE), INSERM U1290, F-69000, Lyon, France; Hospices Civils de Lyon, Neurology Department, Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, Centre de Référence des Maladies Inflammatoires Rares du Cerveau et de la Moelle (MIRCEM), F-69677, Bron, France
| | - Laure Michel
- Neurology Department, Rennes University Hospital, Rennes, France; Clinical Neuroscience Centre, CIC_P1414 INSERM, Rennes University Hospital, Rennes University, Rennes, France
| | - Michael Hisbergues
- Lille University Hospital, Inserm, Lille University, Biological Resource Center of CIC 1403 (BRIF N BB-0033-00030), F-59000, Lille, France
| | - Xavier Ayrignac
- University of Montpellier, INM, INSERM, Department of Neurology, Montpellier University Hospital, Montpellier, France
| | - Sylvain Lehmann
- Montpellier University, INM INSERM, Montpellier University Hospital IRMB (BRIF N BB-0033-00059), Montpellier, France
| | - Eric Thouvenot
- Department of Neurology, Nimes University Hospital, F-30029, Nimes, France; Institut de Génomique Fonctionnelle, UMR5203, INSERM 1191, Montpellier University, F-34094, Montpellier, France
| | - Geraldine Gallot
- Nantes University, Nantes University Hospital, Biological Resource Center (BRIF N BB-0033-00040), F-44000, Nantes, France
| | - Nicolas Collongues
- Department of Neurology, University Hospital of Strasbourg, Strasbourg, France; Center for Clinical Investigation, INSERM U1434, Strasbourg, France; Biopathology of Myelin, Neuroprotection and Therapeutic Strategy, INSERM U1119, Strasbourg, France; University Department of Pharmacology, Addictology, Toxicology and Therapeutic, Strasbourg University, Strasbourg, France
| | - Yves-Edouard Herpe
- Amiens Picardie University Hospital, Research Department, Biobanque de Picardie (BRIF N BB-0033-00017), F-80000, Amiens, France
| | - Christine Lebrun-Frenay
- Nice Côte d'Azur University UR2CA-URRIS, Pasteur2 University Hospital, Neurology MS Clinic, Nice, France
| | - François Cotton
- MRI Center Lyon Sud Hospital, Hospices Civils de Lyon, Lyon, France; CREATIS - CNRS UMR 5220 & INSERM U1044, University Claude Bernard Lyon 1, Lyon, France
| | - Jérôme De Sèze
- Strasbourg University Hospital, Hautepierre Hospital, Service des Maladies Inflammatoires du Système Nerveux - Neurology, Strasbourg, France
| | - Francis Guillemin
- CIC 1433 Epidémiologie Clinique, Nancy University Hospital, Inserm and Lorraine University, Nancy, France
| | - Thibault Moreau
- Department of Neurology, Dijon Bourgogne University Hospital, EA4184, F-21000, Dijon, France
| | - Jean Pelletier
- Aix Marseille University, APHM, Timone Hospital, Pôle de Neurosciences Cliniques, Neurologie Department, F-13005, Marseille, France
| | - Bruno Stankoff
- Sorbonne University, UPMC Paris 06, Brain and Spine Institute, ICM, Hôpital de la Pitié Salpêtrière, Inserm UMR S 1127, CNRS UMR 7225, and Department of Neurology, AP-HP, Saint-Antoine Hospital, F-75000, Paris, France
| | - Sandra Vukusic
- Lyon University, University Claude Bernard Lyon 1, F-69000, Lyon, France; Hospices Civils de Lyon, Neurology Department, Sclérose en Plaques, Pathologies de la Myéline et Neuro-Inflammation, F-69677, Bron, France; Observatoire Français de la Sclérose en Plaques, Centre de Recherche en Neurosciences de Lyon, INSERM 1028 and CNRS UMR 5292, F-69003, Lyon, France; EUGENE DEVIC EDMUS Foundation against Multiple Sclerosis, State-Approved Foundation, F-69677, Bron, France
| | - Hélène Zephir
- Lille University, Inserm U1172, Lille University Hospital, Lille, France
| | - David Laplaud
- Nantes University Hospital, Neurology Department, CRC-SEP, Nantes University, INSERM, CIC 1413, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000, Nantes, France.
| |
Collapse
|
24
|
Businaro P, Currò R, Vegezzi E, Diamanti L, Bini P, Cosentino G, Alfonsi E, Farina LM, Colombo E, Tavazzi E, Cortese A, Scaranzin S, Gastaldi M, Marchioni E. Progressive post infectious neurological syndromes with a poor outcome: Long term follow-up and neurofilament light chain quantification. Mult Scler Relat Disord 2023; 76:104781. [PMID: 37295322 DOI: 10.1016/j.msard.2023.104781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023]
Abstract
Postinfectious neurological syndromes (PINS), among which acute disseminated encephalomyelitis (ADEM), are inflammatory and mostly monophasic disorders. We previously reported that PINS patients can show relapses, or even disease progression. Here we describe a cohort of patients with progressive-PINS and >5 years of follow-up, that developed a progressive worsening without radiological/cerebrospinal fluid analysis evidence of inflammation. At onset 5 patients fulfilled diagnostic criteria for ADEM and none for MS. Progression occurred after a median of 22 months from onset (in 4/7 after 1/more relapses), manifesting as ascending tetraparesis with bulbar functions involvement in 5/7. Five/7 patients received high dose steroids and/or IvIG and 6/7 Rituximab(n = 4) and/or cyclophosphamide(n = 2), with no impact on disease progression in 6/7. NfL levels were higher in patients with progressive-PINS compared to monophasic-ADEM (p = 0.023) and healthy controls (p = 0.004). Progression is rare, but possible, in PINS. Immunotherapy seems to be ineffective in these patients, and elevated serum NfL in serum suggest persistent axonal damage.
Collapse
Affiliation(s)
- Pietro Businaro
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Neuroncology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Riccardo Currò
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Elisa Vegezzi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Neuroncology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Luca Diamanti
- Neuroncology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Paola Bini
- Neuroncology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Giuseppe Cosentino
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Clinical Neurophysiology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Enrico Alfonsi
- Clinical Neurophysiology Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Lisa Maria Farina
- Advanced Imaging and Radiomics Center, Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy
| | - Elena Colombo
- Multiple Sclerosis Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Eleonora Tavazzi
- Multiple Sclerosis Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Andrea Cortese
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Department of Neuromuscular Diseases, University College London, London, United Kingdom
| | - Silvia Scaranzin
- Neuroimmunology Research Unit, IRCCS Mondino Foundation, Pavia, Italy
| | - Matteo Gastaldi
- Neuroncology Unit, IRCCS Mondino Foundation, Pavia, Italy; Neuroimmunology Research Unit, IRCCS Mondino Foundation, Pavia, Italy
| | | |
Collapse
|
25
|
Andreasson U, Gobom J, Delatour V, Auclair G, Noam Y, Lee S, Wen J, Jeromin A, Arslan B, Maceski A, Willemse E, Zetterberg H, Kuhle J, Blennow K. Assessing the commutability of candidate reference materials for the harmonization of neurofilament light measurements in blood. Clin Chem Lab Med 2023; 61:1245-1254. [PMID: 36709509 DOI: 10.1515/cclm-2022-1181] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 01/13/2023] [Indexed: 01/30/2023]
Abstract
OBJECTIVES Neurofilament light chain (NfL) concentration in blood is a biomarker of neuro-axonal injury in the nervous system and there now exist several assays with high enough sensitivity to measure NfL in serum and plasma. There is a need for harmonization with the goal of creating a certified reference material (CRM) for NfL and an early step in such an effort is to determine the best matrix for the CRM. This is done in a commutability study and here the results of the first one for NfL in blood is presented. METHODS Forty paired individual serum and plasma samples were analyzed for NfL on four different analytical platforms. Neat and differently spiked serum and plasma were evaluated for their suitability as a CRM using the difference in bias approach. RESULTS The correlation between the different platforms with regards to measured NfL concentrations were very high (Spearman's ρ≥0.96). Samples spiked with cerebrospinal fluid (CSF) showed higher commutability compared to samples spiked with recombinant human NfL protein and serum seems to be a better choice than plasma as the matrix for a CRM. CONCLUSIONS The results from this first commutability study on NfL in serum/plasma showed that it is feasible to create a CRM for NfL in blood and that spiking should be done using CSF rather than with recombinant human NfL protein.
Collapse
Affiliation(s)
- Ulf Andreasson
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | | | - Guy Auclair
- European Commission, Joint Research Centre (JRC), Geel, Belgium
| | - Yoav Noam
- ProteinSimple, a Bio-Techne Brand, Wallingford, CT, USA
| | - Stephen Lee
- Siemens Healthcare Laboratory, Berkeley, CA, USA
| | - Jason Wen
- Siemens Healthcare Laboratory, Berkeley, CA, USA
| | | | - Burak Arslan
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Aleksandra Maceski
- Neurology, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Eline Willemse
- Neurology, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| | - Jens Kuhle
- Neurology, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Head, Spine and Neuromedicine, Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| |
Collapse
|
26
|
Sen MK, Hossain MJ, Mahns DA, Brew BJ. Validity of serum neurofilament light chain as a prognostic biomarker of disease activity in multiple sclerosis. J Neurol 2023; 270:1908-1930. [PMID: 36520240 DOI: 10.1007/s00415-022-11507-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Multiple sclerosis (MS) is a chronic demyelinating and neuroinflammatory disease of the human central nervous system with complex pathoetiology, heterogeneous presentations and an unpredictable course of disease progression. There remains an urgent need to identify and validate a biomarker that can reliably predict the initiation and progression of MS as well as identify patient responses to disease-modifying treatments/therapies (DMTs). Studies exploring biomarkers in MS and other neurodegenerative diseases currently focus mainly on cerebrospinal fluid (CSF) analyses, which are invasive and impractical to perform on a repeated basis. Recent studies, replacing CSF with peripheral blood samples, have revealed that the elevation of serum neurofilament light chain (sNfL) in the clinical stages of MS is, potentially, an ideal prognostic biomarker for predicting disease progression and for possibly guiding treatment decisions. However, there are unresolved factors (the definition of abnormal values of sNfL concentration, the standardisation of measurement and the amount of change in sNfL concentration that is significant) that are preventing its use as a biomarker in routine clinical practice for MS. This updated review critiques these recent findings and highlights areas for focussed work to facilitate the use of sNfL as a prognostic biomarker in MS management.
Collapse
Affiliation(s)
- Monokesh K Sen
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
- Peter Duncan Neuroscience Research Unit, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, 2010, Australia
- Charles Perkins Centre, School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW, 2006, Australia
| | - Md Jakir Hossain
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - David A Mahns
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Bruce J Brew
- Peter Duncan Neuroscience Research Unit, St Vincent's Centre for Applied Medical Research, Darlinghurst, Sydney, 2010, Australia.
- School of Biomedical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia.
- Department of Neurology, St Vincent's Hospital, Darlinghurst, 2010, Australia.
| |
Collapse
|
27
|
Neurofilament-light chain quantification by Simoa and Ella in plasma from patients with dementia: a comparative study. Sci Rep 2023; 13:4041. [PMID: 36899015 PMCID: PMC10006166 DOI: 10.1038/s41598-023-29704-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/09/2023] [Indexed: 03/12/2023] Open
Abstract
Neurofilament light chains (NfL) are neuron-specific cytoskeletal proteins whose plasmatic concentrations have been explored as a clinically useful marker in several types of dementia. Plasma concentrations of NfL are extremely low, and just two assays are commercially available for their study: one based on the SiMoA technology and one based on Ella. We thus studied plasma levels of NfL with both platforms to check the correlation between them and to assess their potential in the diagnosis of neurodegeneration. Plasma NfL levels were measured on 50 subjects: 18 healthy controls, 20 Alzheimer's disease, and 12 frontotemporal dementia patients. Ella returned plasmatic NfL levels significantly higher than SiMoA, however the results were strongly correlated (r = 0.94), and a proportional coefficient of 0.58 between the two assays was calculated. Both assays detected higher plasma NfL levels in patients with dementia than in the control group (p < 0.0001) and allowed their discrimination with excellent diagnostic performance (AUC > 0.95). No difference was found between Alzheimer's and Frontotemporal dementia either using SiMoA or Ella. In conclusion, both the analytical platforms resulted effective in analysing plasma levels of NfL. However, the correct interpretation of results requires the precise knowledge of the assay used.
Collapse
|
28
|
Abu-Rumeileh S, Abdelhak A, Foschi M, D'Anna L, Russo M, Steinacker P, Kuhle J, Tumani H, Blennow K, Otto M. The multifaceted role of neurofilament light chain protein in non-primary neurological diseases. Brain 2023; 146:421-437. [PMID: 36083979 PMCID: PMC9494370 DOI: 10.1093/brain/awac328] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 09/02/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
The advancing validation and exploitation of CSF and blood neurofilament light chain protein as a biomarker of neuroaxonal damage has deeply changed the current diagnostic and prognostic approach to neurological diseases. Further, recent studies have provided evidence of potential new applications of this biomarker also in non-primary neurological diseases. In the present review we summarize the state of the art, future perspectives, but also limitations, of neurofilament light chain protein as a CSF and blood biomarker in several medical fields, including intensive care medicine, surgery, internal medicine and psychiatry. In particular, neurofilament light chain protein is associated with the degree of neurological impairment and outcome in patients admitted to intensive care units or in the perioperative phase and it seems to be highly interconnected with cardiovascular risk factors. Beyond that, interesting diagnostic and prognostic insights have been provided by the investigation of neurofilament light chain protein in psychiatric disorders as well as in the current coronavirus disease-19 pandemic and in normal ageing. Altogether, current data outline a multifaceted applicability of CSF and blood neurofilament light chain protein ranging from the critical clinical setting to the development of precision medicine models suggesting a strict interplay between the nervous system pathophysiology and the health-illness continuum.
Collapse
Affiliation(s)
- Samir Abu-Rumeileh
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Ahmed Abdelhak
- Department of Neurology, University of California San Francisco (UCSF), San Francisco, USA
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| | - Matteo Foschi
- Department of Neuroscience, Neurology Unit – S. Maria delle Croci Hospital of Ravenna, AUSL Romagna, Ravenna, Italy
| | - Lucio D'Anna
- Department of Stroke and Neuroscience, Charing Cross Hospital, Imperial College London, NHS Healthcare Trust, London, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Michele Russo
- Department of Cardiology, S. Maria dei Battuti Hospital, AULSS 2 Veneto, Conegliano, Italy
| | - Petra Steinacker
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, MS Center and Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), Departments of Biomedicine and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Markus Otto
- Department of Neurology, Martin-Luther-University of Halle-Wittenberg, Halle (Saale), Germany
- Department of Neurology, Ulm University Hospital, Ulm, Germany
| |
Collapse
|
29
|
De Matteis S, Dicataldo M, Casadei B, Storci G, Laprovitera N, Arpinati M, Maffini E, Cortelli P, Guarino M, Vaglio F, Naddeo M, Sinigaglia B, Zazzeroni L, Guadagnuolo S, Tomassini E, Bertuccio SN, Messelodi D, Ferracin M, Bonafè M, Zinzani PL, Bonifazi F. Peripheral blood cellular profile at pre-lymphodepletion is associated with CD19-targeted CAR-T cell-associated neurotoxicity. Front Immunol 2023; 13:1058126. [PMID: 36726971 PMCID: PMC9886226 DOI: 10.3389/fimmu.2022.1058126] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 12/21/2022] [Indexed: 01/18/2023] Open
Abstract
Background Infusion of second generation autologous CD19-targeted chimeric antigen receptor (CAR) T cells in patients with R/R relapsed/refractory B-cell lymphoma (BCL) is affected by inflammatory complications, such as Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS). Current literature suggests that the immune profile prior to CAR-T infusion modifies the chance to develop ICANS. Methods This is a monocenter prospective study on 53 patients receiving approved CAR T-cell products (29 axi-cel, 24 tisa-cel) for R/R-BCL. Clinical, biochemical, and hematological variables were analyzed at the time of pre-lymphodepletion (pre-LD). In a subset of 21 patients whose fresh peripheral blood sample was available, we performed cytofluorimetric analysis of leukocytes and extracellular vesicles (EVs). Moreover, we assessed a panel of soluble plasma biomarkers (IL-6/IL-10/GDF-15/IL-15/CXCL9/NfL) and microRNAs (miR-146a-5p, miR-21-5p, miR-126-3p, miR-150-5p) which are associated with senescence and inflammation. Results Multivariate analysis at the pre-LD time-point in the entire cohort (n=53) showed that a lower percentage of CD3+CD8+ lymphocytes (38.6% vs 46.8%, OR=0.937 [95% CI: 0.882-0.996], p=0.035) and higher levels of serum C-reactive protein (CRP, 4.52 mg/dl vs 1.00 mg/dl, OR=7.133 [95% CI: 1.796-28], p=0.005) are associated with ICANS. In the pre-LD samples of 21 patients, a significant increase in the percentage of CD8+CD45RA+CD57+ senescent cells (median % value: 16.50% vs 9.10%, p=0.009) and monocytic-myeloid derived suppressor cells (M-MDSC, median % value: 4.4 vs 1.8, p=0.020) was found in ICANS patients. These latter also showed increased levels of EVs carrying CD14+ and CD45+ myeloid markers, of the myeloid chemokine CXCL-9, as well of the MDSC-secreted cytokine IL-10. Notably, the serum levels of circulating neurofilament light chain, a marker of neuroaxonal injury, were positively correlated with the levels of senescent CD8+ T cells, M-MDSC, IL-10 and CXCL-9. No variation in the levels of the selected miRNAs was observed between ICANS and no-ICANS patients. Discussion Our data support the notion that pre-CAR-T systemic inflammation is associated with ICANS. Higher proportion of senescence CD8+ T cells and M-MDSC correlate with early signs of neuroaxonal injury at pre-LD time-point, suggesting that ICANS may be the final event of a process that begins before CAR-T infusion, consequence to patient clinical history.
Collapse
Affiliation(s)
| | - Michele Dicataldo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Beatrice Casadei
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Gianluca Storci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | | | - Mario Arpinati
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Enrico Maffini
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pietro Cortelli
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy,IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Maria Guarino
- IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Francesca Vaglio
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Maria Naddeo
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Barbara Sinigaglia
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Luca Zazzeroni
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | | | - Enrica Tomassini
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | | | - Daria Messelodi
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Manuela Ferracin
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | - Massimiliano Bonafè
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy,*Correspondence: Massimiliano Bonafè,
| | - Pier Luigi Zinzani
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy,Department of Experimental, Diagnostic and Specialty Medicine (DIMES), University of Bologna, Bologna, Italy
| | | |
Collapse
|
30
|
Petzold A. The 2022 Lady Estelle Wolfson lectureship on neurofilaments. J Neurochem 2022; 163:179-219. [PMID: 35950263 PMCID: PMC9826399 DOI: 10.1111/jnc.15682] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 01/11/2023]
Abstract
Neurofilament proteins (Nf) have been validated and established as a reliable body fluid biomarker for neurodegenerative pathology. This review covers seven Nf isoforms, Nf light (NfL), two splicing variants of Nf medium (NfM), two splicing variants of Nf heavy (NfH),α -internexin (INA) and peripherin (PRPH). The genetic and epigenetic aspects of Nf are discussed as relevant for neurodegenerative diseases and oncology. The comprehensive list of mutations for all Nf isoforms covers Amyotrophic Lateral Sclerosis, Charcot-Marie Tooth disease, Spinal muscular atrophy, Parkinson Disease and Lewy Body Dementia. Next, emphasis is given to the expanding field of post-translational modifications (PTM) of the Nf amino acid residues. Protein structural aspects are reviewed alongside PTMs causing neurodegenerative pathology and human autoimmunity. Molecular visualisations of NF PTMs, assembly and stoichiometry make use of Alphafold2 modelling. The implications for Nf function on the cellular level and axonal transport are discussed. Neurofilament aggregate formation and proteolytic breakdown are reviewed as relevant for biomarker tests and disease. Likewise, Nf stoichiometry is reviewed with regard to in vitro experiments and as a compensatory mechanism in neurodegeneration. The review of Nf across a spectrum of 87 diseases from all parts of medicine is followed by a critical appraisal of 33 meta-analyses on Nf body fluid levels. The review concludes with considerations for clinical trial design and an outlook for future research.
Collapse
Affiliation(s)
- Axel Petzold
- Department of NeurodegenerationQueen Square Insitute of Neurology, UCLLondonUK
| |
Collapse
|
31
|
Delaby C, Bousiges O, Bouvier D, Fillée C, Fourier A, Mondésert E, Nezry N, Omar S, Quadrio I, Rucheton B, Schraen-Maschke S, van Pesch V, Vicca S, Lehmann S, Bedel A. Neurofilaments contribution in clinic: state of the art. Front Aging Neurosci 2022; 14:1034684. [PMID: 36389064 PMCID: PMC9664201 DOI: 10.3389/fnagi.2022.1034684] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/10/2022] [Indexed: 07/26/2023] Open
Abstract
Neurological biomarkers are particularly valuable to clinicians as they can be used for diagnosis, prognosis, or response to treatment. This field of neurology has evolved considerably in recent years with the improvement of analytical methods, allowing the detection of biomarkers not only in cerebrospinal fluid (CSF) but also in less invasive fluids like blood. These advances greatly facilitate the repeated quantification of biomarkers, including at asymptomatic stages of the disease. Among the various informative biomarkers of neurological disorders, neurofilaments (NfL) have proven to be of particular interest in many contexts, such as neurodegenerative diseases, traumatic brain injury, multiple sclerosis, stroke, and cancer. Here we discuss these different pathologies and the potential value of NfL assay in the management of these patients, both for diagnosis and prognosis. We also describe the added value of NfL compared to other biomarkers currently used to monitor the diseases described in this review.
Collapse
Affiliation(s)
- Constance Delaby
- Université de Montpellier, IRMB, INM, INSERM, CHU de Montpellier, Laboratoire Biochimie-Protéomique clinique, Montpellier, France
- Sant Pau Memory Unit, Hospital de la Santa Creu i Sant Pau—Biomedical Research Institute Sant Pau—Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Olivier Bousiges
- Laboratoire de biochimie et biologie moléculaire (LBBM)—Pôle de biologie Hôpital de Hautepierre—CHU de Strasbourg, CNRS, laboratoire ICube UMR 7357 et FMTS (Fédération de Médecine Translationnelle de Strasbourg), équipe IMIS, Strasbourg, France
| | - Damien Bouvier
- Service de Biochimie et Génétique Moléculaire, CHU de Clermont-Ferrand, Clermont-Ferrand, France
| | - Catherine Fillée
- Cliniques universitaires Saint-Luc UCLouvain, Service de Biochimie Médicale, Brussels, Belgium
| | - Anthony Fourier
- Biochimie et Biologie Moléculaire—LBMMS, Unité de diagnostic des pathologies dégénératives, Centre de Biologie et Pathologie Est, Groupement Hospitalier Est, Lyon, France
| | - Etienne Mondésert
- Université de Montpellier, IRMB, INM, INSERM, CHU de Montpellier, Laboratoire Biochimie-Protéomique clinique, Montpellier, France
| | - Nicolas Nezry
- Univ. Lille, Inserm, CHU Lille, UMR-S-U1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, Lille, France
| | - Souheil Omar
- Laboratoire de biologie médicale de l’Institut de Neurologie de Tunis, Tunis, Tunisia
| | - Isabelle Quadrio
- Biochimie et Biologie Moléculaire—LBMMS, Unité de diagnostic des pathologies dégénératives, Centre de Biologie et Pathologie Est, Groupement Hospitalier Est, Lyon, France
| | - Benoit Rucheton
- Laboratoire de Biologie, Institut Bergonié, Bordeaux, France
| | - Susanna Schraen-Maschke
- Univ. Lille, Inserm, CHU Lille, UMR-S-U1172, LiCEND, Lille Neuroscience & Cognition, LabEx DISTALZ, Lille, France
| | - Vincent van Pesch
- Cliniques universitaires Saint-Luc UCLouvain, Service de Neurologie, Brussels, Belgium
| | - Stéphanie Vicca
- Hôpital Necker-Enfants malades, Paris, Laboratoire de Biochimie générale, DMU BioPhyGen, AP-HP.Centre—Université de Paris, Paris, France
| | - Sylvain Lehmann
- Université de Montpellier, IRMB, INM, INSERM, CHU de Montpellier, Laboratoire Biochimie-Protéomique clinique, Montpellier, France
| | - Aurelie Bedel
- Service de Biochimie, CHU Pellegrin, Bordeaux, France
| |
Collapse
|
32
|
Rival M, Thouvenot E, Du Trieu de Terdonck L, Laurent-Chabalier S, Demattei C, Uygunoglu U, Castelnovo G, Cohen M, Okuda DT, Kantarci OH, Pelletier D, Azevedo C, Marin P, Lehmann S, Siva A, Mura T, Lebrun-Frenay C. Neurofilament Light Chain Levels Are Predictive of Clinical Conversion in Radiologically Isolated Syndrome. NEUROLOGY(R) NEUROIMMUNOLOGY & NEUROINFLAMMATION 2022; 10:10/1/e200044. [PMID: 36280258 PMCID: PMC9621336 DOI: 10.1212/nxi.0000000000200044] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 08/29/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND AND OBJECTIVES To evaluate the predictive value of serum neurofilament light chain (sNfL) and CSF NfL (cNfL) in patients with radiologically isolated syndrome (RIS) for evidence of disease activity (EDA) and clinical conversion (CC). METHODS sNfL and cNfL were measured at RIS diagnosis by single-molecule array (Simoa). The risk of EDA and CC according to sNfL and cNfL was evaluated using the Kaplan-Meier analysis and multivariate Cox regression models including age, spinal cord (SC) or infratentorial lesions, oligoclonal bands, CSF chitinase 3-like protein 1, and CSF white blood cells. RESULTS Sixty-one patients with RIS were included. At diagnosis, sNfL and cNfL were correlated (Spearman r = 0.78, p < 0.001). During follow-up, 47 patients with RIS showed EDA and 36 patients showed CC (median time 12.6 months, 1-86). When compared with low levels, medium and high cNfL (>260 pg/mL) and sNfL (>5.0 pg/mL) levels were predictive of EDA (log rank, p < 0.01 and p = 0.02, respectively). Medium-high cNfL levels were predictive of CC (log rank, p < 0.01). In Cox regression models, cNfL and sNfL were independent factors of EDA, while SC lesions, cNfL, and sNfL were independent factors of CC. DISCUSSION cNfL >260 pg/mL and sNfL >5.0 pg/mL at diagnosis are independent predictive factors of EDA and CC in RIS. Although cNfL predicts disease activity better, sNfL is more accessible than cNfL and can be considered when a lumbar puncture is not performed. CLASSIFICATION OF EVIDENCE This study provides Class II evidence that in people with radiologic isolated syndrome (RIS), initial serum and CSF NfL levels are associated with subsequent evidence of disease activity or clinical conversion.
Collapse
Affiliation(s)
- Manon Rival
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Eric Thouvenot
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France.
| | - Lucile Du Trieu de Terdonck
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Sabine Laurent-Chabalier
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Christophe Demattei
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Ugur Uygunoglu
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Giovanni Castelnovo
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Mikael Cohen
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Darin T Okuda
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Orhun H Kantarci
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Daniel Pelletier
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Christina Azevedo
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Philippe Marin
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Sylvain Lehmann
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Aksel Siva
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Thibault Mura
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| | - Christine Lebrun-Frenay
- From the Department of Neurology (M.R., E.T., G.C.), Nîmes University Hospital Center, Univ. Montpellier; Functional Genomics Institute (M.R., E.T., L.D.T.T., P.M.), Univ. Montpellier, CNRS, INSERM; Department of Biostatistics (S.L.-C., C.D., T.M.), Clinical Epidemiology, Public Health and Innovation in Methdology (BESPIM), Nîmes University Hospital Center, Univ. Montpellier, France; Department of Neurology (U.U., A.S.), Cerrahpasa School of Medecine, University of Istanbul, Turkey; Centre de Ressources et Compétences Sclérose En Plaques (CRCSEP) (M.C., C.L.-F.), CHU de Nice, Hôpital Pasteur 2, Université Côte d'Azur, UR2CA-URRIS, France; UT Southwestern Medical Center (D.T.O.), Dallas, TX; Mayo Clinic (O.H.K.), Rochester, MN; University of South California (D.P., C.A.), Los Angeles; and LBPC-PPC (S.L.), Univ. Montpellier, CHU Montpellier, INM, INSERM, France
| |
Collapse
|
33
|
Ella versus Simoa Serum Neurofilament Assessment to Monitor Treatment Response in Highly Active Multiple Sclerosis Patients. Int J Mol Sci 2022; 23:ijms232012361. [PMID: 36293227 PMCID: PMC9604350 DOI: 10.3390/ijms232012361] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 09/30/2022] [Accepted: 10/10/2022] [Indexed: 11/16/2022] Open
Abstract
The measurement of serum neurofilament light chain (sNfL) is of growing importance in the field of neurology. In the management of multiple sclerosis, it can serve as a useful marker to assess disease activity and treatment response. This paper compares two available methods, namely the Single Molecule Array (Simoa) and the Ella microfluid platform, to measure longitudinal sNfL levels of 42 highly active multiple sclerosis patients treated with alemtuzumab over a period of 36 months. In order to assess the methods agreement, Bland-Altman plots and Passing-Bablok regression were analyzed. Here, we show that despite the fact that Ella measures around 24% higher values than Simoa, both are equally suitable for longitudinal sNfL monitoring.
Collapse
|
34
|
Tondo G, De Marchi F. From Biomarkers to Precision Medicine in Neurodegenerative Diseases: Where Are We? J Clin Med 2022; 11:jcm11154515. [PMID: 35956130 PMCID: PMC9369634 DOI: 10.3390/jcm11154515] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 01/05/2023] Open
Abstract
The biomarkers era grew in the last two decades when several technical and methodological advances have improved the research in neurodegenerative diseases [...]
Collapse
Affiliation(s)
- Giacomo Tondo
- Neurology Unit, S. Andrea Hospital, Department of Translational Medicine, University of Piemonte Orientale, 13100 Vercelli, Italy;
- Division of Neuroscience, IRCCS San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Fabiola De Marchi
- ALS Centre, Neurology Unit, Maggiore della Carità Hospital, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
- Correspondence: ; Tel.: +39-0321-3732137
| |
Collapse
|
35
|
Kölliker Frers RA, Otero-Losada M, Kobiec T, Udovin LD, Aon Bertolino ML, Herrera MI, Capani F. Multidimensional overview of neurofilament light chain contribution to comprehensively understanding multiple sclerosis. Front Immunol 2022; 13:912005. [PMID: 35967312 PMCID: PMC9368191 DOI: 10.3389/fimmu.2022.912005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory neurodegenerative disease characterized by demyelination, progressive axonal loss, and varying clinical presentations. Axonal damage associated with the inflammatory process causes neurofilaments, the major neuron structural proteins, to be released into the extracellular space, reaching the cerebrospinal fluid (CSF) and the peripheral blood. Methodological advances in neurofilaments’ serological detection and imaging technology, along with many clinical and therapeutic studies in the last years, have deepened our understanding of MS immunopathogenesis. This review examines the use of light chain neurofilaments (NFLs) as peripheral MS biomarkers in light of the current clinical and therapeutic evidence, MS immunopathology, and technological advances in diagnostic tools. It aims to highlight NFL multidimensional value as a reliable MS biomarker with a diagnostic-prognostic profile while improving our comprehension of inflammatory neurodegenerative processes, mainly RRMS, the most frequent clinical presentation of MS.
Collapse
Affiliation(s)
- Rodolfo A. Kölliker Frers
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
- Unidad de Parasitología, Hospital J. M. Ramos Mejía, Buenos Aires, Argentina
| | - Matilde Otero-Losada
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
- *Correspondence: Matilde Otero-Losada,
| | - Tamara Kobiec
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Lucas D. Udovin
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
| | - María Laura Aon Bertolino
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
| | - María I. Herrera
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
- Centro de Investigaciones en Psicología y Psicopedagogía (CIPP), Facultad de Psicología y Psicopedagogía, Pontificia Universidad Católica Argentina (UCA), Buenos Aires, Argentina
| | - Francisco Capani
-
Centro de Altos Estudios en Ciencias Humanas y de la Salud, Universidad Abierta Interamericana, Consejo Nacional de Investigaciones Científicas y Técnicas (CAECIHS. UAI-CONICET), Buenos Aires, Argentina
- Departamento de Biología, Universidad Argentina John Kennedy (UAJK), Buenos Aires, Argentina
| |
Collapse
|
36
|
Rival M, Galoppin M, Thouvenot E. Biological Markers in Early Multiple Sclerosis: the Paved Way for Radiologically Isolated Syndrome. Front Immunol 2022; 13:866092. [PMID: 35572543 PMCID: PMC9094445 DOI: 10.3389/fimmu.2022.866092] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/28/2022] [Indexed: 12/25/2022] Open
Abstract
Radiologically Isolated Syndrome (RIS) is characterized by MRI-typical brain lesions fulfilling the 2009 Okuda criteria, detected in patients without clinical conditions suggestive of MS. Half of all RIS patients convert to MS within 10 years. The individual course of the disease, however, is highly variable with 12% of RIS converting directly to progressive MS. Demographic and imaging markers have been associated with the risk of clinical MS in RIS: male sex, younger age, infra-tentorial, and spinal cord lesions on the index scan and gadolinium-enhancing lesions on index or follow-up scans. Although not considered as a distinct MS phenotype, RIS certainly shares common pathological features with early active and progressive MS. In this review, we specifically focus on biological markers that may help refine the risk stratification of clinical MS and disability for early treatment. Intrathecal B-cell activation with cerebrospinal fluid (CSF) oligoclonal bands, elevated kappa free light chains, and cytokine production is specific to MS, whereas neurofilament light chain (NfL) levels reflect disease activity associated with neuroaxonal injury. Specific microRNA profiles have been identified in RIS converters in both CSF and blood. CSF levels of chitinases and glial acidic fibrillary protein (GFAP) reflecting astrogliosis might help predict the evolution of RIS to progressive MS. Innovative genomic, proteomic, and metabolomic approaches have provided several new candidate biomarkers to be explored in RIS. Leveraging data from randomized controlled trials and large prospective RIS cohorts with extended follow-up to identify, as early as possible, biomarkers for predicting greater disease severity would be invaluable for counseling patients, managing treatment, and monitoring.
Collapse
Affiliation(s)
- Manon Rival
- Department of Neurology, Nîmes University Hospital Center, Univ. Montpellier, Nîmes, France.,IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Manon Galoppin
- IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| | - Eric Thouvenot
- Department of Neurology, Nîmes University Hospital Center, Univ. Montpellier, Nîmes, France.,IGF, Univ. Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
37
|
Kahouadji S, Bouillon-Minois JB, Oris C, Durif J, Pereira B, Pinguet J, Rozand A, Schmidt J, Sapin V, Bouvier D. Evaluation of serum neurofilament light in the early management of mTBI patients. Clin Chem Lab Med 2022; 60:1234-1241. [PMID: 35511901 DOI: 10.1515/cclm-2022-0173] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 04/20/2022] [Indexed: 11/15/2022]
Abstract
OBJECTIVES Serum S100B allows a one-third reduction of computed tomography (CT) scans performed for mild traumatic brain injury (mTBI) patients. In this study, we evaluated the diagnostic performance of serum NF-L in the detection of intracranial lesions induced by mTBI. METHODS One hundred seventy-nine adult mTBI patients presenting to the emergency department of Clermont-Ferrand University Hospital with a Glasgow Coma Scale (GCS) score of 14-15 were included. S100B assays were performed for clinical routine while NF-L samples were stored at -80 °C until analysis. CT scans were performed for patients with S100B levels above the decision threshold of 0.10 μg/L. Later, NF-L and S100B levels were compared to CT scan findings to evaluate the biomarkers' performances. RESULTS The area under the ROC curve (AUC) evaluating the diagnostic ability in the prediction of intracranial lesions was 0.72 (95% CI; 0.58-0.87) for S100B and 0.58 (95% CI; 0.45-0.71) for NF-L, the specificities (at a threshold allowing a 100% sensitivity) were 35.7% for S100B, and 28% for NF-L (p=0.096). AUCs of NF-L and S100B for the identification of patients with neurological disorders were statistically different (p<0.001). The AUCs were 0.87 (95% CI; 0.82-0.93) for NF-L and 0.57 (95% CI; 0.48-0.66) for S100B. There was a poor correlation between NF-L and S100B, and NF-L levels were correlated to patients' age (Spearman coefficient of 0.79). CONCLUSIONS NF-L showed poor performances in the early management of mTBI patients. NF-L levels are strongly correlated to neurodegeneration, whether physiological, age-related, or pathological.
Collapse
Affiliation(s)
- Samy Kahouadji
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | | | - Charlotte Oris
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France.,Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France
| | - Julie Durif
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Bruno Pereira
- Biostatistics Unit (DRCI), CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Jérémy Pinguet
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Agathe Rozand
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Jeannot Schmidt
- Adult Emergency Department, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Vincent Sapin
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France.,Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France
| | - Damien Bouvier
- Biochemistry and Molecular Genetic Department, CHU Clermont-Ferrand, Clermont-Ferrand, France.,Université Clermont Auvergne, CNRS, INSERM, GReD, Clermont-Ferrand, France
| |
Collapse
|
38
|
Luigetti M, Di Paolantonio A, Guglielmino V, Romano A, Rossi S, Sabino A, Servidei S, Sabatelli M, Primiano G. Neurofilament light chain as a disease severity biomarker in ATTRv: data from a single-centre experience. Neurol Sci 2022; 43:2845-2848. [PMID: 35094171 DOI: 10.1007/s10072-021-05850-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/20/2021] [Indexed: 01/17/2023]
Abstract
BACKGROUND Hereditary transthyretin amyloidosis (ATTRv) is a treatable multisystem disorder with prevalent peripheral nervous system impairment. Besides neurophysiological measures, there are few markers to monitor disease progression. Neurofilament light chain (NfL) has recently been considered a sensitive biomarker for neuroaxonal damage in this setting. OBJECTIVE To evaluate NfL levels in a cohort of ATTRv patients and pre-symptomatic carriers and correlate the serum concentrations with other markers of disease severity. METHODS We analysed NfL serum from 17 ATTRv patients or carriers and 26 controls. An exhaustive clinical and instrumental evaluation was performed in all patients. RESULTS NfL levels were significantly higher in ATTRv cases when compared with controls. A significant correlation was found between NfL values and NIS scale, Sudoscan values from feet, interventricular septum thickness, and Quality of Life-Diabetic Neuropathy (Norfolk QoL-DN) questionnaire. CONCLUSION We confirm that NfL is a reliable and promising biomarker to evaluate the ATTRv severity and monitor its progression.
Collapse
Affiliation(s)
- Marco Luigetti
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neurologia, Largo A Gemelli 8, 00168, Rome, Italy.
- Università Cattolica del Sacro Cuore, Rome, Italy.
| | | | - Valeria Guglielmino
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neurologia, Largo A Gemelli 8, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Angela Romano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neurologia, Largo A Gemelli 8, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | - Serenella Servidei
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neurologia, Largo A Gemelli 8, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| | - Mario Sabatelli
- Università Cattolica del Sacro Cuore, Rome, Italy
- Centro Clinico NEMO Adulti, Rome, Italy
| | - Guido Primiano
- Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC Neurologia, Largo A Gemelli 8, 00168, Rome, Italy
- Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
39
|
Hirzel C, Grandgirard D, Surial B, Wider MF, Leppert D, Kuhle J, Walti LN, Schefold JC, Spinetti T, Suter-Riniker F, Dijkman R, Leib SL. Neuro-axonal injury in COVID-19: the role of systemic inflammation and SARS-CoV-2 specific immune response. Ther Adv Neurol Disord 2022; 15:17562864221080528. [PMID: 35299779 PMCID: PMC8922213 DOI: 10.1177/17562864221080528] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/28/2022] [Indexed: 12/29/2022] Open
Abstract
Background: In coronavirus disease-2019 (COVID-19) patients, there is increasing evidence of neuronal injury by the means of elevated serum neurofilament light chain (sNfL) levels. However, the role of systemic inflammation and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)–specific immune response with regard to neuronal injury has not yet been investigated. Methods: In a prospective cohort study, we recruited patients with mild–moderate (n = 39) and severe (n = 14) COVID-19 and measured sNfL levels, cytokine concentrations, SARS-CoV-2-specific antibodies including neutralizing antibody titers, and cell-mediated immune responses at enrollment and at 28(±7) days. We explored the association of neuro-axonal injury as by the means of sNfL measurements with disease severity, cytokine levels, and virus-specific immune responses. Results: sNfL levels, as an indicator for neuronal injury, were higher at enrollment and increased during follow-up in severely ill patients, whereas during mild–moderate COVID-19, sNfL levels remained unchanged. Severe COVID-19 was associated with increased concentrations of cytokines assessed [interleukin (IL)-6, IL-8, interleukin-1 beta (IL-1β), and tumor necrosis factor-alpha (TNF-α)], higher anti-spike IgG and anti-nucleocapsid IgG concentrations, and increased neutralizing antibody titers compared with mild–moderate disease. Patients with more severe disease had higher counts of defined SARS-CoV-2-specific T cells. Increases in sNfL concentrations from baseline to day 28(±7) positively correlated with anti-spike protein IgG antibody levels and with titers of neutralizing antibodies. Conclusion: Severe COVID-19 is associated with increased serum concentration of cytokines and subsequent neuronal injury as reflected by increased levels of sNfL. Patients with more severe disease developed higher neutralizing antibody titers and higher counts of SARS-CoV-2-specific T cells during the course of COVID-19 disease. Mounting a pronounced virus-specific humoral and cell-mediated immune response upon SARS-CoV-2 infection did not protect from neuro-axonal damage as by the means of sNfL levels.
Collapse
Affiliation(s)
- Cédric Hirzel
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Denis Grandgirard
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Bernard Surial
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Manon F. Wider
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - David Leppert
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Jens Kuhle
- Neurologic Clinic and Policlinic, Departments of Medicine, Biomedicine, and Clinical Research, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Laura N. Walti
- Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Joerg C. Schefold
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Thibaud Spinetti
- Department of Intensive Care Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | | | - Ronald Dijkman
- Institute for Infectious Diseases, University of Bern, Bern, Switzerland
| | - Stephen L. Leib
- Institute for Infectious Diseases, University of Bern, Friedbuehlstrasse 51, CH-3001 Bern, Switzerland
| |
Collapse
|
40
|
Ziemssen T, Akgun K, Członkowska A, Antos A, Bembenek J, Kurkowska-Jastrzębska I, Przybyłkowski A, Skowrońska M, Smolinski L, Litwin T. Serum Neurofilament Light Chain as a Biomarker of Brain Injury in Wilson's Disease: Clinical and Neuroradiological Correlations. Mov Disord 2022; 37:1074-1079. [PMID: 35114010 DOI: 10.1002/mds.28946] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/11/2022] [Accepted: 01/14/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Clinical scales and neuroimaging are used to monitor nervous system injury in Wilson's disease, while data on serum markers are scarce. OBJECTIVE To investigate whether serum concentrations of neurofilament light chain (sNfL) correlate with brain injury in Wilson's disease patients. METHODS In 61 treatment-naïve patients, the Unified Wilson's Disease Rating Scale and a validated semiquantitative brain magnetic resonance imaging scale were compared with concentrations of sNfL. RESULTS Concentrations of sNfL were significantly higher in patients with neurological disease compared with patients presenting with other forms (39.7 ± 73.4 pg/mL vs. 13.3 ± 9.2 pg/mL; P < 0.01). Moreover, the sNfL concentration positively correlated with neurological severity scores and with acute and chronic brain damage based on the neuroimaging scale. CONCLUSIONS Neurofilament light chain concentrations may be used as a marker of brain injury in Wilson's disease, in addition to the clinical and neuroimaging disease severity scales. © 2022 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Tjalf Ziemssen
- Center of Clinical Neuroscience, Department of Neurology, University Clinic Carl Gustav Carus & Dresden University of Technology, Dresden, Germany
| | - Katja Akgun
- Center of Clinical Neuroscience, Department of Neurology, University Clinic Carl Gustav Carus & Dresden University of Technology, Dresden, Germany
| | - Anna Członkowska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Agnieszka Antos
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Jan Bembenek
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | | | - Adam Przybyłkowski
- Department of Gastroenterology and Internal Medicine, Medical University of Warsaw, Warsaw, Poland
| | - Marta Skowrońska
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Lukasz Smolinski
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| | - Tomasz Litwin
- Second Department of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland
| |
Collapse
|
41
|
Halbgebauer S, Steinacker P, Verde F, Weishaupt J, Oeckl P, von Arnim C, Dorst J, Feneberg E, Mayer B, Rosenbohm A, Silani V, Ludolph AC, Otto M. Comparison of CSF and serum neurofilament light and heavy chain as differential diagnostic biomarkers for ALS. J Neurol Neurosurg Psychiatry 2022; 93:68-74. [PMID: 34417339 DOI: 10.1136/jnnp-2021-327129] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Elevated levels of neurofilament light (NfL) and heavy (NfH) chain in amyotrophic lateral sclerosis (ALS) cerebrospinal fluid (CSF) and serum reflect neuro-axonal degeneration and are used as diagnostic biomarkers. However, studies comparing the differential diagnostic potential for ALS of all four parameters are missing. Here, we measured serum NfL/NfH and CSF NfL/NfH in a large cohort of ALS and other neurological disorders and analysed the differential diagnostic potential. METHODS In total CSF and serum of 294 patients were analysed. The diagnostic groups comprised: ALS (n=75), frontotemporal lobar degeneration (FTLD) (n=33), Alzheimer's disease (n=20), Parkinson's disease (dementia) (n=18), Creutzfeldt-Jakob disease (n=11), non-neurodegenerative controls (n=77) (Con) and 60 patients who were seen under the direct differential diagnosis of a patient with ALS (Con.DD). RESULTS CSF and serum NfL and NfH showed significantly increased levels in ALS (p<0.0001) compared with Con and Con.DD. The difference between ALS and FTLD was markedly stronger for NfH than for NfL. CSF and serum NfL demonstrated a stronger correlation (r=0.84 (95% CI 0.80 to 0.87), p<0.001) than CSF and serum NfH (r=0.68 (95% CI 0.61 to 0.75), p<0.0001). Comparing ALS and Con.DD, receiver operating characteristic analysis revealed the best area under the curve (AUC) value for CSF NfL (AUC=0.94, 95% CI 0.91 to 0.98), followed by CSF NfH (0.93, 95% CI 0.88 to 0.98), serum NfL (0.93, 95% CI 0.89 to 0.97) and serum NfH (0.88, 95% CI 0.82 to 0.94). CONCLUSION Our results demonstrate that CSF NfL and NfH as well as serum NfL are equally suited for the differential diagnosis of ALS, whereas serum NfH appears to be slightly less potent.
Collapse
Affiliation(s)
| | | | - Federico Verde
- Department of Neurology - Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy.,Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| | - Jochen Weishaupt
- Department of Neurology, Institute for Neurodegeneration, Universitätsmedizin Mannheim, Mannheim, Germany
| | - Patrick Oeckl
- Neurology, University of Ulm, Ulm, Germany.,Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE e.V.), Ulm, Germany
| | | | | | - Emily Feneberg
- Department of Neurology, University Hospital Rechts der Isar, Munich, Bayern, Germany
| | - Benjamin Mayer
- Institute for Epidemiology and Medical Biometry, Ulm University, Ulm, Germany
| | | | - Vincenzo Silani
- Department of Neurology - Stroke Unit and Laboratory of Neuroscience, Istituto Auxologico Italiano Istituto di Ricovero e Cura a Carattere Scientifico, Milano, Italy.,Department of Pathophysiology and Transplantation, "Dino Ferrari" Center, Università degli Studi di Milano, Milano, Italy
| | | | - Markus Otto
- Neurology, University of Ulm, Ulm, Germany .,Department of Neurology, University clinic, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| |
Collapse
|
42
|
Palmeri S, Ponzano M, Ivaldi F, Signori A, Lapucci C, Casella V, Ferrò MT, Vigo T, Inglese M, Mancardi GL, Uccelli A, Laroni A. Impact of Natural Killer (NK) Cells on Immune Reconstitution, and Their Potential as a Biomarker of Disease Activity, in Alemtuzumab-Treated Patients with Relapsing Remitting Multiple Sclerosis: An Observational Study. CNS Drugs 2022; 36:83-96. [PMID: 34894339 DOI: 10.1007/s40263-021-00875-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/26/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Defining immune mechanisms leading to multiple sclerosis (MS) is difficult, due to the great inter-individual difference in immune system responses. The anti-CD52 antibody alemtuzumab transiently abolishes differences in immune parameters among individuals, allowing analysis of subsequent immune cell repopulation patterns, and their possible role in MS. OBJECTIVE To evaluate the correlation between innate and adaptive immune cell subsets and disease activity in MS in the context of treatment with alemtuzumab. METHODS A two-center observational cohort of patients treated with alemtuzumab underwent immune profiling of T, B, and natural killer (NK) cells, biomarker, clinical and radiological follow-up. RESULTS After treatment, the percentage of NK and B cells increased; NK, T- and B-cell populations underwent a profound rearrangement. Within the effector T-cell compartment, treatment led to a transient decrease, followed by an increase, of T-helper 1 cells, and to a transient decrease of T-helper 17 cells. Within the T-regulatory compartment, naïve T-regulatory cells increased. Within the B-cell compartment, memory B cells and mature B cells decreased, whereas transitional B cells increased. Within the NK cell compartment, CD56bright NK cells increased. Subjects without disease activity had a greater decrease in serum NfL and greater NK cell/CD3+ T cell ratio. NK cell numbers at baseline and after treatment influenced reconstitution of T and B cells, being inversely correlated with the reconstitution of proinflammatory CD3+ T cells and mature B cells, and directly correlated to the increase in transitional B cells. CONCLUSIONS The results of this study provide novel evidence that NK cells influence reconstitution of adaptive immune cells upon alemtuzumab and that patients with a successful response to alemtuzumab have an early immune reconstitution dominated by NK cells.
Collapse
Affiliation(s)
- Serena Palmeri
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Largo Daneo 3, 16132, Genoa, Italy.,University of Genova and IRCCS Istituto Giannina Gaslini, Genoa, Italy
| | - Marta Ponzano
- Department of Health Sciences, Section of Biostatistics, University of Genova, Genoa, Italy
| | - Federico Ivaldi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Largo Daneo 3, 16132, Genoa, Italy
| | - Alessio Signori
- Department of Health Sciences, Section of Biostatistics, University of Genova, Genoa, Italy
| | - Caterina Lapucci
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Largo Daneo 3, 16132, Genoa, Italy.,IRRCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, Genoa, Italy
| | - Valentina Casella
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Largo Daneo 3, 16132, Genoa, Italy
| | - Maria Teresa Ferrò
- Neuroimmunology, Center for Multiple Sclerosis, Cerebrovascular Department, ASST Crema, Crema, Italy
| | - Tiziana Vigo
- IRRCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, Genoa, Italy
| | - Matilde Inglese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Largo Daneo 3, 16132, Genoa, Italy.,IRRCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, Genoa, Italy
| | - Giovanni Luigi Mancardi
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Largo Daneo 3, 16132, Genoa, Italy
| | - Antonio Uccelli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Largo Daneo 3, 16132, Genoa, Italy.,IRRCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, Genoa, Italy
| | - Alice Laroni
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health, University of Genova, Largo Daneo 3, 16132, Genoa, Italy. .,IRRCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, Genoa, Italy.
| |
Collapse
|
43
|
Lascarrou JB, Guichard E, Reignier J, Le Gouge A, Pouplet C, Martin S, Lacherade JC, Colin G. Impact of rewarming rate on interleukin-6 levels in patients with shockable cardiac arrest receiving targeted temperature management at 33 °C: the ISOCRATE pilot randomized controlled trial. Crit Care 2021; 25:434. [PMID: 34920723 PMCID: PMC8680374 DOI: 10.1186/s13054-021-03842-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/24/2021] [Indexed: 02/06/2023] Open
Abstract
Purpose While targeted temperature management (TTM) has been recommended in patients with shockable cardiac arrest (CA) and suggested in patients with non-shockable rhythms, few data exist regarding the impact of the rewarming rate on systemic inflammation. We compared serum levels of the proinflammatory cytokine interleukin-6 (IL6) measured with two rewarming rates after TTM at 33 °C in patients with shockable out-of-hospital cardiac arrest (OHCA). Methods ISOCRATE was a single-center randomized controlled trial comparing rewarming at 0.50 °C/h versus 0.25 °C/h in patients coma after shockable OHCA in 2016–2020. The primary outcome was serum IL6 level 24–48 h after reaching 33 °C. Secondary outcomes included the day-90 Cerebral Performance Category (CPC) and the 48-h serum neurofilament light-chain (NF-L) level. Results We randomized 50 patients. The median IL6 area-under-the-curve was similar between the two groups (12,389 [7256–37,200] vs. 8859 [6825–18,088] pg/mL h; P = 0.55). No significant difference was noted in proportions of patients with favorable day-90 CPC scores (13/25 patients at 0.25 °C/h (52.0%; 95% CI 31.3–72.2%) and 13/25 patients at 0.50 °C/h (52.0%; 95% CI 31.3–72.2%; P = 0.99)). Median NF-L levels were not significantly different between the 0.25 °C/h and 0.50 °C/h groups (76.0 pg mL, [25.5–3074.0] vs. 192 pg mL, [33.6–4199.0]; P = 0.43; respectively). Conclusion In our RCT, rewarming from 33 °C at 0.25 °C/h, compared to 0.50 °C/h, did not decrease the serum IL6 level after shockable CA. Further RCTs are needed to better define the optimal TTM strategy for patients with CA. Trial registration ClinicalTrials.gov, NCT02555254. Registered September 14, 2015. Take-Home Message: Rewarming at a rate of 0.25 °C/h, compared to 0.50 °C, did not result in lower serum IL6 levels after achievement of hypothermia at 33 °C in patients who remained comatose after shockable cardiac arrest. No associations were found between the slower rewarming rate and day-90 functional outcomes or mortality. 140-character Tweet: Rewarming at 0.25 °C versus 0.50 °C did not decrease serum IL6 levels after hypothermia at 33 °C in patients comatose after shockable cardiac arrest. Supplementary Information The online version contains supplementary material available at 10.1186/s13054-021-03842-9.
Collapse
Affiliation(s)
- Jean-Baptiste Lascarrou
- Médecine Intensive Reanimation, University Hospital Center, 30 Boulevard Jean Monnet, 44093, Nantes Cedex 1, France. .,Paris Cardiovascular Research Center, INSERM U970, Paris, France. .,AfterROSC Network, Paris, France.
| | | | - Jean Reignier
- Médecine Intensive Reanimation, University Hospital Center, 30 Boulevard Jean Monnet, 44093, Nantes Cedex 1, France
| | | | - Caroline Pouplet
- Médecine Intensive Reanimation, District Hospital Center, La Roche-sur-Yon, France
| | - Stéphanie Martin
- Médecine Intensive Reanimation, District Hospital Center, La Roche-sur-Yon, France
| | | | - Gwenhael Colin
- AfterROSC Network, Paris, France.,Médecine Intensive Reanimation, District Hospital Center, La Roche-sur-Yon, France
| | | |
Collapse
|
44
|
The accuracy of various neuro-prognostication algorithms and the added value of neurofilament light chain dosage for patients resuscitated from shockable cardiac arrest: An ancillary analysis of the ISOCRATE study. Resuscitation 2021; 171:1-7. [PMID: 34915084 DOI: 10.1016/j.resuscitation.2021.12.009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 02/07/2023]
Abstract
PURPOSE In current guidelines, neurological prognostication after cardiopulmonary resuscitation is based on a multimodal approach bundled in algorithms. Biomarkers are of particular interest because they are unaffected by interpretation bias. We assessed the predictive value of serum neurofilament light chains (NF-L) in patients with a shockable rhythm who received cardiopulmonary resuscitation, and evaluated the predictive value of a modified algorithm where NF-L dosage is included. METHODS All patients who were included participated in the randomized ISOCRATE trial. NF-L values 48 h after ROSC were compared for patients with a good (Cerebral Performance Category (CPC) 1 or 2) and a poor prognosis (CPC 3 to 5 or death). The benefit of adding NF-L dosage to the current guideline algorithm was then assessed for NF-L thresholds of 500 and 1,200 pg/ml as previously described. RESULTS NF-L was assayed for 49 patients. In patients with good versus those with poor outcomes, median NF-L values at 48 h were 72 ± 78 and 7,755 ± 9,501 pg/ml respectively (P < 0.0001; AUC [95 %CI] = 0.87 [0.74;0.99]). The sensitivity of the modified ESICM/ERC 2021 algorithm after adding NF-L with thresholds of 500 and 1,200 pg/ml was 0.74 (CI 95% 0.51-0.88) and 0.68 (CI 95% 0.46-0.86), respectively, versus 0.53 (CI 95% 0.32-0.73) for the unmodified algorithm. In three instances the specificity was 1. CONCLUSION High NF-L plasma levels 48 h after cardiac arrest was significantly associated with a poor outcome. Adjunction to the current guideline algorithm of an NF-L assay with a 500 pg/ml threshold 48 h after cardiac arrest provided the best sensitivity compared to the algorithm alone, while specificity remained excellent.
Collapse
|
45
|
Peters N. Neurofilament Light Chain as a Biomarker in Cerebral Small-Vessel Disease. Mol Diagn Ther 2021; 26:1-6. [PMID: 34825310 DOI: 10.1007/s40291-021-00566-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/10/2021] [Indexed: 03/26/2024]
Abstract
Neurofilament light chain is part of the neuroaxonal cytoskeleton and upon disease-related neuroaxonal damage, it is released to the extracellular space and, based on modern highly sensitive assays, can also be detected in the peripheral blood. Thus, neurofilament light chain in the blood is an emerging marker of neurological disease, including age-related conditions, such as neurodegenerative but also neurovascular diseases. Recently, blood neurofilament light chain has been shown to serve as a potentially interesting marker of disease burden and prognostication also in cerebral small-vessel disease, a condition that is highly prevalent in elderly subjects. Small-vessel disease is a progressive condition, often related to common vascular risk factors such as arterial hypertension and is an important cause of stroke, vascular cognitive impairment, and dementia. As an age-dependent condition, small-vessel disease may occur concomitantly with neurodegenerative diseases, with both conditions having a potential impact on clinical status or cognitive performance. The aim of the present article is to give an overview on the current knowledge on neurofilament light chain as a disease or progression marker in small-vessel disease.
Collapse
Affiliation(s)
- Nils Peters
- Stroke Center, Klinik Hirslanden, Zurich, Switzerland. .,Department of Neurology and Stroke Center, University Hospital Basel, University of Basel, Basel, Switzerland. .,Neurorehabilitation Unit, Felix Platter Hospital, University of Basel and University Center for Medicine of Aging, Basel, Switzerland.
| |
Collapse
|
46
|
Plasma Neurofilament Light (NfL) in Patients Affected by Niemann-Pick Type C Disease (NPCD). J Clin Med 2021; 10:jcm10204796. [PMID: 34682919 PMCID: PMC8537496 DOI: 10.3390/jcm10204796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/15/2021] [Accepted: 10/15/2021] [Indexed: 12/12/2022] Open
Abstract
(1) Background: Niemann-Pick type C disease (NPCD) is an autosomal recessive lysosomal storage disorder caused by mutations in the NPC1 or NPC2 genes. The clinical presentation is characterized by visceral and neurological involvement. Apart from a small group of patients presenting a severe perinatal form, all patients develop progressive and fatal neurological disease with an extremely variable age of onset. Different biomarkers have been identified; however, they poorly correlate with neurological disease. In this study we assessed the possible role of plasma NfL as a neurological disease-associated biomarker in NPCD. (2) Methods: Plasma NfL levels were measured in 75 healthy controls and 26 patients affected by NPCD (24 NPC1 and 2 NPC2; 39 samples). (3) Results: Plasma NfL levels in healthy controls correlated with age and were significantly lower in pediatric patients as compared to adult subjects (p = 0.0017). In both pediatric and adult NPCD patients, the plasma levels of NfL were significantly higher than in age-matched controls (p < 0.0001). Most importantly, plasma NfL levels in NPCD patients with neurological involvement were significantly higher than the levels found in patients free of neurological signs at the time of sampling, both in the pediatric and the adult group (p = 0.0076; p = 0.0032, respectively). Furthermore, in adults the NfL levels in non-neurological patients were comparable with those found in age-matched controls. No correlations between plasma NfL levels and NPCD patient age at sampling or plasma levels of cholestan 3β-5α-6β-triol were found. (4) Conclusions: These data suggest a promising role of plasma NfL as a possible neurological disease-associated biomarker in NPCD.
Collapse
|
47
|
Yuan A, Nixon RA. Neurofilament Proteins as Biomarkers to Monitor Neurological Diseases and the Efficacy of Therapies. Front Neurosci 2021; 15:689938. [PMID: 34646114 PMCID: PMC8503617 DOI: 10.3389/fnins.2021.689938] [Citation(s) in RCA: 122] [Impact Index Per Article: 40.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 09/02/2021] [Indexed: 01/01/2023] Open
Abstract
Biomarkers of neurodegeneration and neuronal injury have the potential to improve diagnostic accuracy, disease monitoring, prognosis, and measure treatment efficacy. Neurofilament proteins (NfPs) are well suited as biomarkers in these contexts because they are major neuron-specific components that maintain structural integrity and are sensitive to neurodegeneration and neuronal injury across a wide range of neurologic diseases. Low levels of NfPs are constantly released from neurons into the extracellular space and ultimately reach the cerebrospinal fluid (CSF) and blood under physiological conditions throughout normal brain development, maturation, and aging. NfP levels in CSF and blood rise above normal in response to neuronal injury and neurodegeneration independently of cause. NfPs in CSF measured by lumbar puncture are about 40-fold more concentrated than in blood in healthy individuals. New ultra-sensitive methods now allow minimally invasive measurement of these low levels of NfPs in serum or plasma to track disease onset and progression in neurological disorders or nervous system injury and assess responses to therapeutic interventions. Any of the five Nf subunits - neurofilament light chain (NfL), neurofilament medium chain (NfM), neurofilament heavy chain (NfH), alpha-internexin (INA) and peripherin (PRPH) may be altered in a given neuropathological condition. In familial and sporadic Alzheimer's disease (AD), plasma NfL levels may rise as early as 22 years before clinical onset in familial AD and 10 years before sporadic AD. The major determinants of elevated levels of NfPs and degradation fragments in CSF and blood are the magnitude of damaged or degenerating axons of fiber tracks, the affected axon caliber sizes and the rate of release of NfP and fragments at different stages of a given neurological disease or condition directly or indirectly affecting central nervous system (CNS) and/or peripheral nervous system (PNS). NfPs are rapidly emerging as transformative blood biomarkers in neurology providing novel insights into a wide range of neurological diseases and advancing clinical trials. Here we summarize the current understanding of intracellular NfP physiology, pathophysiology and extracellular kinetics of NfPs in biofluids and review the value and limitations of NfPs and degradation fragments as biomarkers of neurodegeneration and neuronal injury.
Collapse
Affiliation(s)
- Aidong Yuan
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
| | - Ralph A. Nixon
- Center for Dementia Research, Nathan Kline Institute, Orangeburg, NY, United States
- Department of Psychiatry, NYU Neuroscience Institute, New York, NY, United States
- Department of Cell Biology, New York University Grossman School of Medicine, (NYU), Neuroscience Institute, New York, NY, United States
| |
Collapse
|
48
|
Darios F, Coarelli G, Durr A. Genetics in hereditary spastic paraplegias: Essential but not enough. Curr Opin Neurobiol 2021; 72:8-14. [PMID: 34403957 DOI: 10.1016/j.conb.2021.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/04/2021] [Accepted: 07/14/2021] [Indexed: 12/01/2022]
Abstract
Hereditary spastic paraplegias consist of a group of rare neurodegenerative diseases characterized by lower limb spasticity. These inherited Mendelian disorders show high genetic variability associated with wide clinical diversity. Pathophysiological investigations have suggested that mutations in genes affecting the same cellular pathway generally lead to similar clinical symptoms, highlighting the importance of genetic mutation in these diseases. However, phenotype-genotype correlations have failed to explain the observed large inter-individual variability linked to mutations in a single gene, suggesting that genetics alone is not sufficient to explain symptom diversity. The identification of biomarkers, such as neurofilament light chain, could fill the gap and predict disease evolution.
Collapse
Affiliation(s)
- Frédéric Darios
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm U1127, CNRS UMR7225, Paris, 75013, France.
| | - Giulia Coarelli
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm U1127, CNRS UMR7225, Paris, 75013, France; AP-HP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France
| | - Alexandra Durr
- Sorbonne Université, Institut du Cerveau - Paris Brain Institute - ICM, Inserm U1127, CNRS UMR7225, Paris, 75013, France; AP-HP, Hôpital de la Pitié Salpêtrière, Paris, 75013, France.
| |
Collapse
|
49
|
Barro C, Zetterberg H. The blood biomarkers puzzle - A review of protein biomarkers in neurodegenerative diseases. J Neurosci Methods 2021; 361:109281. [PMID: 34237384 DOI: 10.1016/j.jneumeth.2021.109281] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 06/07/2021] [Accepted: 07/04/2021] [Indexed: 02/04/2023]
Abstract
Neurodegenerative diseases are heterogeneous in their cause and clinical presentation making clinical assessment and disease monitoring challenging. Because of this, there is an urgent need for objective tools such as fluid biomarkers able to quantitate different aspects of the disease. In the last decade, technological improvements and awareness of the importance of biorepositories led to the discovery of an evolving number of fluid biomarkers covering the main characteristics of neurodegenerative diseases such as neurodegeneration, protein aggregates and inflammation. The ability to quantitate each aspect of the disease at a high definition enables a more precise stratification of the patients at inclusion in clinical trials, hence reducing the noise that may hamper the detection of therapeutical efficacy and allowing for smaller but likewise powered studies, which particularly improves the ability to start clinical trials for rare neurological diseases. Moreover, the use of fluid biomarkers has the potential to support a targeted therapeutical intervention, as it is now emerging for the treatment of amyloid-beta deposition in patients suffering from Alzheimer's disease. Here we review the knowledge that evolved from the measurement of fluid biomarker proteins in neurodegenerative conditions.
Collapse
Affiliation(s)
- Christian Barro
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Boston, MA, USA; Department of Neurology, Harvard Medical School, Boston, MA, USA.
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, the Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden; Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden; Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, London, UK; UK Dementia Research Institute at UCL, London, UK; Hong Kong Center for Neurodegenerative Diseases, Hong Kong, China
| |
Collapse
|
50
|
Jakimovski D, Dwyer MG, Bergsland N, Weinstock-Guttman B, Zivadinov R. Disease biomarkers in multiple sclerosis: current serum neurofilament light chain perspectives. Neurodegener Dis Manag 2021; 11:329-340. [PMID: 34196596 DOI: 10.2217/nmt-2020-0058] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The continuous neuroinflammatory and neurodegenerative pathology in multiple sclerosis (MS) results in irreversible accumulation of physical and cognitive disability. Reliable early detection of MS disease processes can aid in the diagnosis, monitoring and treatment management of MS patients. Recent assay technological advancements now allow reliable quantification of serum-based neurofilament light chain (sNfL) levels, which provide temporal information regarding the degree of neuroaxonal damage. The relationship and predictive value of sNfL with clinical and cognitive outcomes, other paraclinical measures and treatment response is reviewed. sNfL measurement is an emerging, noninvasive and disease-responsive MS biomarker that is currently utilized in research and clinical trial settings. Understanding sNfL confounders and further assay standardization will allow clinical implementation of this biomarker.
Collapse
Affiliation(s)
- Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.,IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, 20148, Italy
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment & Research Center, Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center (BNAC), Department of Neurology, Jacobs School of Medicine & Biomedical Sciences, University at Buffalo, State University of New York, Buffalo, NY 14203, USA.,Center for Biomedical Imaging at Clinical Translational Science Institute, University at Buffalo, State University of New York, Buffalo, NY 14203, USA
| |
Collapse
|