1
|
Wang Y, Zhao Z, Meng F, Kong X. Accurate prenatal diagnosis of facioscapulohumeral muscular dystrophy 1 using nanopore sequencing. J Med Genet 2024:jmg-2023-109832. [PMID: 39461849 DOI: 10.1136/jmg-2023-109832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 10/06/2024] [Indexed: 10/29/2024]
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy 1 (FSHD1) is an autosomal dominant muscular disorder mainly caused by the contraction and hypomethylation of the D4Z4 repeat array in chromosome 4q35. Prenatal diagnosis of FSHD1 is challenging due to the highly repetitive and long genomic structure. In this study, a pregnant woman diagnosed with FSHD1 using optical genome mapping sought assistance for a healthy offspring. METHODS At the 17th week of gestation, she underwent amniocentesis, and genomic DNA (gDNA) was extracted from amniocytes. Whole-genome sequencing of the gDNA was performed using the nanopore MinION platform. RESULTS Despite a sequencing depth of only 7.3×, bioinformatic analyses revealed that the fetus inherited four D4Z4 repeat units with the permissive 4qA from the mother and the eight D4Z4 repeat units with the non-permissive 4qB from the father. To validate the results, SNP-based linkage analyses were conducted with gDNA from the proband, the proband's father and proband's amniocytes. Results indicated that the fetus inherited the maternal pathogenic haplotype based on 144 informative SNPs. Linkage analysis was consistent with the nanopore sequencing. CONCLUSION Nanopore sequencing proves to be an accurate and direct method for genetic testing of monogenic diseases at the single-nucleotide level. This study represents the first application of nanopore sequencing in the prenatal diagnosis of FSHD1, providing a significant advantage for patients with de novo mutations.
Collapse
Affiliation(s)
- Yanan Wang
- Genetic and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenhua Zhao
- Genetic and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Fei Meng
- Department of Obstetrics and Gynecology, Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xiangdong Kong
- Genetic and Prenatal Diagnosis Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
2
|
Jiao K, Zhang J, Li Q, Lv X, Yu Y, Zhu B, Zhong H, Yu X, Song J, Ke Q, Qian F, Luan X, Zhang X, Chang X, Wang L, Liu M, Dong J, Zou Z, Bu B, Jiang H, Liu L, Li Y, Yue D, Chang X, Zheng Y, Wang N, Gao M, Xia X, Cheng N, Wang T, Luo SS, Xi J, Lin J, Lu J, Zhao C, Yang H, Lin P, Hong D, Zhao Z, Wang Z, Zhu W. Novel variants and genotype-phenotype correlation in a multicentre cohort of GNE myopathy in China. J Med Genet 2024; 61:1053-1061. [PMID: 39332896 DOI: 10.1136/jmg-2024-110149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 09/11/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND GlcNAc2-epimerase (GNE) myopathy is a rare autosomal recessive disorder caused by pathogenic variants in the GNE gene, which is essential for the sialic acid biosynthesis pathway. OBJECTIVE This multi-centre study aimed to delineate the clinical phenotype and GNE variant spectrum in Chinese patients, enhancing our understanding of the genetic diversity and clinical manifestation across different populations. METHODS We retrospectively analysed GNE variants from 113 patients, integrating these data with external GNE variants from online databases for a global perspective, examining their consequences, distribution, ethnicity and severity. RESULTS This study revealed 97 distinct GNE variants, including 35 (36.08%) novel variants. Two more patients with deep intronic variant c.862+870C>T were identified, while whole genome sequencing (WGS) uncovered another two novel intronic variants: c.52-8924G>T and c.1505-12G>A. Nanopore long reads sequencing (LRS) and further PCR analysis verified a 639 bp insertion at chr9:36249241. Missense variants predominantly located in the epimerase/kinase domain coding region, indicating the impairment of catalytic function as a key pathogenic consequence. Comparative studies with Japanese, Korean and Jewish, our cohorts showed later onset ages by 2 years. The high allele frequency of the non-catalytic GNE variant, c.620A>T, might underlie the milder phenotype of Chinese patients. CONCLUSIONS Comprehensive techniques such as WGS and Nanopore LRS warrants the identifying of GNE variants. Patients with the non-catalytic GNE variant, c.620A>T, had a milder disease progression and later wheelchair use.
Collapse
Affiliation(s)
- Kexin Jiao
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Jialong Zhang
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Qiuxiang Li
- Department of Neurology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Xiaoqing Lv
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yanyan Yu
- Department of Neurology and Department of Medical Genetics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Bochen Zhu
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Huahua Zhong
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Xu'en Yu
- Department of Neurology, The Affiliated Hospital of Institute of Neurology, Anhui University of Chinese Medicine, Hefei, China
| | - Jia Song
- Department of Neurology, Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Qing Ke
- Department of Neurology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Fangyuan Qian
- Department of Neurology, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| | - Xinghua Luan
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai, China
| | - Xiaojie Zhang
- Department of Neurology, Shanghai Sixth People's Hospital, Shanghai, China
| | - Xueli Chang
- Department of Neurology, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Liang Wang
- Department of Neurology, Sun Yat-sen University First Affiliated Hospital, Guangzhou, Guangdong, China
| | - Meirong Liu
- Department of Neurology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jihong Dong
- Department of Neurology, Zhongshan Hospital Fudan University, Shanghai, Shanghai, China
| | - Zhangyu Zou
- Department of Neurology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Bitao Bu
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Haishan Jiang
- Department of Neurology, Southern Medical University Nanfang Hospital, Guangzhou, China, China
| | - LingChun Liu
- Department of Neurology, First People's Hospital of Yunnan, Kunming, Yunnan, China
| | - Yue Li
- Department of Neurology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dongyue Yue
- Department of Neurology, Jing'an District Centre Hospital of Shanghai, Shanghai, Shanghai, China
| | - Xuechun Chang
- Department of Integrative Biology and Physiology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Yongsheng Zheng
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Ningning Wang
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Mingshi Gao
- Department of Pathology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Xingyu Xia
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Nachuan Cheng
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Tao Wang
- Department of Anesthesiology, Zhongshan hospital, Shanghai, China
- Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science,Fudan University, Shanghai, China
| | - Su-Shan Luo
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Jianying Xi
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Jie Lin
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Jiahong Lu
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| | - Huan Yang
- Department of Neurology and National Clinical Research Center for Geriatric Disorders, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Pengfei Lin
- Department of Neurology and Research Institute of Neuromuscular and Neurodegenerative Diseases, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Daojun Hong
- Department of Neurology and Department of Medical Genetics, First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| | - Zhe Zhao
- Department of Neuromuscular Disease, Third Affiliated Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| | - Zhiqiang Wang
- The Department of Neurology and Institute of Neurology, The First Affiliated Hospital of Fujian Medical University, Xiamen, Fujian, China
| | - Wenhua Zhu
- Department of Neurology, Huashan Hospital Fudan University, Shanghai, Shanghai, China
| |
Collapse
|
3
|
van Karnebeek CDM, O'Donnell-Luria A, Baynam G, Baudot A, Groza T, Jans JJM, Lassmann T, Letinturier MCV, Montgomery SB, Robinson PN, Sansen S, Mehrian-Shai R, Steward C, Kosaki K, Durao P, Sadikovic B. Leaving no patient behind! Expert recommendation in the use of innovative technologies for diagnosing rare diseases. Orphanet J Rare Dis 2024; 19:357. [PMID: 39334316 PMCID: PMC11438178 DOI: 10.1186/s13023-024-03361-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
Genetic diagnosis plays a crucial role in rare diseases, particularly with the increasing availability of emerging and accessible treatments. The International Rare Diseases Research Consortium (IRDiRC) has set its primary goal as: "Ensuring that all patients who present with a suspected rare disease receive a diagnosis within one year if their disorder is documented in the medical literature". Despite significant advances in genomic sequencing technologies, more than half of the patients with suspected Mendelian disorders remain undiagnosed. In response, IRDiRC proposes the establishment of "a globally coordinated diagnostic and research pipeline". To help facilitate this, IRDiRC formed the Task Force on Integrating New Technologies for Rare Disease Diagnosis. This multi-stakeholder Task Force aims to provide an overview of the current state of innovative diagnostic technologies for clinicians and researchers, focusing on the patient's diagnostic journey. Herein, we provide an overview of a broad spectrum of emerging diagnostic technologies involving genomics, epigenomics and multi-omics, functional testing and model systems, data sharing, bioinformatics, and Artificial Intelligence (AI), highlighting their advantages, limitations, and the current state of clinical adaption. We provide expert recommendations outlining the stepwise application of these innovative technologies in the diagnostic pathways while considering global differences in accessibility. The importance of FAIR (Findability, Accessibility, Interoperability, and Reusability) and CARE (Collective benefit, Authority to control, Responsibility, and Ethics) data management is emphasized, along with the need for enhanced and continuing education in medical genomics. We provide a perspective on future technological developments in genome diagnostics and their integration into clinical practice. Lastly, we summarize the challenges related to genomic diversity and accessibility, highlighting the significance of innovative diagnostic technologies, global collaboration, and equitable access to diagnosis and treatment for people living with rare disease.
Collapse
Affiliation(s)
- Clara D M van Karnebeek
- Departments of Pediatrics and Human Genetics, Emma Center for Personalized Medicine, Amsterdam Gastro-Enterology Endocrinology Metabolism, Amsterdam University Medical Centers, Amsterdam, The Netherlands.
| | - Anne O'Donnell-Luria
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, USA
| | - Gareth Baynam
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, MMG, Marseille, France
| | - Anaïs Baudot
- Aix Marseille Univ, INSERM, Marseille Medical Genetics, MMG, Marseille, France
| | - Tudor Groza
- Rare Care Centre, Perth Children's Hospital and Western Australian Register of Developmental Anomalies, King Edward Memorial Hospital, Perth, Australia
- European Molecular Biology Laboratory (EMBL-EBI), European Bioinformatics Institute, Hinxton, UK
| | - Judith J M Jans
- Department of Genetics, Section Metabolic Diagnostics, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | - Ruty Mehrian-Shai
- Pediatric Brain Cancer Molecular Lab, Sheba Medical Center, Ramat Gan, Israel
| | | | | | - Patricia Durao
- The Cure and Action for Tay-Sachs (CATS) Foundation, Altringham, UK
| | - Bekim Sadikovic
- Verspeeten Clinical Genome Centre, London Health Sciences, London, Canada
- Department of Pathology and Laboratory Medicine, Western University, London, Canada
| |
Collapse
|
4
|
Bürger O, Humbel A, Ivanovski I, Baumer A, Rauch A. Further evidence for an attenuated phenotype of in-frame DMD deletions affecting the central rod domain of dystrophin around exon 48. Am J Med Genet A 2024:e63842. [PMID: 39158144 DOI: 10.1002/ajmg.a.63842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 08/20/2024]
Abstract
Alterations in the X-linked recessive DMD gene cause dystrophinopathies with a broad clinical spectrum most commonly ranging from Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy (BMD) to cardiomyopathy or intellectual disability. Carrier females are commonly unaffected but may show signs of dystrophinopathies. In addition, few asymptomatic male carriers with elevated creatine kinase levels have been described possibly related to deletions around exon 48. We now further support this assumed genotype-phenotype correlation by reporting an attenuated phenotype in a three-generation family with a deletion of exon 48 of the DMD gene with clinically unaffected carrier males and females. We confirmed deep intronic breakpoints in this family by genome sequencing, but such data are not available for published cases. Therefore, further observations are needed to clarify genotype-phenotype correlation in this region, since few reports also describe predicted in-frame copy number changes affecting this region in association with classical signs of dystrophinopathies.
Collapse
Affiliation(s)
- Olga Bürger
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Angelika Humbel
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Ivan Ivanovski
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Alessandra Baumer
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
| | - Anita Rauch
- Institute of Medical Genetics, University of Zurich, Schlieren, Switzerland
- Pediatric University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
5
|
Rajamani G, Stafki SA, Daugherty AL, Mantyh WG, Littel HR, Bruels CC, Pacak CA, Robbins PD, Niedernhofer LJ, Abiona A, Giunti P, Mohammed S, Laugel V, Kang PB. Cognitive Decline and Other Late-Stage Neurologic Complications in Cockayne Syndrome. Neurol Clin Pract 2024; 14:e200309. [PMID: 38808024 PMCID: PMC11129329 DOI: 10.1212/cpj.0000000000200309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/21/2024] [Indexed: 05/30/2024]
Abstract
Background and Objectives Cockayne syndrome (CS) is an ultra-rare, autosomal recessive, premature aging disorder characterized by impaired growth, neurodevelopmental delays, neurodegeneration, polyneuropathy, and other multiorgan system complications. The anatomic aspects of CS neurodegeneration have long been known from postmortem examinations and MRI studies, but the clinical features of this neurodegeneration are not well characterized, especially at later stages of the disease. Methods This was a retrospective observational study in which individuals with CS who survived beyond 18 years were ascertained at 3 centers in the United States, France, and the United Kingdom. Medical records were examined to determine the frequencies and features of the following neurologic complications: neurocognitive/neuropsychiatric decline (8 symptoms), tremors, neuropathy, seizures, and strokes. Results Among 18 individuals who met inclusion criteria, all but one (94.4%) experienced at least one symptom of neurocognitive/neuropsychiatric decline, with most individuals experiencing at least half of those symptoms. Most participants experienced tremors and peripheral neuropathy, with a few experiencing seizures and strokes. For individuals with available data, 100.0% were reported to have gait ataxia and neuroimaging showed that 85.7% had generalized cerebral atrophy on MRI while 78.6% had white matter changes. Discussion Symptoms of neurocognitive/neuropsychiatric decline are nearly universal in our cohort of adults with CS, suggesting that these individuals are at risk of developing neurocognitive/neuropsychiatric decline, with symptoms related to but not specific to dementia. Considering the prominent role of DNA repair defects in CS disease mechanisms and emerging evidence for increased DNA damage in neurodegenerative disease, impaired genome maintenance may be a shared pathway underlying multiple forms of neurocognitive/neuropsychiatric decline. Components of the DNA damage response mechanism may bear further study as potential therapeutic targets that could alleviate neurocognitive/neuropsychiatric symptoms in CS and other neurodegenerative disorders.
Collapse
Affiliation(s)
- Geetanjali Rajamani
- University of Minnesota Medical School (GR); Greg Marzolf Jr. Muscular Dystrophy Center (SAS, ALD, HRL, CCB, CAP, PBK); Department of Neurology (SAS, ALD, WGM, HRL, CCB, CAP, PBK), University of Minnesota Medical School; Institute on the Biology of Aging and Metabolism (PDR, LJN), University of Minnesota, Minneapolis; Clinical Genetics (AA, PG, SM), Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom; Department of Pediatric Neurology/Centre d'investigation Clinique (CIC) (VL), Strasbourg University Hospital, France; and Institute for Translational Neuroscience (PBK), University of Minnesota, Minneapolis
| | - Seth A Stafki
- University of Minnesota Medical School (GR); Greg Marzolf Jr. Muscular Dystrophy Center (SAS, ALD, HRL, CCB, CAP, PBK); Department of Neurology (SAS, ALD, WGM, HRL, CCB, CAP, PBK), University of Minnesota Medical School; Institute on the Biology of Aging and Metabolism (PDR, LJN), University of Minnesota, Minneapolis; Clinical Genetics (AA, PG, SM), Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom; Department of Pediatric Neurology/Centre d'investigation Clinique (CIC) (VL), Strasbourg University Hospital, France; and Institute for Translational Neuroscience (PBK), University of Minnesota, Minneapolis
| | - Audrey L Daugherty
- University of Minnesota Medical School (GR); Greg Marzolf Jr. Muscular Dystrophy Center (SAS, ALD, HRL, CCB, CAP, PBK); Department of Neurology (SAS, ALD, WGM, HRL, CCB, CAP, PBK), University of Minnesota Medical School; Institute on the Biology of Aging and Metabolism (PDR, LJN), University of Minnesota, Minneapolis; Clinical Genetics (AA, PG, SM), Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom; Department of Pediatric Neurology/Centre d'investigation Clinique (CIC) (VL), Strasbourg University Hospital, France; and Institute for Translational Neuroscience (PBK), University of Minnesota, Minneapolis
| | - William G Mantyh
- University of Minnesota Medical School (GR); Greg Marzolf Jr. Muscular Dystrophy Center (SAS, ALD, HRL, CCB, CAP, PBK); Department of Neurology (SAS, ALD, WGM, HRL, CCB, CAP, PBK), University of Minnesota Medical School; Institute on the Biology of Aging and Metabolism (PDR, LJN), University of Minnesota, Minneapolis; Clinical Genetics (AA, PG, SM), Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom; Department of Pediatric Neurology/Centre d'investigation Clinique (CIC) (VL), Strasbourg University Hospital, France; and Institute for Translational Neuroscience (PBK), University of Minnesota, Minneapolis
| | - Hannah R Littel
- University of Minnesota Medical School (GR); Greg Marzolf Jr. Muscular Dystrophy Center (SAS, ALD, HRL, CCB, CAP, PBK); Department of Neurology (SAS, ALD, WGM, HRL, CCB, CAP, PBK), University of Minnesota Medical School; Institute on the Biology of Aging and Metabolism (PDR, LJN), University of Minnesota, Minneapolis; Clinical Genetics (AA, PG, SM), Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom; Department of Pediatric Neurology/Centre d'investigation Clinique (CIC) (VL), Strasbourg University Hospital, France; and Institute for Translational Neuroscience (PBK), University of Minnesota, Minneapolis
| | - Christine C Bruels
- University of Minnesota Medical School (GR); Greg Marzolf Jr. Muscular Dystrophy Center (SAS, ALD, HRL, CCB, CAP, PBK); Department of Neurology (SAS, ALD, WGM, HRL, CCB, CAP, PBK), University of Minnesota Medical School; Institute on the Biology of Aging and Metabolism (PDR, LJN), University of Minnesota, Minneapolis; Clinical Genetics (AA, PG, SM), Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom; Department of Pediatric Neurology/Centre d'investigation Clinique (CIC) (VL), Strasbourg University Hospital, France; and Institute for Translational Neuroscience (PBK), University of Minnesota, Minneapolis
| | - Christina A Pacak
- University of Minnesota Medical School (GR); Greg Marzolf Jr. Muscular Dystrophy Center (SAS, ALD, HRL, CCB, CAP, PBK); Department of Neurology (SAS, ALD, WGM, HRL, CCB, CAP, PBK), University of Minnesota Medical School; Institute on the Biology of Aging and Metabolism (PDR, LJN), University of Minnesota, Minneapolis; Clinical Genetics (AA, PG, SM), Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom; Department of Pediatric Neurology/Centre d'investigation Clinique (CIC) (VL), Strasbourg University Hospital, France; and Institute for Translational Neuroscience (PBK), University of Minnesota, Minneapolis
| | - Paul D Robbins
- University of Minnesota Medical School (GR); Greg Marzolf Jr. Muscular Dystrophy Center (SAS, ALD, HRL, CCB, CAP, PBK); Department of Neurology (SAS, ALD, WGM, HRL, CCB, CAP, PBK), University of Minnesota Medical School; Institute on the Biology of Aging and Metabolism (PDR, LJN), University of Minnesota, Minneapolis; Clinical Genetics (AA, PG, SM), Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom; Department of Pediatric Neurology/Centre d'investigation Clinique (CIC) (VL), Strasbourg University Hospital, France; and Institute for Translational Neuroscience (PBK), University of Minnesota, Minneapolis
| | - Laura J Niedernhofer
- University of Minnesota Medical School (GR); Greg Marzolf Jr. Muscular Dystrophy Center (SAS, ALD, HRL, CCB, CAP, PBK); Department of Neurology (SAS, ALD, WGM, HRL, CCB, CAP, PBK), University of Minnesota Medical School; Institute on the Biology of Aging and Metabolism (PDR, LJN), University of Minnesota, Minneapolis; Clinical Genetics (AA, PG, SM), Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom; Department of Pediatric Neurology/Centre d'investigation Clinique (CIC) (VL), Strasbourg University Hospital, France; and Institute for Translational Neuroscience (PBK), University of Minnesota, Minneapolis
| | - Adesoji Abiona
- University of Minnesota Medical School (GR); Greg Marzolf Jr. Muscular Dystrophy Center (SAS, ALD, HRL, CCB, CAP, PBK); Department of Neurology (SAS, ALD, WGM, HRL, CCB, CAP, PBK), University of Minnesota Medical School; Institute on the Biology of Aging and Metabolism (PDR, LJN), University of Minnesota, Minneapolis; Clinical Genetics (AA, PG, SM), Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom; Department of Pediatric Neurology/Centre d'investigation Clinique (CIC) (VL), Strasbourg University Hospital, France; and Institute for Translational Neuroscience (PBK), University of Minnesota, Minneapolis
| | - Paola Giunti
- University of Minnesota Medical School (GR); Greg Marzolf Jr. Muscular Dystrophy Center (SAS, ALD, HRL, CCB, CAP, PBK); Department of Neurology (SAS, ALD, WGM, HRL, CCB, CAP, PBK), University of Minnesota Medical School; Institute on the Biology of Aging and Metabolism (PDR, LJN), University of Minnesota, Minneapolis; Clinical Genetics (AA, PG, SM), Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom; Department of Pediatric Neurology/Centre d'investigation Clinique (CIC) (VL), Strasbourg University Hospital, France; and Institute for Translational Neuroscience (PBK), University of Minnesota, Minneapolis
| | - Shehla Mohammed
- University of Minnesota Medical School (GR); Greg Marzolf Jr. Muscular Dystrophy Center (SAS, ALD, HRL, CCB, CAP, PBK); Department of Neurology (SAS, ALD, WGM, HRL, CCB, CAP, PBK), University of Minnesota Medical School; Institute on the Biology of Aging and Metabolism (PDR, LJN), University of Minnesota, Minneapolis; Clinical Genetics (AA, PG, SM), Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom; Department of Pediatric Neurology/Centre d'investigation Clinique (CIC) (VL), Strasbourg University Hospital, France; and Institute for Translational Neuroscience (PBK), University of Minnesota, Minneapolis
| | - Vincent Laugel
- University of Minnesota Medical School (GR); Greg Marzolf Jr. Muscular Dystrophy Center (SAS, ALD, HRL, CCB, CAP, PBK); Department of Neurology (SAS, ALD, WGM, HRL, CCB, CAP, PBK), University of Minnesota Medical School; Institute on the Biology of Aging and Metabolism (PDR, LJN), University of Minnesota, Minneapolis; Clinical Genetics (AA, PG, SM), Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom; Department of Pediatric Neurology/Centre d'investigation Clinique (CIC) (VL), Strasbourg University Hospital, France; and Institute for Translational Neuroscience (PBK), University of Minnesota, Minneapolis
| | - Peter B Kang
- University of Minnesota Medical School (GR); Greg Marzolf Jr. Muscular Dystrophy Center (SAS, ALD, HRL, CCB, CAP, PBK); Department of Neurology (SAS, ALD, WGM, HRL, CCB, CAP, PBK), University of Minnesota Medical School; Institute on the Biology of Aging and Metabolism (PDR, LJN), University of Minnesota, Minneapolis; Clinical Genetics (AA, PG, SM), Guy's and St. Thomas' NHS Foundation Trust, London, United Kingdom; Department of Pediatric Neurology/Centre d'investigation Clinique (CIC) (VL), Strasbourg University Hospital, France; and Institute for Translational Neuroscience (PBK), University of Minnesota, Minneapolis
| |
Collapse
|
6
|
Jiao K, Cheng N, Huan X, Zhang J, Ding Y, Luan X, Liu L, Wang X, Zhu B, Du K, Fan J, Gao M, Xia X, Wang N, Wang T, Xi J, Luo S, Lu J, Zhao C, Yue D, Zhu W. Pseudoexon activation by deep intronic variation in GNE myopathy with thrombocytopenia. Muscle Nerve 2024; 69:708-718. [PMID: 38558464 DOI: 10.1002/mus.28092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/07/2024] [Accepted: 03/16/2024] [Indexed: 04/04/2024]
Abstract
INTRODUCTION/AIMS GNE myopathy is a rare autosomal recessive disorder caused by pathogenic variants in the GNE gene, which is essential for the sialic acid biosynthesis pathway. Although over 300 GNE variants have been reported, some patients remain undiagnosed with monoallelic pathogenic variants. This study aims to analyze the entire GNE genomic region to identify novel pathogenic variants. METHODS Patients with clinically compatible GNE myopathy and monoallelic pathogenic variants in the GNE gene were enrolled. The other GNE pathogenic variant was verified using comprehensive methods including exon 2 quantitative polymerase chain reaction and nanopore long-read single-molecule sequencing (LRS). RESULTS A deep intronic GNE variant, c.862+870C>T, was identified in nine patients from eight unrelated families. This variant generates a cryptic splice site, resulting in the activation of a novel pseudoexon between exons 5 and 6. It results in the insertion of an extra 146 nucleotides into the messengerRNA (mRNA), which is predicted to result in a truncated humanGNE1(hGNE1) protein. Peanut agglutinin(PNA) lectin staining of muscle tissues showed reduced sialylation of mucin O-glycans on sarcolemmal glycoproteins. Notably, a third of patients with the c.862+870C>T variant exhibited thrombocytopenia. A common core haplotype harboring the deep intronic GNE variant was found in all these patients. DISCUSSION The transcript with pseudoexon activation potentially affects sialic acid biosynthesis via nonsense-mediated mRNA decay, or resulting in a truncated hGNE1 protein, which interferes with normal enzyme function. LRS is expected to be more frequently incorporated in genetic analysis given its efficacy in detecting hard-to-find pathogenic variants.
Collapse
Affiliation(s)
- Kexin Jiao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Nachuan Cheng
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Xiao Huan
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Jialong Zhang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Yu Ding
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xinghua Luan
- Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - LingChun Liu
- The First People's Hospital of Yunnan Province, Kunming, China
| | - Xilu Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, China
| | - Bochen Zhu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Kunzhao Du
- Jinshan Hospital Center for Neurosurgery, Jinshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jiale Fan
- The State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, The Institutes of Brain Science, Shanghai, China
| | - Mingshi Gao
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Xingyu Xia
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Ningning Wang
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Tao Wang
- Department of Anesthesiology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Jianying Xi
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Sushan Luo
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Jiahong Lu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Chongbo Zhao
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| | - Dongyue Yue
- Department of Neurology, Jing'an District Center Hospital of Shanghai, Shanghai, China
| | - Wenhua Zhu
- Department of Neurology, Huashan Hospital, Fudan University, Shanghai, China
- Huashan Rare Disease Center, Shanghai Medical College, Huashan Hospital, Fudan University, Shanghai, China
- National Center for Neurological Disorders (NCND), Shanghai, China
| |
Collapse
|
7
|
Wang Y, Wen X, Shen XM, Di L, Sun Y, Li Y, Zhang S, Wen Q, Wang J, Duo J, Huang Y, Lu Y, Xu M, Wang M, Chen H, Zhu W, Da Y. A rare complex structural variant of novel intragenic inversion combined with reciprocal translocation t(X;1)(p21.2;p13.3) in Duchenne muscular dystrophy. Neuromuscul Disord 2024; 39:24-29. [PMID: 38714145 DOI: 10.1016/j.nmd.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/08/2024] [Accepted: 04/11/2024] [Indexed: 05/09/2024]
Abstract
Structural variants (SVs) are infrequently observed in Duchenne muscular dystrophy (DMD), a condition mainly marked by deletions and point mutations in the DMD gene. SVs in DMD remain difficult to reliably detect due to the limited SV-detection capacity of conventionally used short-read sequencing technology. Herein, we present a family, a boy and his mother, with clinical signs of muscular dystrophy, elevated creatinine kinase levels, and intellectual disability. A muscle biopsy from the boy showed dystrophin deficiency. Routine molecular techniques failed to detect abnormalities in the DMD gene, however, dystrophin mRNA transcripts analysis revealed an absence of exons 59 to 79. Subsequent long-read whole-genome sequencing identified a rare complex structural variant, a 77 kb novel intragenic inversion, and a balanced translocation t(X;1)(p21.2;p13.3) rearrangement within the DMD gene, expanding the genetic spectrum of dystrophinopathy. Our findings suggested that SVs should be considered in cases where conventional molecular techniques fail to identify pathogenic variants.
Collapse
Affiliation(s)
- Yaye Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Xinmei Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Xin-Ming Shen
- Department of Neurology and Neuromuscular Research Laboratory, Mayo Clinic, Rochester, MN 55905, USA
| | - Li Di
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Yanan Sun
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Yun Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Shu Zhang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Qi Wen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Jingsi Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Jianying Duo
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Yue Huang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Yan Lu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Min Xu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Min Wang
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Hai Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Wenjia Zhu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China
| | - Yuwei Da
- Department of Neurology, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Xicheng District, Beijing 100053, China.
| |
Collapse
|
8
|
Huang M, Zhang Q, Jiao J, Shi J, Xu Y, Zhang C, Zhou R, Liu W, Liang Y, Chen H, Wang Y, Xu Z, Hu P. Comprehensive genetic analysis of facioscapulohumeral muscular dystrophy by Nanopore long-read whole-genome sequencing. J Transl Med 2024; 22:451. [PMID: 38741136 DOI: 10.1186/s12967-024-05259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 04/29/2024] [Indexed: 05/16/2024] Open
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is a high-prevalence autosomal dominant neuromuscular disease characterized by significant clinical and genetic heterogeneity. Genetic diagnosis of FSHD remains a challenge because it cannot be detected by standard sequencing methods and requires a complex diagnosis workflow. METHODS We developed a comprehensive genetic FSHD detection method based on Oxford Nanopore Technologies (ONT) whole-genome sequencing. Using a case-control design, we applied this procedure to 29 samples and compared the results with those from optical genome mapping (OGM), bisulfite sequencing (BSS), and whole-exome sequencing (WES). RESULTS Using our ONT-based method, we identified 59 haplotypes (35 4qA and 24 4qB) among the 29 samples (including a mosaic sample), as well as the number of D4Z4 repeat units (RUs). The pathogenetic D4Z4 RU contraction identified by our ONT-based method showed 100% concordance with OGM results. The methylation levels of the most distal D4Z4 RU and the double homeobox 4 gene (DUX4) detected by ONT sequencing are highly consistent with the BSS results and showed excellent diagnostic efficiency. Additionally, our ONT-based method provided an independent methylation profile analysis of two permissive 4qA alleles, reflecting a more accurate scenario than traditional BSS. The ONT-based method detected 17 variations in three FSHD2-related genes from nine samples, showing 100% concordance with WES. CONCLUSIONS Our ONT-based FSHD detection method is a comprehensive method for identifying pathogenetic D4Z4 RU contractions, methylation level alterations, allele-specific methylation of two 4qA haplotypes, and variations in FSHD2-related genes, which will all greatly improve genetic testing for FSHD.
Collapse
Affiliation(s)
- Mingtao Huang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Mochou Road, Nanjing, Jiangsu, 210004, People's Republic of China
| | - Qinxin Zhang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Mochou Road, Nanjing, Jiangsu, 210004, People's Republic of China
| | - Jiao Jiao
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Mochou Road, Nanjing, Jiangsu, 210004, People's Republic of China
| | - Jianquan Shi
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, 210006, People's Republic of China
| | - Yiyun Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Mochou Road, Nanjing, Jiangsu, 210004, People's Republic of China
| | - Cuiping Zhang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Mochou Road, Nanjing, Jiangsu, 210004, People's Republic of China
| | - Ran Zhou
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Mochou Road, Nanjing, Jiangsu, 210004, People's Republic of China
| | - Wenwen Liu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Mochou Road, Nanjing, Jiangsu, 210004, People's Republic of China
| | - Yixuan Liang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Mochou Road, Nanjing, Jiangsu, 210004, People's Republic of China
| | - Hao Chen
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Mochou Road, Nanjing, Jiangsu, 210004, People's Republic of China
| | - Yan Wang
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Mochou Road, Nanjing, Jiangsu, 210004, People's Republic of China.
| | - Zhengfeng Xu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Mochou Road, Nanjing, Jiangsu, 210004, People's Republic of China.
| | - Ping Hu
- Department of Prenatal Diagnosis, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, 123 Tianfei Alley, Mochou Road, Nanjing, Jiangsu, 210004, People's Republic of China.
| |
Collapse
|
9
|
Scarano C, Veneruso I, De Simone RR, Di Bonito G, Secondino A, D’Argenio V. The Third-Generation Sequencing Challenge: Novel Insights for the Omic Sciences. Biomolecules 2024; 14:568. [PMID: 38785975 PMCID: PMC11117673 DOI: 10.3390/biom14050568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/05/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
The understanding of the human genome has been greatly improved by the advent of next-generation sequencing technologies (NGS). Despite the undeniable advantages responsible for their widespread diffusion, these methods have some constraints, mainly related to short read length and the need for PCR amplification. As a consequence, long-read sequencers, called third-generation sequencing (TGS), have been developed, promising to overcome NGS. Starting from the first prototype, TGS has progressively ameliorated its chemistries by improving both read length and base-calling accuracy, as well as simultaneously reducing the costs/base. Based on these premises, TGS is showing its potential in many fields, including the analysis of difficult-to-sequence genomic regions, structural variations detection, RNA expression profiling, DNA methylation study, and metagenomic analyses. Protocol standardization and the development of easy-to-use pipelines for data analysis will enhance TGS use, also opening the way for their routine applications in diagnostic contexts.
Collapse
Affiliation(s)
- Carmela Scarano
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Iolanda Veneruso
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Rosa Redenta De Simone
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Gennaro Di Bonito
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Angela Secondino
- Department of Molecular Medicine and Medical Biotechnologies, Federico II University, Via Sergio Pansini 5, 80131 Napoli, Italy
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
| | - Valeria D’Argenio
- CEINGE-Biotecnologie Avanzate Franco Salvatore, Via G. Salvatore 486, 80145 Napoli, Italy
- Department of Human Sciences and Quality of Life Promotion, San Raffaele Open University, Via di Val Cannuta 247, 00166 Roma, Italy
| |
Collapse
|
10
|
Marchant RG, Bryen SJ, Bahlo M, Cairns A, Chao KR, Corbett A, Davis MR, Ganesh VS, Ghaoui R, Jones KJ, Kornberg AJ, Lek M, Liang C, MacArthur DG, Oates EC, O'Donnell-Luria A, O'Grady GL, Osei-Owusu IA, Rafehi H, Reddel SW, Roxburgh RH, Ryan MM, Sandaradura SA, Scott LW, Valkanas E, Weisburd B, Young H, Evesson FJ, Waddell LB, Cooper ST. Genome and RNA sequencing boost neuromuscular diagnoses to 62% from 34% with exome sequencing alone. Ann Clin Transl Neurol 2024; 11:1250-1266. [PMID: 38544359 DOI: 10.1002/acn3.52041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 02/24/2024] [Indexed: 05/15/2024] Open
Abstract
OBJECTIVE Most families with heritable neuromuscular disorders do not receive a molecular diagnosis. Here we evaluate diagnostic utility of exome, genome, RNA sequencing, and protein studies and provide evidence-based recommendations for their integration into practice. METHODS In total, 247 families with suspected monogenic neuromuscular disorders who remained without a genetic diagnosis after standard diagnostic investigations underwent research-led massively parallel sequencing: neuromuscular disorder gene panel, exome, genome, and/or RNA sequencing to identify causal variants. Protein and RNA studies were also deployed when required. RESULTS Integration of exome sequencing and auxiliary genome, RNA and/or protein studies identified causal or likely causal variants in 62% (152 out of 247) of families. Exome sequencing alone informed 55% (83 out of 152) of diagnoses, with remaining diagnoses (45%; 69 out of 152) requiring genome sequencing, RNA and/or protein studies to identify variants and/or support pathogenicity. Arrestingly, novel disease genes accounted for <4% (6 out of 152) of diagnoses while 36.2% of solved families (55 out of 152) harbored at least one splice-altering or structural variant in a known neuromuscular disorder gene. We posit that contemporary neuromuscular disorder gene-panel sequencing could likely provide 66% (100 out of 152) of our diagnoses today. INTERPRETATION Our results emphasize thorough clinical phenotyping to enable deep scrutiny of all rare genetic variation in phenotypically consistent genes. Post-exome auxiliary investigations extended our diagnostic yield by 81% overall (34-62%). We present a diagnostic algorithm that details deployment of genomic and auxiliary investigations to obtain these diagnoses today most effectively. We hope this provides a practical guide for clinicians as they gain greater access to clinical genome and transcriptome sequencing.
Collapse
Affiliation(s)
- Rhett G Marchant
- Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Samantha J Bryen
- Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Melanie Bahlo
- Functional Neuromics, Children's Medical Research Institute, Westmead, New South Wales, Australia
- Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Anita Cairns
- Department of Medical Biology, The University of Melbourne, Parkville, Victoria, Australia
- Neurosciences Department, Queensland Children's Hospital, Brisbane, Queensland, Australia
| | - Katherine R Chao
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Alastair Corbett
- Neurology Department, Repatriation General Hospital Concord, Concord, New South Wales, Australia
| | - Mark R Davis
- Department of Diagnostic Genomics, PathWest Laboratory Medicine, Perth, WA, Australia
| | - Vijay S Ganesh
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Neuromuscular Division, Department of Neurology, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
| | - Roula Ghaoui
- Department of Neurology, Central Adelaide Local Health Network/Royal Adelaide Hospital, Adelaide, South Australia, Australia
- Adelaide Medical School, The University of Adelaide, Adelaide, South Australia, Australia
- Department of Genetics & Molecular Pathology, SA Pathology, Adelaide, South Australia, Australia
| | - Kristi J Jones
- Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Clinical Genetics, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Andrew J Kornberg
- Department of Neurology, Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Neurosciences Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Monkol Lek
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut, USA
| | - Christina Liang
- Department of Neurology, Royal North Shore Hospital, St Leonards, New South Wales, Australia
- Neurogenetics, Northern Clinical School, Kolling Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Daniel G MacArthur
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Centre for Population Genomics, Garvan Institute of Medical Research/University of New South Wales, Sydney, New South Wales, Australia
- Centre for Population Genomics, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Emily C Oates
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Randwick, New South Wales, Australia
| | - Anne O'Donnell-Luria
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Gina L O'Grady
- Starship Children's Health, Auckland District Health Board, Auckland, New Zealand
| | - Ikeoluwa A Osei-Owusu
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Haloom Rafehi
- Functional Neuromics, Children's Medical Research Institute, Westmead, New South Wales, Australia
- Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Stephen W Reddel
- Neurology Department, Repatriation General Hospital Concord, Concord, New South Wales, Australia
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Richard H Roxburgh
- Department of Neurology, Auckland District Health Board, Auckland, New Zealand
- Centre of Brain Research Neurogenetics Research Clinic, University of Auckland, Auckland, New Zealand
| | - Monique M Ryan
- Department of Neurology, Royal Children's Hospital Melbourne, Parkville, Victoria, Australia
- Department of Paediatrics, University of Melbourne, Parkville, Victoria, Australia
- Neurosciences Group, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Sarah A Sandaradura
- Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Clinical Genetics, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Liam W Scott
- Functional Neuromics, Children's Medical Research Institute, Westmead, New South Wales, Australia
- Population Health and Immunity, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Elise Valkanas
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
- Program in Biological and Biomedical Sciences, Harvard Medical School, Boston, Massachusetts, USA
| | - Ben Weisburd
- Broad Center for Mendelian Genomics, Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
| | - Helen Young
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Department of Neurology, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Paediatrics, Royal North Shore Hospital, St Leonards, New South Wales, Australia
| | - Frances J Evesson
- Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| | - Leigh B Waddell
- Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
| | - Sandra T Cooper
- Faculty of Medicine and Health, The University of Sydney, Westmead, New South Wales, Australia
- Kids Neuroscience Centre, Kids Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia
- Faculty of Medicine, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
11
|
Kang PB. Skipping, Steroids, and Genes: The First 7 Therapies for Duchenne Muscular Dystrophy. Neurology 2024; 102:e209210. [PMID: 38335475 DOI: 10.1212/wnl.0000000000209210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/18/2023] [Indexed: 02/12/2024] Open
Affiliation(s)
- Peter B Kang
- From the Greg Marzolf Jr. Muscular Dystrophy Center, Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis
| |
Collapse
|
12
|
Olivucci G, Iovino E, Innella G, Turchetti D, Pippucci T, Magini P. Long read sequencing on its way to the routine diagnostics of genetic diseases. Front Genet 2024; 15:1374860. [PMID: 38510277 PMCID: PMC10951082 DOI: 10.3389/fgene.2024.1374860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
The clinical application of technological progress in the identification of DNA alterations has always led to improvements of diagnostic yields in genetic medicine. At chromosome side, from cytogenetic techniques evaluating number and gross structural defects to genomic microarrays detecting cryptic copy number variants, and at molecular level, from Sanger method studying the nucleotide sequence of single genes to the high-throughput next-generation sequencing (NGS) technologies, resolution and sensitivity progressively increased expanding considerably the range of detectable DNA anomalies and alongside of Mendelian disorders with known genetic causes. However, particular genomic regions (i.e., repetitive and GC-rich sequences) are inefficiently analyzed by standard genetic tests, still relying on laborious, time-consuming and low-sensitive approaches (i.e., southern-blot for repeat expansion or long-PCR for genes with highly homologous pseudogenes), accounting for at least part of the patients with undiagnosed genetic disorders. Third generation sequencing, generating long reads with improved mappability, is more suitable for the detection of structural alterations and defects in hardly accessible genomic regions. Although recently implemented and not yet clinically available, long read sequencing (LRS) technologies have already shown their potential in genetic medicine research that might greatly impact on diagnostic yield and reporting times, through their translation to clinical settings. The main investigated LRS application concerns the identification of structural variants and repeat expansions, probably because techniques for their detection have not evolved as rapidly as those dedicated to single nucleotide variants (SNV) identification: gold standard analyses are karyotyping and microarrays for balanced and unbalanced chromosome rearrangements, respectively, and southern blot and repeat-primed PCR for the amplification and sizing of expanded alleles, impaired by limited resolution and sensitivity that have not been significantly improved by the advent of NGS. Nevertheless, more recently, with the increased accuracy provided by the latest product releases, LRS has been tested also for SNV detection, especially in genes with highly homologous pseudogenes and for haplotype reconstruction to assess the parental origin of alleles with de novo pathogenic variants. We provide a review of relevant recent scientific papers exploring LRS potential in the diagnosis of genetic diseases and its potential future applications in routine genetic testing.
Collapse
Affiliation(s)
- Giulia Olivucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Surgical and Oncological Sciences, University of Palermo, Palermo, Italy
| | - Emanuela Iovino
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Giovanni Innella
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Daniela Turchetti
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Tommaso Pippucci
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Pamela Magini
- Medical Genetics Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
13
|
Owusu R, Savarese M. Long-read sequencing improves diagnostic rate in neuromuscular disorders. ACTA MYOLOGICA : MYOPATHIES AND CARDIOMYOPATHIES : OFFICIAL JOURNAL OF THE MEDITERRANEAN SOCIETY OF MYOLOGY 2023; 42:123-128. [PMID: 38406378 PMCID: PMC10883326 DOI: 10.36185/2532-1900-394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 12/05/2023] [Indexed: 02/27/2024]
Abstract
Massive parallel sequencing methods, such as exome, genome, and targeted DNA sequencing, have aided molecular diagnosis of genetic diseases in the last 20 years. However, short-read sequencing methods still have several limitations, such inaccurate genome assembly, the inability to detect large structural variants, and variants located in hard-to-sequence regions like highly repetitive areas. The recently emerged PacBio single-molecule real-time (SMRT) and Oxford nanopore technology (ONT) long-read sequencing (LRS) methods have been shown to overcome most of these technical issues, leading to an increase in diagnostic rate. LRS methods are contributing to the detection of repeat expansions in novel disease-causing genes (e.g., ABCD3, NOTCH2NLC and RILPL1 causing an Oculopharyngodistal myopathy or PLIN4 causing a Myopathy with rimmed ubiquitin-positive autophagic vacuolation), of structural variants (e.g., in DMD), and of single nucleotide variants in repetitive regions (TTN and NEB). Moreover, these methods have simplified the characterization of the D4Z4 repeats in DUX4, facilitating the diagnosis of Facioscapulohumeral muscular dystrophy (FSHD). We review recent studies that have used either ONT or PacBio SMRT sequencing methods and discuss different types of variants that have been detected using these approaches in individuals with neuromuscular disorders.
Collapse
Affiliation(s)
| | - Marco Savarese
- Folkhälsan Research Center, Helsinki, Finland
- University of Helsinki, Faculty of Medicine, Helsinki, Finland
| |
Collapse
|
14
|
Ling C, Dai Y, Geng C, Pan S, Quan W, Ding Q, Yang X, Shen D, Tao Q, Li J, Li J, Wang Y, Jiang S, Wang Y, Chen L, Cui L, Wang D. Uncovering the true features of dystrophin gene rearrangement and improving the molecular diagnosis of Duchenne and Becker muscular dystrophies. iScience 2023; 26:108365. [PMID: 38047063 PMCID: PMC10690541 DOI: 10.1016/j.isci.2023.108365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/19/2023] [Accepted: 10/26/2023] [Indexed: 12/05/2023] Open
Abstract
Duchenne and Becker muscular dystrophies (DMD/BMD) are caused by complex mutations in the dystrophin gene (DMD). Currently, there is no integrative method for the precise detection of all potential DMD variants, a gap which we aimed to address using long-read sequencing. The captured long-read sequencing panel developed in this study was applied to 129 subjects, including 11 who had previously unsolved cases. The results showed that this method accurately detected DMD mutations, ranging from single-nucleotide variations to structural variations. Furthermore, our findings revealed that continuous exon duplication/deletion in the DMD/BMD cohort may be attributed to complex segmental rearrangements and that noncontiguous duplication/deletion is generally attributed to intragenic inversion or interchromosome translocation. Mutations in the deep introns were confirmed to produce a pseudoexon. Moreover, variations in female carriers were precisely identified. The integrated and precise DMD gene screening method proposed in this study could improve the molecular diagnosis of DMD/BMD.
Collapse
Affiliation(s)
- Chao Ling
- The Laboratory of Clinical Genetics, Medical Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Yi Dai
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Chang Geng
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Shirang Pan
- Grandomics Biosciences, Beijing 102200, China
| | | | - Qingyun Ding
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Xunzhe Yang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Dongchao Shen
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Qing Tao
- Grandomics Biosciences, Beijing 102200, China
| | - Jingjing Li
- Grandomics Biosciences, Beijing 102200, China
| | - Jia Li
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Yinbing Wang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Shan Jiang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Yang Wang
- Grandomics Biosciences, Beijing 102200, China
| | - Lin Chen
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Liying Cui
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing 100730, China
| | - Depeng Wang
- Grandomics Biosciences, Beijing 102200, China
| |
Collapse
|
15
|
Kang PB, Jorand-Fletcher M, Zhang W, McDermott SW, Berry R, Chambers C, Wong KN, Mohamed Y, Thomas S, Venkatesh YS, Westfield C, Whitehead N, Johnson NE. Genetic Patterns of Selected Muscular Dystrophies in the Muscular Dystrophy Surveillance, Tracking, and Research Network. Neurol Genet 2023; 9:e200113. [PMID: 38045992 PMCID: PMC10692796 DOI: 10.1212/nxg.0000000000200113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 09/29/2023] [Indexed: 12/05/2023]
Abstract
Background and Objectives To report the genetic etiologies of Emery-Dreifuss muscular dystrophy (EDMD), limb-girdle muscular dystrophy (LGMD), congenital muscular dystrophy (CMD), and distal muscular dystrophy (DD) in 6 geographically defined areas of the United States. Methods This was a cross-sectional, population-based study in which we studied the genes and variants associated with muscular dystrophy in individuals who were diagnosed with and received care for EDMD, LGMD, CMD, and DD from January 1, 2008, through December 31, 2016, in the 6 areas of the United States covered by the Muscular Dystrophy Surveillance, Tracking, and Research Network (MD STARnet). Variants of unknown significance (VUSs) from the original genetic test reports were reanalyzed for changes in interpretation. Results Among 243 individuals with definite or probable muscular dystrophy, LGMD was the most common diagnosis (138 cases), followed by CMD (62 cases), DD (22 cases), and EDMD (21 cases). There was a higher proportion of male individuals compared with female individuals, which persisted after excluding X-linked genes (EMD) and autosomal genes reported to have skewed gender ratios (ANO5, CAV3, and LMNA). The most common associated genes were FKRP, CAPN3, ANO5, and DYSF. Reanalysis yielded more definitive variant interpretations for 60 of 144 VUSs, with a mean interval between the original clinical genetic test of 8.11 years for all 144 VUSs and 8.62 years for the 60 reclassified variants. Ten individuals were found to have monoallelic pathogenic variants in genes known to be primarily recessive. Discussion This study is distinct for being an examination of 4 types of muscular dystrophies in selected geographic areas of the United States. The striking proportion of resolved VUSs demonstrates the value of periodic re-examinations of these variants. Such re-examinations will resolve some genetic diagnostic ambiguities before initiating repeat testing or more invasive diagnostic procedures such as muscle biopsy. The presence of monoallelic pathogenic variants in recessive genes in our cohort indicates that some individuals with muscular dystrophy continue to face incomplete genetic diagnoses; further refinements in genetic knowledge and diagnostic approaches will optimize diagnostic information for these individuals.
Collapse
Affiliation(s)
- Peter B Kang
- From the Paul & Sheila Wellstone Muscular Dystrophy Center (P.B.K.), Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis; Department of Pediatrics (M.J.-F., Y.M.), University of Florida College of Medicine, Gainesville; Department of Epidemiology and Biostatistics (W.Z.), University of South Carolina, Columbia; Department of Environmental, Occupational, and Geospatial Health Sciences (S.W.M.), Graduate School of Public Health and Health Policy, City University of New York; Division of Population Health Surveillance (R.B., C.W.), Bureau of Maternal and Child Health, South Carolina Department of Health and Environmental Control, Columbia; Department of Human and Molecular Genetics (C.C.), Virginia Commonwealth University, Richmond; Department of Pediatrics (K.N.W.), University of Utah, Salt Lake City; New York State Department of Health (S.T.), Albany; Department of Neurology (Y.S.V.), University of South Carolina, Columbia; RTI International (N.W.), Research Triangle Park, NC; and Department of Neurology (N.E.J.), Virginia Commonwealth University, Richmond
| | - Magali Jorand-Fletcher
- From the Paul & Sheila Wellstone Muscular Dystrophy Center (P.B.K.), Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis; Department of Pediatrics (M.J.-F., Y.M.), University of Florida College of Medicine, Gainesville; Department of Epidemiology and Biostatistics (W.Z.), University of South Carolina, Columbia; Department of Environmental, Occupational, and Geospatial Health Sciences (S.W.M.), Graduate School of Public Health and Health Policy, City University of New York; Division of Population Health Surveillance (R.B., C.W.), Bureau of Maternal and Child Health, South Carolina Department of Health and Environmental Control, Columbia; Department of Human and Molecular Genetics (C.C.), Virginia Commonwealth University, Richmond; Department of Pediatrics (K.N.W.), University of Utah, Salt Lake City; New York State Department of Health (S.T.), Albany; Department of Neurology (Y.S.V.), University of South Carolina, Columbia; RTI International (N.W.), Research Triangle Park, NC; and Department of Neurology (N.E.J.), Virginia Commonwealth University, Richmond
| | - Wanfang Zhang
- From the Paul & Sheila Wellstone Muscular Dystrophy Center (P.B.K.), Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis; Department of Pediatrics (M.J.-F., Y.M.), University of Florida College of Medicine, Gainesville; Department of Epidemiology and Biostatistics (W.Z.), University of South Carolina, Columbia; Department of Environmental, Occupational, and Geospatial Health Sciences (S.W.M.), Graduate School of Public Health and Health Policy, City University of New York; Division of Population Health Surveillance (R.B., C.W.), Bureau of Maternal and Child Health, South Carolina Department of Health and Environmental Control, Columbia; Department of Human and Molecular Genetics (C.C.), Virginia Commonwealth University, Richmond; Department of Pediatrics (K.N.W.), University of Utah, Salt Lake City; New York State Department of Health (S.T.), Albany; Department of Neurology (Y.S.V.), University of South Carolina, Columbia; RTI International (N.W.), Research Triangle Park, NC; and Department of Neurology (N.E.J.), Virginia Commonwealth University, Richmond
| | - Suzanne W McDermott
- From the Paul & Sheila Wellstone Muscular Dystrophy Center (P.B.K.), Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis; Department of Pediatrics (M.J.-F., Y.M.), University of Florida College of Medicine, Gainesville; Department of Epidemiology and Biostatistics (W.Z.), University of South Carolina, Columbia; Department of Environmental, Occupational, and Geospatial Health Sciences (S.W.M.), Graduate School of Public Health and Health Policy, City University of New York; Division of Population Health Surveillance (R.B., C.W.), Bureau of Maternal and Child Health, South Carolina Department of Health and Environmental Control, Columbia; Department of Human and Molecular Genetics (C.C.), Virginia Commonwealth University, Richmond; Department of Pediatrics (K.N.W.), University of Utah, Salt Lake City; New York State Department of Health (S.T.), Albany; Department of Neurology (Y.S.V.), University of South Carolina, Columbia; RTI International (N.W.), Research Triangle Park, NC; and Department of Neurology (N.E.J.), Virginia Commonwealth University, Richmond
| | - Reba Berry
- From the Paul & Sheila Wellstone Muscular Dystrophy Center (P.B.K.), Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis; Department of Pediatrics (M.J.-F., Y.M.), University of Florida College of Medicine, Gainesville; Department of Epidemiology and Biostatistics (W.Z.), University of South Carolina, Columbia; Department of Environmental, Occupational, and Geospatial Health Sciences (S.W.M.), Graduate School of Public Health and Health Policy, City University of New York; Division of Population Health Surveillance (R.B., C.W.), Bureau of Maternal and Child Health, South Carolina Department of Health and Environmental Control, Columbia; Department of Human and Molecular Genetics (C.C.), Virginia Commonwealth University, Richmond; Department of Pediatrics (K.N.W.), University of Utah, Salt Lake City; New York State Department of Health (S.T.), Albany; Department of Neurology (Y.S.V.), University of South Carolina, Columbia; RTI International (N.W.), Research Triangle Park, NC; and Department of Neurology (N.E.J.), Virginia Commonwealth University, Richmond
| | - Chelsea Chambers
- From the Paul & Sheila Wellstone Muscular Dystrophy Center (P.B.K.), Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis; Department of Pediatrics (M.J.-F., Y.M.), University of Florida College of Medicine, Gainesville; Department of Epidemiology and Biostatistics (W.Z.), University of South Carolina, Columbia; Department of Environmental, Occupational, and Geospatial Health Sciences (S.W.M.), Graduate School of Public Health and Health Policy, City University of New York; Division of Population Health Surveillance (R.B., C.W.), Bureau of Maternal and Child Health, South Carolina Department of Health and Environmental Control, Columbia; Department of Human and Molecular Genetics (C.C.), Virginia Commonwealth University, Richmond; Department of Pediatrics (K.N.W.), University of Utah, Salt Lake City; New York State Department of Health (S.T.), Albany; Department of Neurology (Y.S.V.), University of South Carolina, Columbia; RTI International (N.W.), Research Triangle Park, NC; and Department of Neurology (N.E.J.), Virginia Commonwealth University, Richmond
| | - Kristen N Wong
- From the Paul & Sheila Wellstone Muscular Dystrophy Center (P.B.K.), Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis; Department of Pediatrics (M.J.-F., Y.M.), University of Florida College of Medicine, Gainesville; Department of Epidemiology and Biostatistics (W.Z.), University of South Carolina, Columbia; Department of Environmental, Occupational, and Geospatial Health Sciences (S.W.M.), Graduate School of Public Health and Health Policy, City University of New York; Division of Population Health Surveillance (R.B., C.W.), Bureau of Maternal and Child Health, South Carolina Department of Health and Environmental Control, Columbia; Department of Human and Molecular Genetics (C.C.), Virginia Commonwealth University, Richmond; Department of Pediatrics (K.N.W.), University of Utah, Salt Lake City; New York State Department of Health (S.T.), Albany; Department of Neurology (Y.S.V.), University of South Carolina, Columbia; RTI International (N.W.), Research Triangle Park, NC; and Department of Neurology (N.E.J.), Virginia Commonwealth University, Richmond
| | - Yara Mohamed
- From the Paul & Sheila Wellstone Muscular Dystrophy Center (P.B.K.), Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis; Department of Pediatrics (M.J.-F., Y.M.), University of Florida College of Medicine, Gainesville; Department of Epidemiology and Biostatistics (W.Z.), University of South Carolina, Columbia; Department of Environmental, Occupational, and Geospatial Health Sciences (S.W.M.), Graduate School of Public Health and Health Policy, City University of New York; Division of Population Health Surveillance (R.B., C.W.), Bureau of Maternal and Child Health, South Carolina Department of Health and Environmental Control, Columbia; Department of Human and Molecular Genetics (C.C.), Virginia Commonwealth University, Richmond; Department of Pediatrics (K.N.W.), University of Utah, Salt Lake City; New York State Department of Health (S.T.), Albany; Department of Neurology (Y.S.V.), University of South Carolina, Columbia; RTI International (N.W.), Research Triangle Park, NC; and Department of Neurology (N.E.J.), Virginia Commonwealth University, Richmond
| | - Shiny Thomas
- From the Paul & Sheila Wellstone Muscular Dystrophy Center (P.B.K.), Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis; Department of Pediatrics (M.J.-F., Y.M.), University of Florida College of Medicine, Gainesville; Department of Epidemiology and Biostatistics (W.Z.), University of South Carolina, Columbia; Department of Environmental, Occupational, and Geospatial Health Sciences (S.W.M.), Graduate School of Public Health and Health Policy, City University of New York; Division of Population Health Surveillance (R.B., C.W.), Bureau of Maternal and Child Health, South Carolina Department of Health and Environmental Control, Columbia; Department of Human and Molecular Genetics (C.C.), Virginia Commonwealth University, Richmond; Department of Pediatrics (K.N.W.), University of Utah, Salt Lake City; New York State Department of Health (S.T.), Albany; Department of Neurology (Y.S.V.), University of South Carolina, Columbia; RTI International (N.W.), Research Triangle Park, NC; and Department of Neurology (N.E.J.), Virginia Commonwealth University, Richmond
| | - Y Swamy Venkatesh
- From the Paul & Sheila Wellstone Muscular Dystrophy Center (P.B.K.), Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis; Department of Pediatrics (M.J.-F., Y.M.), University of Florida College of Medicine, Gainesville; Department of Epidemiology and Biostatistics (W.Z.), University of South Carolina, Columbia; Department of Environmental, Occupational, and Geospatial Health Sciences (S.W.M.), Graduate School of Public Health and Health Policy, City University of New York; Division of Population Health Surveillance (R.B., C.W.), Bureau of Maternal and Child Health, South Carolina Department of Health and Environmental Control, Columbia; Department of Human and Molecular Genetics (C.C.), Virginia Commonwealth University, Richmond; Department of Pediatrics (K.N.W.), University of Utah, Salt Lake City; New York State Department of Health (S.T.), Albany; Department of Neurology (Y.S.V.), University of South Carolina, Columbia; RTI International (N.W.), Research Triangle Park, NC; and Department of Neurology (N.E.J.), Virginia Commonwealth University, Richmond
| | - Christina Westfield
- From the Paul & Sheila Wellstone Muscular Dystrophy Center (P.B.K.), Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis; Department of Pediatrics (M.J.-F., Y.M.), University of Florida College of Medicine, Gainesville; Department of Epidemiology and Biostatistics (W.Z.), University of South Carolina, Columbia; Department of Environmental, Occupational, and Geospatial Health Sciences (S.W.M.), Graduate School of Public Health and Health Policy, City University of New York; Division of Population Health Surveillance (R.B., C.W.), Bureau of Maternal and Child Health, South Carolina Department of Health and Environmental Control, Columbia; Department of Human and Molecular Genetics (C.C.), Virginia Commonwealth University, Richmond; Department of Pediatrics (K.N.W.), University of Utah, Salt Lake City; New York State Department of Health (S.T.), Albany; Department of Neurology (Y.S.V.), University of South Carolina, Columbia; RTI International (N.W.), Research Triangle Park, NC; and Department of Neurology (N.E.J.), Virginia Commonwealth University, Richmond
| | - Nedra Whitehead
- From the Paul & Sheila Wellstone Muscular Dystrophy Center (P.B.K.), Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis; Department of Pediatrics (M.J.-F., Y.M.), University of Florida College of Medicine, Gainesville; Department of Epidemiology and Biostatistics (W.Z.), University of South Carolina, Columbia; Department of Environmental, Occupational, and Geospatial Health Sciences (S.W.M.), Graduate School of Public Health and Health Policy, City University of New York; Division of Population Health Surveillance (R.B., C.W.), Bureau of Maternal and Child Health, South Carolina Department of Health and Environmental Control, Columbia; Department of Human and Molecular Genetics (C.C.), Virginia Commonwealth University, Richmond; Department of Pediatrics (K.N.W.), University of Utah, Salt Lake City; New York State Department of Health (S.T.), Albany; Department of Neurology (Y.S.V.), University of South Carolina, Columbia; RTI International (N.W.), Research Triangle Park, NC; and Department of Neurology (N.E.J.), Virginia Commonwealth University, Richmond
| | - Nicholas E Johnson
- From the Paul & Sheila Wellstone Muscular Dystrophy Center (P.B.K.), Department of Neurology, and Institute for Translational Neuroscience, University of Minnesota, Minneapolis; Department of Pediatrics (M.J.-F., Y.M.), University of Florida College of Medicine, Gainesville; Department of Epidemiology and Biostatistics (W.Z.), University of South Carolina, Columbia; Department of Environmental, Occupational, and Geospatial Health Sciences (S.W.M.), Graduate School of Public Health and Health Policy, City University of New York; Division of Population Health Surveillance (R.B., C.W.), Bureau of Maternal and Child Health, South Carolina Department of Health and Environmental Control, Columbia; Department of Human and Molecular Genetics (C.C.), Virginia Commonwealth University, Richmond; Department of Pediatrics (K.N.W.), University of Utah, Salt Lake City; New York State Department of Health (S.T.), Albany; Department of Neurology (Y.S.V.), University of South Carolina, Columbia; RTI International (N.W.), Research Triangle Park, NC; and Department of Neurology (N.E.J.), Virginia Commonwealth University, Richmond
| |
Collapse
|
16
|
van Dijk EL, Naquin D, Gorrichon K, Jaszczyszyn Y, Ouazahrou R, Thermes C, Hernandez C. Genomics in the long-read sequencing era. Trends Genet 2023; 39:649-671. [PMID: 37230864 DOI: 10.1016/j.tig.2023.04.006] [Citation(s) in RCA: 25] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/27/2023]
Abstract
Long-read sequencing (LRS) technologies have provided extremely powerful tools to explore genomes. While in the early years these methods suffered technical limitations, they have recently made significant progress in terms of read length, throughput, and accuracy and bioinformatics tools have strongly improved. Here, we aim to review the current status of LRS technologies, the development of novel methods, and the impact on genomics research. We will explore the most impactful recent findings made possible by these technologies focusing on high-resolution sequencing of genomes and transcriptomes and the direct detection of DNA and RNA modifications. We will also discuss how LRS methods promise a more comprehensive understanding of human genetic variation, transcriptomics, and epigenetics for the coming years.
Collapse
Affiliation(s)
- Erwin L van Dijk
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Delphine Naquin
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Kévin Gorrichon
- National Center of Human Genomics Research (CNRGH), 91000 Évry-Courcouronnes, France
| | - Yan Jaszczyszyn
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Rania Ouazahrou
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Claude Thermes
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Céline Hernandez
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| |
Collapse
|
17
|
Abstract
DNA sequencing has revolutionized medicine over recent decades. However, analysis of large structural variation and repetitive DNA, a hallmark of human genomes, has been limited by short-read technology, with read lengths of 100-300 bp. Long-read sequencing (LRS) permits routine sequencing of human DNA fragments tens to hundreds of kilobase pairs in size, using both real-time sequencing by synthesis and nanopore-based direct electronic sequencing. LRS permits analysis of large structural variation and haplotypic phasing in human genomes and has enabled the discovery and characterization of rare pathogenic structural variants and repeat expansions. It has also recently enabled the assembly of a complete, gapless human genome that includes previously intractable regions, such as highly repetitive centromeres and homologous acrocentric short arms. With the addition of protocols for targeted enrichment, direct epigenetic DNA modification detection, and long-range chromatin profiling, LRS promises to launch a new era of understanding of genetic diversity and pathogenic mutations in human populations.
Collapse
Affiliation(s)
- Peter E Warburton
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; ,
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Robert P Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; ,
- Center for Advanced Genomics Technology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Icahn Genomics Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
18
|
Mastrorosa FK, Miller DE, Eichler EE. Applications of long-read sequencing to Mendelian genetics. Genome Med 2023; 15:42. [PMID: 37316925 PMCID: PMC10266321 DOI: 10.1186/s13073-023-01194-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 05/18/2023] [Indexed: 06/16/2023] Open
Abstract
Advances in clinical genetic testing, including the introduction of exome sequencing, have uncovered the molecular etiology for many rare and previously unsolved genetic disorders, yet more than half of individuals with a suspected genetic disorder remain unsolved after complete clinical evaluation. A precise genetic diagnosis may guide clinical treatment plans, allow families to make informed care decisions, and permit individuals to participate in N-of-1 trials; thus, there is high interest in developing new tools and techniques to increase the solve rate. Long-read sequencing (LRS) is a promising technology for both increasing the solve rate and decreasing the amount of time required to make a precise genetic diagnosis. Here, we summarize current LRS technologies, give examples of how they have been used to evaluate complex genetic variation and identify missing variants, and discuss future clinical applications of LRS. As costs continue to decrease, LRS will find additional utility in the clinical space fundamentally changing how pathological variants are discovered and eventually acting as a single-data source that can be interrogated multiple times for clinical service.
Collapse
Affiliation(s)
| | - Danny E Miller
- Division of Genetic Medicine, Department of Pediatrics, University of Washington and Seattle Children's Hospital, Seattle, WA, 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA, 98195, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, 98195, USA
| | - Evan E Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, 98195, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA.
| |
Collapse
|
19
|
Folland C, Ganesh V, Weisburd B, McLean C, Kornberg AJ, O'Donnell-Luria A, Rehm HL, Stevanovski I, Chintalaphani SR, Kennedy P, Deveson IW, Ravenscroft G. Transcriptome and Genome Analysis Uncovers a DMD Structural Variant: A Case Report. Neurol Genet 2023; 9:e200064. [PMID: 37090938 PMCID: PMC10117699 DOI: 10.1212/nxg.0000000000200064] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 01/27/2023] [Indexed: 03/16/2023]
Abstract
Objective Duchenne muscular dystrophy (DMD) is caused by pathogenic variants in the dystrophin gene (DMD). Hypermethylated CGG expansions within DIP2B 5' UTR are associated with an intellectual development disorder. Here, we demonstrate the diagnostic utility of genomic short-read sequencing (SRS) and transcriptome sequencing to identify a novel DMD structural variant (SV) and a DIP2B CGG expansion in a patient with DMD for whom conventional diagnostic testing failed to yield a genetic diagnosis. Methods We performed genomic SRS, skeletal muscle transcriptome sequencing, and targeted programmable long-read sequencing (LRS). Results The proband had a typical DMD clinical presentation, autism spectrum disorder (ASD), and dystrophinopathy on muscle biopsy. Transcriptome analysis identified 6 aberrantly expressed genes; DMD and DIP2B were the strongest underexpression and overexpression outliers, respectively. Genomic SRS identified a 216 kb paracentric inversion (NC_000023.11: g.33162217-33378800) overlapping 2 DMD promoters. ExpansionHunter indicated an expansion of 109 CGG repeats within the 5' UTR of DIP2B. Targeted genomic LRS confirmed the SV and genotyped the DIP2B repeat expansion as 270 CGG repeats. Discussion Here, transcriptome data heavily guided genomic analysis to resolve a complex DMD inversion and a DIP2B repeat expansion. Longitudinal follow-up will be important for clarifying the clinical significance of the DIP2B genotype.
Collapse
Affiliation(s)
- Chiara Folland
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Vijay Ganesh
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Ben Weisburd
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Catriona McLean
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Andrew J Kornberg
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Anne O'Donnell-Luria
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Heidi L Rehm
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Igor Stevanovski
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Sanjog R Chintalaphani
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Paul Kennedy
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Ira W Deveson
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| | - Gianina Ravenscroft
- Centre for Medical Research, University of Western Australia (C.F., G.R.), Harry Perkins Institute of Medical Research, Perth, Australia; Center for Mendelian Genomics (V.G., B.W., A.O.-L., H.L.R.), Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA; Department of Neurology (V.G.), Brigham and Women's Hospital; Division of Genetics and Genomics (V.G., A.O.-L.), Boston Children's Hospital, MA; Department of Anatomical Pathology (C.M., P.K.), Alfred Health; Department of Medicine (C.M., P.K.), Central Clinical School, Monash University, Melbourne; Murdoch Children's Research Institute (A.J.K.); Department of Neurology (A.J.K.), Royal Children's Hospital; Department of Paediatrics (A.J.K.), University of Melbourne, Victoria, Australia; Center for Genomic Medicine (A.O.-L., H.L.R.), Massachusetts General Hospital, Boston, MA; Genomics Pillar (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research, Sydney, Australia; Centre for Population Genomics (I.S., S.R.C., I.W.D.), Garvan Institute of Medical Research and Murdoch Children's Research Institute, Australia; School of Clinical Medicine (S.R.C., I.W.D.), Faculty of Medicine and Health, UNSW Sydney, Australia; and School of Biomedical Sciences (G.R.), University of Western Australia, Perth, Australia
| |
Collapse
|
20
|
Enhancing Molecular Testing for Effective Delivery of Actionable Gene Diagnostics. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120745. [PMID: 36550951 PMCID: PMC9774983 DOI: 10.3390/bioengineering9120745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/07/2022] [Accepted: 11/29/2022] [Indexed: 12/02/2022]
Abstract
There is a deep need to navigate within our genomic data to find, understand and pave the way for disease-specific treatments, as the clinical diagnostic journey provides only limited guidance. The human genome is enclosed in every nucleated cell, and yet at the single-cell resolution many unanswered questions remain, as most of the sequencing techniques use a bulk approach. Therefore, heterogeneity, mosaicism and many complex structural variants remain partially uncovered. As a conceptual approach, nanopore-based sequencing holds the promise of being a single-molecule-based, long-read and high-resolution technique, with the ability of uncovering the nucleic acid sequence and methylation almost in real time. A key limiting factor of current clinical genetics is the deciphering of key disease-causing genomic sequences. As the technological revolution is expanding regarding genetic data, the interpretation of genotype-phenotype correlations should be made with fine caution, as more and more evidence points toward the presence of more than one pathogenic variant acting together as a result of intergenic interplay in the background of a certain phenotype observed in a patient. This is in conjunction with the observation that many inheritable disorders manifest in a phenotypic spectrum, even in an intra-familial way. In the present review, we summarized the relevant data on nanopore sequencing regarding clinical genomics as well as highlighted the importance and content of pre-test and post-test genetic counselling, yielding a complex approach to phenotype-driven molecular diagnosis. This should significantly lower the time-to-right diagnosis as well lower the time required to complete a currently incomplete genotype-phenotype axis, which will boost the chance of establishing a new actionable diagnosis followed by therapeutical approach.
Collapse
|