1
|
Barisano G, Iv M, Choupan J, Hayden-Gephart M. Robust, fully-automated assessment of cerebral perivascular spaces and white matter lesions: a multicentre MRI longitudinal study of their evolution and association with risk of dementia and accelerated brain atrophy. EBioMedicine 2024; 111:105523. [PMID: 39721217 DOI: 10.1016/j.ebiom.2024.105523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 11/03/2024] [Accepted: 12/10/2024] [Indexed: 12/28/2024] Open
Abstract
BACKGROUND Perivascular spaces (PVS) on brain MRI are surrogates for small parenchymal blood vessels and their perivascular compartment, and may relate to brain health. However, it is unknown whether PVS can predict dementia risk and brain atrophy trajectories in participants without dementia, as longitudinal studies on PVS are scarce and current methods for PVS assessment lack robustness and inter-scanner reproducibility. METHODS We developed a robust algorithm to automatically assess PVS count and size on clinical MRI, and investigated 1) their relationship with dementia risk and brain atrophy in participants without dementia, 2) their longitudinal evolution, and 3) their potential use as a screening tool in simulated clinical trials. We analysed 46,478 clinical measurements of cognitive functioning and 20,845 brain MRI scans from 10,004 participants (71.1 ± 9.7 years-old, 56.6% women) from three publicly available observational studies on ageing and dementia (the Alzheimer's Disease Neuroimaging Initiative, the National Alzheimer's Coordinating Centre database, and the Open Access Series of Imaging Studies). Clinical and MRI data collected between 2004 and 2022 were analysed with consistent methods, controlling for confounding factors, and combined using mixed-effects models. FINDINGS Our fully-automated method for PVS assessment showed excellent inter-scanner reproducibility (intraclass correlation coefficients >0.8). Fewer PVS and larger PVS diameter at baseline predicted higher dementia risk and accelerated brain atrophy. Longitudinal trajectories of PVS markers differed significantly in participants without dementia who converted to dementia compared with non-converters. In simulated placebo-controlled trials for treatments targeting cognitive decline, screening out participants at low risk of dementia based on our PVS markers enhanced the power of the trial independently of Alzheimer's disease biomarkers. INTERPRETATION These robust cerebrovascular markers predict dementia risk and brain atrophy and may improve risk-stratification of patients, potentially reducing cost and increasing throughput of clinical trials to combat dementia. FUNDING US National Institutes of Health.
Collapse
Affiliation(s)
| | - Michael Iv
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Jeiran Choupan
- Laboratory of Neuro Imaging, University of Southern California, Los Angeles, CA, USA; NeuroScope Inc., New York, NY, USA
| | | |
Collapse
|
2
|
Sur S, Lin Z, Li Y, Yasar S, Rosenberg PB, Moghekar A, Hou X, Jiang D, Kalyani RR, Hazel K, Pottanat G, Xu C, Pillai JJ, Liu P, Albert M, Lu H. CO 2 cerebrovascular reactivity measured with CBF-MRI in older individuals: Association with cognition, physical function, amyloid and tau proteins. J Cereb Blood Flow Metab 2024; 44:1618-1628. [PMID: 38489769 PMCID: PMC11532674 DOI: 10.1177/0271678x241240582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/05/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
Vascular pathology is the second leading cause of cognitive impairment and represents a major contributing factor in mixed dementia. However, biomarkers for vascular cognitive impairment and dementia (VCID) are under-developed. Here we aimed to investigate the potential role of CO2 Cerebrovascular Reactivity (CVR) measured with phase-contrast quantitative flow MRI in cognitive impairment and dementia. Forty-five (69 ± 7 years) impaired (37 mild-cognitive-impairment and 8 mild-dementia by syndromic diagnosis) and 22 cognitively-healthy-control (HC) participants were recruited and scanned on a 3 T MRI. Biomarkers of AD pathology were measured in cerebrospinal fluid. We found that CBF-CVR was lower (p = 0.027) in the impaired (mean±SE, 3.70 ± 0.15%/mmHg) relative to HC (4.28 ± 0.21%/mmHg). After adjusting for AD pathological markers (Aβ42/40, total tau, and Aβ42/p-tau181), higher CBF-CVR was associated with better cognitive performance, including Montreal Cognitive Assessment, MoCA (p = 0.001), composite cognitive score (p = 0.047), and language (p = 0.004). Higher CBF-CVR was also associated with better physical function, including gait-speed (p = 0.006) and time for five chair-stands (p = 0.049). CBF-CVR was additionally related to the Clinical-Dementia-Rating, CDR, including global CDR (p = 0.026) and CDR Sum-of-Boxes (p = 0.015). CBF-CVR was inversely associated with hemoglobin A1C level (p = 0.017). In summary, CBF-CVR measured with phase-contrast MRI shows associations with cognitive performance, physical function, and disease-severity, independent of AD pathological markers.
Collapse
Affiliation(s)
- Sandeepa Sur
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Zixuan Lin
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Yang Li
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Sevil Yasar
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Paul B Rosenberg
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Xirui Hou
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Dengrong Jiang
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Rita R Kalyani
- Department of Medicine, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Kaisha Hazel
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - George Pottanat
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Cuimei Xu
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Jay J Pillai
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Division of Neuroradiology, Mayo Clinic College of Medicine and Science, Rochester, MN, USA
| | - Peiying Liu
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Diagnostic Radiology & Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
| | - Hanzhang Lu
- Department of Radiology, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
3
|
Barisano G, Iv M, Choupan J, Hayden-Gephart M. Cerebral perivascular spaces as predictors of dementia risk and accelerated brain atrophy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.04.25.24306324. [PMID: 38712073 PMCID: PMC11071547 DOI: 10.1101/2024.04.25.24306324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Cerebral small vessel disease, an important risk factor for dementia, lacks robust, in vivo measurement methods. Perivascular spaces (PVS) on brain MRI are surrogates for small parenchymal blood vessels and their perivascular compartment, and may relate to brain health. We developed a novel, robust algorithm to automatically assess PVS count and size on MRI, and investigated their relationship with dementia risk and brain atrophy. We analyzed 46,478 clinical measurements of cognitive functioning and 20,845 brain MRI scans from 10,004 participants (71.1±9.7 years-old, 56.6% women). Fewer PVS and larger PVS diameter at baseline were associated with higher dementia risk and accelerated brain atrophy. Longitudinal trajectories of PVS markers were significantly different in non-demented individuals who converted to dementia compared with non-converters. In simulated placebo-controlled trials for treatments targeting cognitive decline, screening out participants less likely to develop dementia based on our PVS markers enhanced the power of the trial. These novel radiographic cerebrovascular markers may improve risk-stratification of individuals, potentially reducing cost and increasing throughput of clinical trials to combat dementia.
Collapse
Affiliation(s)
| | - Michael Iv
- Department of Radiology, Stanford University, Stanford, CA, USA
| | | | - Jeiran Choupan
- Laboratory of Neuro Imaging, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|