1
|
Rossi M, Merello M. Hereditary Ataxias in Argentina. CEREBELLUM (LONDON, ENGLAND) 2025; 24:82. [PMID: 40198507 DOI: 10.1007/s12311-025-01834-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/26/2025] [Indexed: 04/10/2025]
Abstract
Hereditary or genetic ataxias are hundreds of disorders characterized by large phenotypic, genetic, and epidemiological heterogeneity. In Argentina, 35 genetic ataxias have been identified, with SCA1 (ATX-ATXN1), SCA2 (ATX-ATXN2), SCA3 (ATX-ATXN3), and Friedreich ataxia (ATX-FXN) as the most prevalent causes, reflecting the epidemiology of most Western European countries, the main origin of immigration to the country. Genetic diagnostic studies of ataxia cohorts in Argentina have found high rates of undiagnosed patients, ranging from 65 to 82%. Deep phenotyping, comprehensive genetic testing, and knowledge of the prevalence of different genetic ataxias are essential for an accurate diagnostic and treatment approach in clinical practice. This narrative review proposes a targeted, tiered genetic diagnostic approach for undiagnosed patients based on the Argentinian epidemiological and healthcare system data. Future national efforts should support comprehensive screening studies on ataxia cohorts, including testing for repeat expansions in RFC1 and FGF14 genes. In addition, establishing a trial-ready patient registry for genetic ataxias, enhancing networking with international clinical and research initiatives, and developing specialized centers for interdisciplinary care of genetic ataxia patients are recommended.
Collapse
Affiliation(s)
- Malco Rossi
- Servicio de Movimientos Anormales, Departamento de Neurología, Fleni, Montañeses 2325, C1428, Ciudad Autónoma de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina
| | - Marcelo Merello
- Servicio de Movimientos Anormales, Departamento de Neurología, Fleni, Montañeses 2325, C1428, Ciudad Autónoma de Buenos Aires, Argentina.
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires, Argentina.
- Facultad de Ciencias Médicas, Pontificia Universidad Católica Argentina, Buenos Aires, Argentina.
| |
Collapse
|
2
|
Indelicato E, Delatycki MB, Farmer J, França MC, Perlman S, Rai M, Boesch S. A global perspective on research advances and future challenges in Friedreich ataxia. Nat Rev Neurol 2025; 21:204-215. [PMID: 40032987 DOI: 10.1038/s41582-025-01065-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/29/2025] [Indexed: 03/05/2025]
Abstract
Friedreich ataxia (FRDA) is a rare multisystem, life-limiting disease and is the most common early-onset inherited ataxia in populations of European, Arab and Indian descent. In recent years, substantial progress has been made in dissecting the pathogenesis and natural history of FRDA, and several clinical trials have been initiated. A particularly notable recent achievement was the approval of the nuclear factor erythroid 2-related factor 2 activator omaveloxolone as the first disease-specific therapy for FRDA. In light of these developments, we review milestones in FRDA translational and clinical research over the past 10 years, as well as the various therapeutic strategies currently in the pipeline. We also consider the lessons that have been learned from failed trials and other setbacks. We conclude by presenting a global roadmap for future research, as outlined by the recently established Friedreich's Ataxia Global Clinical Consortium, which covers North and South America, Europe, India, Australia and New Zealand.
Collapse
Affiliation(s)
- Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
| | | | | | | | - Myriam Rai
- Friedreich's Ataxia Research Alliance, Downingtown, PA, USA
- Laboratory of Experimental Neurology, Brussels, Belgium
| | - Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
3
|
Chen J, Gruber S, Lee H, Chu H, Lee S, Tian H, Wang Y, He W, Jemielita T, Song Y, Tamura R, Tian L, Zhao Y, Chen Y, van der Laan M, Nie L. Use of Real-World Data and Real-World Evidence in Rare Disease Drug Development: A Statistical Perspective. Clin Pharmacol Ther 2025; 117:946-960. [PMID: 39949314 DOI: 10.1002/cpt.3576] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 01/13/2025] [Indexed: 03/21/2025]
Abstract
Real-world data (RWD) and real-world evidence (RWE) have been increasingly used in medical product development and regulatory decision-making, especially for rare diseases. After outlining the challenges and possible strategies to address the challenges in rare disease drug development (see the accompanying paper), the Real-World Evidence (RWE) Scientific Working Group of the American Statistical Association Biopharmaceutical Section reviews the roles of RWD and RWE in clinical trials for drugs treating rare diseases. This paper summarizes relevant guidance documents and frameworks by selected regulatory agencies and the current practice on the use of RWD and RWE in natural history studies and the design, conduct, and analysis of rare disease clinical trials. A targeted learning roadmap for rare disease trials is described, followed by case studies on the use of RWD and RWE to support a natural history study and marketing applications in various settings.
Collapse
Affiliation(s)
| | | | - Hana Lee
- TL Revolution, Cambridge, Massachusetts, USA
| | | | - Shiowjen Lee
- US Food and Drug Administration, Silver Spring, Maryland, USA
| | | | - Yan Wang
- US Food and Drug Administration, Silver Spring, Maryland, USA
| | - Weili He
- AbbVie, North Chicago, Illinois, USA
| | | | - Yang Song
- Vertex Pharmaceuticals, Boston, Massachusetts, USA
| | - Roy Tamura
- University of South Florida, Tampa, Florida, USA
| | - Lu Tian
- Stanford University, Stanford, California, USA
| | - Yihua Zhao
- Flatiron Health, San Francisco, California, USA
| | - Yong Chen
- University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | - Lei Nie
- US Food and Drug Administration, Silver Spring, Maryland, USA
| |
Collapse
|
4
|
Naghipour S, Corben LA, Hulme AJ, Dottori M, Delatycki MB, Lees JG, Lim SY. Omaveloxolone for the Treatment of Friedreich Ataxia: Efficacy, Safety, and Future Perspectives. Mov Disord 2025; 40:226-230. [PMID: 39559924 DOI: 10.1002/mds.30070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024] Open
Affiliation(s)
- Saba Naghipour
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
| | - Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, Melbourne University, Parkville, Victoria, Australia
| | - Amy J Hulme
- School of Medical, Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
| | - Mirella Dottori
- School of Medical, Indigenous and Health Sciences, Molecular Horizons, University of Wollongong, Wollongong, New South Wales, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, Victoria, Australia
- Department of Paediatrics, Melbourne University, Parkville, Victoria, Australia
- Victorian Clinical Genetics Services, Parkville, Victoria, Australia
| | - Jarmon G Lees
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine and Surgery, University of Melbourne, Parkville, Victoria, Australia
- Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Clayton, Victoria, Australia
| | - Shiang Y Lim
- O'Brien Institute Department, St Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia
- Department of Medicine and Surgery, University of Melbourne, Parkville, Victoria, Australia
- Drug Discovery Biology, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Clayton, Victoria, Australia
- National Heart Research Institute, National Heart Center, Singapore
| |
Collapse
|
5
|
Lynch DR, Shen M, Wilson RB. Friedreich ataxia: what can we learn from non-GAA repeat mutations? Neurodegener Dis Manag 2025; 15:17-26. [PMID: 39810561 PMCID: PMC11938963 DOI: 10.1080/17582024.2025.2452147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 01/08/2025] [Indexed: 01/16/2025] Open
Abstract
Friedreich ataxia (FRDA) is a slowly progressive neurological disease resulting from decreased levels of the protein frataxin, a small mitochondrial protein that facilitates the synthesis of iron-sulfur clusters in the mitochondrion. It is caused by GAA (guanine-adenine-adenine) repeat expansions in the FXN gene in 96% of patients, with 4% of patients carrying other mutations (missense, nonsense, deletion) in the FXN gene. Compound heterozygote patients with one expanded GAA allele and a non-GAA repeat mutation can have subtle differences in phenotype from typical FRDA, including, in patients with selected missense mutations, both more severe features and less severe features in the same patient. In this review, we propose explanations for such phenotypes based on the potential for activities of frataxin other than enhancement of iron-sulfur cluster synthesis, as well as crucial future experiments for fully understanding the role of frataxin in cells.
Collapse
Affiliation(s)
- David R. Lynch
- Friedreich Ataxia Program, Division of Neurology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
- Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - M. Shen
- Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
| | - Robert B. Wilson
- Perelman School of Medicine of the University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology, The Children’s Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
6
|
Eisel MLS, Burns M, Ashizawa T, Byrne B, Corti M, Subramony SH. Emerging therapies in hereditary ataxias. Trends Mol Med 2025; 31:181-194. [PMID: 39153956 DOI: 10.1016/j.molmed.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/15/2024] [Accepted: 07/22/2024] [Indexed: 08/19/2024]
Abstract
Recent investigations have defined the pathophysiological basis of many hereditary ataxias (HAs), including loss-of-function as well as gain-of-function mechanisms at either the RNA or protein level. Preclinical studies have assessed gene editing, gene and protein replacement, gene enhancement, and gene knockdown strategies. Methodologies include viral vector delivery of genes, oligonucleotide therapies, cell-penetrating peptides, synthetic transcription factors, and technologies to deliver therapies to defined targets. In this review, we focus on Friedreich ataxia (FRDA) and the polyglutamine ataxias in which translational research is active. However, much remains to be done to identify safe and effective molecules, create ideal delivery methods, and perform innovative clinical trials to prove the safety and efficacy of treatments for these rare but devastating diseases.
Collapse
Affiliation(s)
- Mallory L S Eisel
- Department of Neurology and the Fixel Institute for Neurological Disorders, University of Florida College of Medicine, Gainesville, FL, USA
| | - Matthew Burns
- Department of Neurology and the Fixel Institute for Neurological Disorders, University of Florida College of Medicine, Gainesville, FL, USA
| | - Tetsuo Ashizawa
- Stanley H. Appel Department of Neurology, Weill Cornell Medicine at Houston Methodist Hospital, Houston, TX, USA
| | - Barry Byrne
- Department of Pediatrics and the Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Manuela Corti
- Department of Pediatrics and the Powell Gene Therapy Center, University of Florida College of Medicine, Gainesville, FL, USA
| | - Sub H Subramony
- Department of Neurology and the Fixel Institute for Neurological Disorders, University of Florida College of Medicine, Gainesville, FL, USA.
| |
Collapse
|
7
|
Taba R, Põlluaed M, Tein K, Puurand M, Käämbre T, Terasmaa A. Effect of Media Composition and Oxygen Tension on Cellular Stress Response and Nrf2 Activation in HepG2ARE Cells. Antioxidants (Basel) 2025; 14:137. [PMID: 40002325 PMCID: PMC11851573 DOI: 10.3390/antiox14020137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/20/2025] [Accepted: 01/20/2025] [Indexed: 02/27/2025] Open
Abstract
Cell models play a central role in preclinical research aimed at the mechanism of disease and drug discovery. The outside environment of the cells, including levels of nutrients and oxygen tension, regulates cellular stress response pathways. Routinely used in vitro disease models often overlook cell growth conditions. This study aimed to evaluate the effect of substituting classic cell media (DMEM) with media matching the nutrient composition of human plasma (Plasmax) on cell viability, the activation of nuclear factor erythroid 2-related factor 2 (Nrf2), glutathione (GSH), and malondialdehyde (MDA) levels by different pharmacological inducers of cell stress. The cells were grown at ambient (~19%) and reduced (5%) oxygen levels. The activation of Nrf2 by ferroptosis activators (erastin and RSL3) was dependent on cell media and oxygen tension. The induction of Nrf2 by an inducer of endoplasmic reticulum stress, thapsigargin, was observable only in cells grown in DMEM and at low oxygen tension. GSH and MDA levels were elevated in Plasmax media. Results indicate that stress tolerance and the activation of Nrf2 in the HepG2ARE cell line depend on the growth conditions, including cell media and oxygen. Cell culture conditions should be critically considered when designing in vitro models of diseases involving oxidative stress.
Collapse
Affiliation(s)
- Rutt Taba
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.P.); (K.T.); (M.P.); (T.K.)
| | | | | | | | | | - Anton Terasmaa
- Laboratory of Chemical Biology, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; (M.P.); (K.T.); (M.P.); (T.K.)
| |
Collapse
|
8
|
Wen H, Deng H, Li B, Chen J, Zhu J, Zhang X, Yoshida S, Zhou Y. Mitochondrial diseases: from molecular mechanisms to therapeutic advances. Signal Transduct Target Ther 2025; 10:9. [PMID: 39788934 PMCID: PMC11724432 DOI: 10.1038/s41392-024-02044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/28/2024] [Accepted: 10/31/2024] [Indexed: 01/12/2025] Open
Abstract
Mitochondria are essential for cellular function and viability, serving as central hubs of metabolism and signaling. They possess various metabolic and quality control mechanisms crucial for maintaining normal cellular activities. Mitochondrial genetic disorders can arise from a wide range of mutations in either mitochondrial or nuclear DNA, which encode mitochondrial proteins or other contents. These genetic defects can lead to a breakdown of mitochondrial function and metabolism, such as the collapse of oxidative phosphorylation, one of the mitochondria's most critical functions. Mitochondrial diseases, a common group of genetic disorders, are characterized by significant phenotypic and genetic heterogeneity. Clinical symptoms can manifest in various systems and organs throughout the body, with differing degrees and forms of severity. The complexity of the relationship between mitochondria and mitochondrial diseases results in an inadequate understanding of the genotype-phenotype correlation of these diseases, historically making diagnosis and treatment challenging and often leading to unsatisfactory clinical outcomes. However, recent advancements in research and technology have significantly improved our understanding and management of these conditions. Clinical translations of mitochondria-related therapies are actively progressing. This review focuses on the physiological mechanisms of mitochondria, the pathogenesis of mitochondrial diseases, and potential diagnostic and therapeutic applications. Additionally, this review discusses future perspectives on mitochondrial genetic diseases.
Collapse
Affiliation(s)
- Haipeng Wen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Xiangya School of Medicine, Central South University, Changsha, Hunan, 410013, China
| | - Hui Deng
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Bingyan Li
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junyu Chen
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Junye Zhu
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Xian Zhang
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China
| | - Shigeo Yoshida
- Department of Ophthalmology, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011, Japan
| | - Yedi Zhou
- Department of Ophthalmology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.
- Hunan Clinical Research Center of Ophthalmic Disease, Changsha, Hunan, 410011, China.
| |
Collapse
|
9
|
Umrao A, Pahuja M, Chatterjee NS. Safety and efficacy of omaveloxolone v/s placebo for the treatment of Friedreich's ataxia in patients aged more than 16 years: a systematic review. Orphanet J Rare Dis 2024; 19:495. [PMID: 39736600 DOI: 10.1186/s13023-024-03474-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 11/20/2024] [Indexed: 01/01/2025] Open
Abstract
BACKGROUND Friedreich's ataxia (FA) is a rare genetic disorder caused by silencing of the frataxin gene (FXN), which leads to multiorgan damage. Nrf2 is a regulator of FXN, which is a modulator of oxidative stress in animals and humans. Omaveloxolone (Omav) is an Nrf2 activator and has been reported to have antioxidative potential in various disease conditions. The present review was conducted to determine the use of Omav, the only FDA-approved treatment for FA. METHODS Three electronic databases, Cochrane, PubMed and Google Scholar, were searched with terms such as 'Omaveloxolone', 'Friedreich ataxia', 'genetic diseases', 'autosomal recessive', and 'rare disorders' using various advanced search filters. Articles were screened, extracted, and assessed for quality, and a qualitative synthesis of the data was performed. The study protocol was registered in PROSPERO (CRD42024531449). RESULTS A total of 201 records were found, with very few published research articles on the topic. Only two randomized clinical trials published in a series of three research articles were included in the current systematic review. Peak load exercise and modified Friedreich's Ataxia Rating Scale (mFARS) values were considered the major outcome measures for determining the efficacy of 150 mg Omav capsules/day in FA. Exploratory outcome measures, such as low-contrast letter visual acuity test, exercise test, T25-FW, 9-HPT, health-related quality of life, and biochemical tests, were also assessed along with adverse events in all the studies. CONCLUSION Although, the quality of the articles demonstrated low bias. However, the short duration, small sample size, and missing data, including the values of different measures of mFARS scores in patients, limit the generalizability of the results. Further studies with longer durations and in severe patients with foot deformities are needed to clearly define the efficacy of Omav in FA and to determine the optimal drug for FA patients in India.
Collapse
Affiliation(s)
- Ankita Umrao
- Discovery Research Division, Indian Council of Medical Research (ICMR) Headquarters, V. Ramalingaswami Bhawan, Ansari Nagar, P.O. Box 4911, New Delhi, 110029, India
| | - Monika Pahuja
- Discovery Research Division, Indian Council of Medical Research (ICMR) Headquarters, V. Ramalingaswami Bhawan, Ansari Nagar, P.O. Box 4911, New Delhi, 110029, India.
| | - Nabendu Sekhar Chatterjee
- Discovery Research Division, Indian Council of Medical Research (ICMR) Headquarters, V. Ramalingaswami Bhawan, Ansari Nagar, P.O. Box 4911, New Delhi, 110029, India
| |
Collapse
|
10
|
Bodden D, Schoenen S, Wied S, Verbeeck J, Dirani M, Abou Daya H, Heussen N, Molenberghs G, Hilgers RD, Nabbout R. Multi-stakeholder sessions on major innovation topics in rare disease clinical trials. Orphanet J Rare Dis 2024; 19:467. [PMID: 39702219 DOI: 10.1186/s13023-024-03482-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 11/26/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND The European Joint Programme on Rare Diseases aims to enhance the rare diseases research ecosystem by bringing together stakeholders such as research funders, institutions and patient organizations. Work Package 20 focuses on the validation, use and development of innovative methodologies for rare disease clinical trials. This paper reports on the outcomes of a retreat held in April 2023, where areas for innovation and educational needs in rare disease clinical trials were discussed in multi-stakeholder sessions. METHODS Multi-stakeholder sessions covered the topics: Future Educational System, Randomization in Rare Disease Clinical Trials, Endpoints in Rare Disease Clinical Trials and Using History Course Data. The sessions began with expert presentations to set the scene, followed by guided discussions facilitated by questions on a collaborative digital whiteboard. Participants wrote responses, which were then discussed live with the experts. RESULTS Training is needed for diverse stakeholders in rare disease clinical trials to enhance understanding and drive innovation. Challenges include a lack of standardized terminology for multiple endpoints, inadequate understanding of randomization in small sample studies and various obstacles in effectively using natural history data. CONCLUSION Creating a comprehensive and sustainable educational program for rare diseases clinical trial methodology requires strategic collaboration and adherence to FAIR principles. The workshop highlighted the need for innovations for topics in areas such as handling missing data, optimizing the extraction of information from small samples, remote endpoint measurement and new randomized inference techniques. Additionally, integrating innovations into tailored training programs is crucial for advancing the field.
Collapse
Affiliation(s)
- Daniel Bodden
- Institute of Medical Statistics, RWTH Aachen University Aachen, Pauwelsstrasse 19, 52064, Aachen, Germany.
| | - Stefanie Schoenen
- Institute of Medical Statistics, RWTH Aachen University Aachen, Pauwelsstrasse 19, 52064, Aachen, Germany
| | - Stephanie Wied
- Institute of Medical Statistics, RWTH Aachen University Aachen, Pauwelsstrasse 19, 52064, Aachen, Germany
| | - Johan Verbeeck
- I-BioStat, Data Science Institute, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
| | - Maya Dirani
- Institut des Maladies Gènètiques Imagine- Necker Enfants malades Hospital, 24 Boulevard du Montparnasse, 75015, Paris, France
- Necker Enfants malades Hospital, 149 Rue de Sèvre, 75015, Paris, France
| | - Hiba Abou Daya
- Thematic Institute of Genetics, Genomics & Bioinformatics, INSERM, 8 rue de la Croix Jarry, 75013, Paris, France
| | - Nicole Heussen
- Institute of Medical Statistics, RWTH Aachen University Aachen, Pauwelsstrasse 19, 52064, Aachen, Germany
- Medical School, Sigmund Freud Private University, Freudplatz 1, 1020, Vienna, Austria
| | - Geert Molenberghs
- I-BioStat, Data Science Institute, Hasselt University, Martelarenlaan 42, 3500, Hasselt, Belgium
- I-BioStat, KU Leuven, Kapucijnenvoer 35, 3000, Leuven, Belgium
| | - Ralf-Dieter Hilgers
- Institute of Medical Statistics, RWTH Aachen University Aachen, Pauwelsstrasse 19, 52064, Aachen, Germany
| | - Rima Nabbout
- Institut des Maladies Gènètiques Imagine- Necker Enfants malades Hospital, 24 Boulevard du Montparnasse, 75015, Paris, France
- Necker Enfants malades Hospital, 149 Rue de Sèvre, 75015, Paris, France
| |
Collapse
|
11
|
Mukherjee S, Pereboeva L, Fil D, Saikia A, Lee J, Li J, Cotticelli MG, Soragni E, Wilson RB, Napierala M, Napierala JS. Design and validation of cell-based potency assays for frataxin supplementation treatments. Mol Ther Methods Clin Dev 2024; 32:101347. [PMID: 39823061 PMCID: PMC11735916 DOI: 10.1016/j.omtm.2024.101347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/24/2024] [Indexed: 01/19/2025]
Abstract
Friedreich's ataxia (FRDA) is a multisystem, autosomal recessive disorder caused by mutations in the frataxin (FXN) gene. As FRDA is considered an FXN deficiency disorder, numerous therapeutic approaches in development or clinical trials aim to supplement FXN or restore endogenous FXN expression. These include gene therapy, protein supplementation, genome editing or upregulation of FXN transcription. To evaluate efficacy of these therapies, potency assays capable of quantitative determination of FXN biological activity are needed. Herein, we evaluate the suitability of mouse embryonic fibroblasts derived from Fxn G127V knockin mice (MUT MEFs) as a candidate for cell-based potency assays. We demonstrate that these cells, when immortalized, continue to express minute amounts of Fxn and exhibit a broad range of phenotypes that result from severe Fxn deficiency. Exogenous FXN supplementation reverses these phenotypes. Thus, immortalized MUT MEFs are an excellent tool for developing potency assays to validate novel FRDA therapies. Care needs to be exercised while utilizing these cell lines, as extended passaging results in molecular changes that spontaneously reverse FRDA-like phenotypes without increasing Fxn expression. Based on transcriptome analyses, we identified the Warburg effect as the mechanism allowing cells expressing a minimal level of Fxn to thrive under standard cell culture conditions.
Collapse
Affiliation(s)
- Shibani Mukherjee
- Department of Neurology, O’Donnell Brain Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Larisa Pereboeva
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, 1825 University Boulevard, Birmingham, AL 35294, USA
| | - Daniel Fil
- Department of Biochemistry and Molecular Biology, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA
| | - Achisha Saikia
- Department of Neurology, O’Donnell Brain Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jeon Lee
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jixue Li
- Department of Neurology, O’Donnell Brain Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - M. Grazia Cotticelli
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Elisabetta Soragni
- Friedreich’s Ataxia Research Alliance, 533 W. Uwchlan Avenue, Downingtown, PA 19335, USA
| | - Robert B. Wilson
- Department of Pathology and Laboratory Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Marek Napierala
- Department of Neurology, O’Donnell Brain Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| | - Jill S. Napierala
- Department of Neurology, O’Donnell Brain Institute, University of Texas Southwestern Medical Center, 6000 Harry Hines Boulevard, Dallas, TX 75390, USA
| |
Collapse
|
12
|
Hamdan A, Hendrickx N, Hooker AC, Chen X, Comets E, Traschütz A, Schüle R, Mentré F, Synofzik M, Karlsson MO. Longitudinal Analysis of Natural History Progression of Rare and Ultra-Rare Cerebellar Ataxias Using Item Response Theory. Clin Pharmacol Ther 2024; 116:1593-1605. [PMID: 39403821 DOI: 10.1002/cpt.3466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 09/23/2024] [Indexed: 11/16/2024]
Abstract
Degenerative cerebellar ataxias comprise a heterogeneous group of rare and ultra-rare genetic diseases. While disease-modifying treatments are now on the horizon for many ataxias, robust trial designs and analysis methods are lacking. To better inform trial designs, we applied item response theory (IRT) modeling to evaluate the natural history progression of several ataxias, assessed with the widely used scale for assessment and rating of ataxia (SARA). A longitudinal IRT model was built utilizing real-world data from the large autosomal recessive cerebellar ataxia (ARCA) registry. Disease progression was evaluated for the overall cohort as well as for the 10 most common ARCA genotypes. Sample sizes were calculated for simulated trials with autosomal recessive spastic ataxia Charlevoix-Saguenay (ARSACS) and polymerase gamma (POLG) ataxia, as showcased, across multiple design and analysis scenarios. Longitudinal IRT models were able to describe the changes in the latent variable underlying SARA as a function of time since ataxia onset for both the overall ARCA cohort and the common genotypes. The typical progression rates varied across genotypes between relatively high in POLG (~ 0.98 SARA points/year at SARA = 20) and very low in COQ8A ataxia (~ 0.003 SARA points/year at SARA = 20). Smaller trial sizes were required in case of faster progression, longer trials (~ 75-90% less with 5 years vs. 2 years), and larger drug effects (~ 70-80% less with 100% vs. 50% inhibition). Simulating under the developed IRT model, the longitudinal IRT model had the highest power, with a well-controlled type I error, compared to total score models or end-of-treatment analyses. The established longitudinal IRT framework allows efficient utilization of natural history data and ultimately facilitates the design and analysis of treatment trials in rare and ultra-rare genetic ataxias.
Collapse
Affiliation(s)
- Alzahra Hamdan
- Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | | | - Andrew C Hooker
- Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Xiaomei Chen
- Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| | - Emmanuelle Comets
- Université Paris Cité, IAME, Inserm, Paris, France
- Univ Rennes, Inserm, EHESP, Irset - UMR_S 1085, Rennes, France
| | - Andreas Traschütz
- Department of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Tübingen, Germany
| | - Rebecca Schüle
- Department of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- Division of Neurodegenerative Diseases, Department of Neurology, Heidelberg University Hospital, Heidelberg, Germany
| | | | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Center for Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE) Tübingen, Tübingen, Germany
| | - Mats O Karlsson
- Pharmacometrics Research Group, Department of Pharmacy, Uppsala University, Uppsala, Sweden
| |
Collapse
|
13
|
Scott V, Delatycki MB, Tai G, Corben LA. New and Emerging Drug and Gene Therapies for Friedreich Ataxia. CNS Drugs 2024; 38:791-805. [PMID: 39115603 PMCID: PMC11377510 DOI: 10.1007/s40263-024-01113-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/18/2024] [Indexed: 09/06/2024]
Abstract
The life shortening nature of Friedreich Ataxia (FRDA) demands the search for therapies that can delay, stop or reverse its relentless trajectory. This review provides a contemporary position of drug and gene therapies for FRDA currently in phase 1 clinical trials and beyond. Despite significant scientific advances in the specificity of both compounds and targets developed and investigated, challenges remain for the advancement of treatments in a limited recruitment population. Currently therapies focus on reducing oxidative stress and improving mitochondrial function, modulating frataxin controlled metabolic pathways and gene replacement and editing. Approval of omaveloxolone, the first treatment for individuals with FRDA aged 16 years and over, has created much excitement for both those living with FRDA and those that care for them. The process of approval of omaveloxolone by the US Food and Drug Administration highlighted the importance of sensitive outcome measures and the significant role of data from natural history studies.
Collapse
Affiliation(s)
- Varlli Scott
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
| | - Martin B Delatycki
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia
- Victorian Clinical Genetics Service, Parkville, VIC, Australia
| | - Geneieve Tai
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia
| | - Louise A Corben
- Bruce Lefroy Centre for Genetic Health Research, Murdoch Children's Research Institute, Parkville, VIC, 3052, Australia.
- Department of Paediatrics, University of Melbourne, Parkville, VIC, Australia.
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia.
| |
Collapse
|
14
|
Vogt L, Quiroz V, Ebrahimi-Fakhari D. Emerging therapies for childhood-onset movement disorders. Curr Opin Pediatr 2024; 36:331-341. [PMID: 38655812 PMCID: PMC11047116 DOI: 10.1097/mop.0000000000001354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
PURPOSE OF REVIEW We highlight novel and emerging therapies in the treatment of childhood-onset movement disorders. We structured this review by therapeutic entity (small molecule drugs, RNA-targeted therapeutics, gene replacement therapy, and neuromodulation), recognizing that there are two main approaches to treatment: symptomatic (based on phenomenology) and molecular mechanism-based therapy or 'precision medicine' (which is disease-modifying). RECENT FINDINGS We highlight reports of new small molecule drugs for Tourette syndrome, Friedreich's ataxia and Rett syndrome. We also discuss developments in gene therapy for aromatic l-amino acid decarboxylase deficiency and hereditary spastic paraplegia, as well as current work exploring optimization of deep brain stimulation and lesioning with focused ultrasound. SUMMARY Childhood-onset movement disorders have traditionally been treated symptomatically based on phenomenology, but focus has recently shifted toward targeted molecular mechanism-based therapeutics. The development of precision therapies is driven by increasing capabilities for genetic testing and a better delineation of the underlying disease mechanisms. We highlight novel and exciting approaches to the treatment of genetic childhood-onset movement disorders while also discussing general challenges in therapy development for rare diseases. We provide a framework for molecular mechanism-based treatment approaches, a summary of specific treatments for various movement disorders, and a clinical trial readiness framework.
Collapse
Affiliation(s)
- Lindsey Vogt
- Division of Neurology, Department of Pediatrics, The Hospital for Sick Children, Toronto Ontario, Canada
| | - Vicente Quiroz
- Movement Disorders Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| | - Darius Ebrahimi-Fakhari
- Movement Disorders Program, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
15
|
Boesch S, Indelicato E. Approval of omaveloxolone for Friedreich ataxia. Nat Rev Neurol 2024; 20:313-314. [PMID: 38570703 DOI: 10.1038/s41582-024-00957-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Affiliation(s)
- Sylvia Boesch
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Elisabetta Indelicato
- Center for Rare Movement Disorders Innsbruck, Department of Neurology, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
16
|
Perlman SL. CRPD frontiers in movement disorders Therapeutics: From evidence to treatment and applications: Addressing Patients' Needs in the Management of the Ataxias. Clin Park Relat Disord 2024; 10:100255. [PMID: 38798918 PMCID: PMC11126860 DOI: 10.1016/j.prdoa.2024.100255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 04/02/2024] [Accepted: 05/05/2024] [Indexed: 05/29/2024] Open
Abstract
The genetic ataxias have no cures and no proven ways to delay progression (no disease-modifying therapies). The acquired ataxias may have treatments that address the underlying cause and may slow or stop progression, but will not reverse damage already sustained. The idiopathic ataxias (of unknown genetic or acquired cause) also have no proven disease-modifying therapies. However, for all patients with ataxia of any cause, there is always something that can be done to improve quality of life-treat associated symptoms, provide information and resources, counsel patient and family, help with insurance and disability concerns, be available to listen and answer the many questions they will have.
Collapse
Affiliation(s)
- Susan L. Perlman
- Department of Neurology David Geffen School of Medicine at UCLA Health Sciences 300 UCLA Medical Plaza, Suite B200 Los Angeles, CA 90095, United States
| |
Collapse
|
17
|
Gunther K, Lynch DR. Pharmacotherapeutic strategies for Friedreich Ataxia: a review of the available data. Expert Opin Pharmacother 2024; 25:529-539. [PMID: 38622054 DOI: 10.1080/14656566.2024.2343782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/12/2024] [Indexed: 04/17/2024]
Abstract
INTRODUCTION Friedreich ataxia (FRDA) is a rare autosomal recessive disease, marked by loss of coordination as well as impaired neurological, endocrine, orthopedic, and cardiac function. There are many symptomatic medications for FRDA, and many clinical trials have been performed, but only one FDA-approved medication exists. AREAS COVERED The relative absence of the frataxin protein (FXN) in FRDA causes mitochondrial dysfunction, resulting in clinical manifestations. Currently, the only approved treatment for FRDA is an Nrf2 activator called omaveloxolone (Skyclarys). Patients with FRDA also rely on various symptomatic medications for treatment. Because there is only one approved medication for FRDA, clinical trials continue to advance in FRDA. Although some trials have not met their endpoints, many current and upcoming clinical trials provide exciting possibilities for the treatment of FRDA. EXPERT OPINION The approval of omaveloxolone provides a major advance in FRDA therapeutics. Although well tolerated, it is not curative. Reversal of deficient frataxin levels with gene therapy, protein replacement, or epigenetic approaches provides the most likely prospect for enduring, disease-modifying therapy in the future.
Collapse
Affiliation(s)
- Katherine Gunther
- Friedreich Ataxia Program, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - David R Lynch
- Friedreich Ataxia Program, Division of Neurology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| |
Collapse
|
18
|
Munir MU, Ali SA, Chung KHK, Kakinen A, Javed I, Davis TP. Reverse engineering the Gut-Brain Axis and microbiome-metabolomics for symbiotic/pathogenic balance in neurodegenerative diseases. Gut Microbes 2024; 16:2422468. [PMID: 39523450 PMCID: PMC11556280 DOI: 10.1080/19490976.2024.2422468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/28/2024] [Accepted: 10/23/2024] [Indexed: 11/16/2024] Open
Abstract
Deciphering the molecular communications along the gut-brain axis can help in understanding the pathophysiology of neurodegenerative diseases and exploiting the gut microbiome for therapeutics. However, gut microbes and their metabolites have a multifaceted role in mediating both brain physiology and neurodegenerative pathology. There is a lack of understanding of how and when this role is tipped in neurodegenerative diseases and what are those contributing factors, both at local (gut) and distal (neuronal) levels, that drive this imbalance. Here we have reviewed the gut microbiome and its metabolites in the context of the gut-brain axis and summarized how different factors such as gut-microbial diversity, their metabolites, the role of the native immune system and the integrity of gut epithelial and blood-brain barriers are interconnected and collectively define the involvement of gut-microbiome in neurodegenerative pathologies. It also underlines the need for multidisciplinary tools and animal models to simultaneously reflect on many of these factors and to better correlate with clinical observations and data obtained from human biopsies and fecal samples. Harnessing the gut-brain axis will herald a paradigm shift in medicine for neurodegenerative diseases and aging, emphasizing the significance of the microbiome in the broader spectrum of health and disease.
Collapse
Affiliation(s)
- Muhammad Usman Munir
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia
| | - Syed Aoun Ali
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia
| | - Ka Hang Karen Chung
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia
| | - Aleksandr Kakinen
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia
| | - Ibrahim Javed
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia
- Clinical and Health Sciences,University of South Australia, Adelaide, SA, Australia
| | - Thomas Paul Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Qld, Australia
| |
Collapse
|