1
|
Sogorb-Esteve A, Weiner S, Simrén J, Swift IJ, Bocchetta M, Todd EG, Cash DM, Bouzigues A, Russell LL, Foster PH, Ferry-Bolder E, van Swieten JC, Jiskoot LC, Seelaar H, Sanchez-Valle R, Laforce R, Graff C, Galimberti D, Vandenberghe R, de Mendonça A, Tiraboschi P, Santana I, Gerhard A, Levin J, Sorbi S, Otto M, Pasquier F, Ducharme S, Butler CR, Le Ber I, Finger E, Tartaglia MC, Masellis M, Rowe JB, Synofzik M, Moreno F, Borroni B, Genfi, Blennow K, Zetterberg H, Rohrer JD, Gobom J. Proteomic analysis reveals distinct cerebrospinal fluid signatures across genetic frontotemporal dementia subtypes. Sci Transl Med 2025; 17:eadm9654. [PMID: 39908349 DOI: 10.1126/scitranslmed.adm9654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 07/22/2024] [Accepted: 01/14/2025] [Indexed: 02/07/2025]
Abstract
We used an untargeted mass spectrometric approach, tandem mass tag proteomics, for the identification of proteomic signatures in genetic frontotemporal dementia (FTD). A total of 238 cerebrospinal fluid (CSF) samples from the Genetic FTD Initiative were analyzed, including samples from 107 presymptomatic (44 C9orf72, 38 GRN, and 25 MAPT) and 55 symptomatic (27 C9orf72, 17 GRN, and 11 MAPT) mutation carriers as well as 76 mutation-negative controls ("noncarriers"). We found shared and distinct proteomic alterations in each genetic form of FTD. Among the proteins significantly altered in symptomatic mutation carriers compared with noncarriers, we found that a set of proteins including neuronal pentraxin 2 and fatty acid binding protein 3 changed across all three genetic forms of FTD and patients with Alzheimer's disease from previously published datasets. We observed differential changes in lysosomal proteins among symptomatic mutation carriers with marked abundance decreases in MAPT carriers but not other carriers. Further, we identified mutation-associated proteomic changes already evident in presymptomatic mutation carriers. Weighted gene coexpression network analysis combined with gene ontology annotation revealed clusters of proteins enriched in neurodegeneration and glial responses as well as synapse- or lysosome-related proteins indicating that these are the central biological processes affected in genetic FTD. These clusters correlated with measures of disease severity and were associated with cognitive decline. This study revealed distinct proteomic changes in the CSF of patients with genetic FTD, providing insights into the pathological processes involved in the disease. In addition, we identified proteins that warrant further exploration as diagnostic and prognostic biomarker candidates.
Collapse
Affiliation(s)
- Aitana Sogorb-Esteve
- UK Dementia Research Institute at University College London, WC1N 3BG London, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Sophia Weiner
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 431 39 Mölndal, Sweden
| | - Joel Simrén
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 431 39 Mölndal, Sweden
| | - Imogen J Swift
- UK Dementia Research Institute at University College London, WC1N 3BG London, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Martina Bocchetta
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
- Centre for Cognitive and Clinical Neuroscience, Division of Psychology, Department of Life Sciences, College of Health, Medicine, and Life Sciences, Brunel University, UB8 3PH London, UK
| | - Emily G Todd
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - David M Cash
- UK Dementia Research Institute at University College London, WC1N 3BG London, UK
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Arabella Bouzigues
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Lucy L Russell
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Phoebe H Foster
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Eve Ferry-Bolder
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Centre, 3015 GD Rotterdam, Netherlands
| | - Lize C Jiskoot
- Department of Neurology, Erasmus Medical Centre, 3015 GD Rotterdam, Netherlands
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, 3015 GD Rotterdam, Netherlands
| | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d'Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, 08036 Barcelona, Spain
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, Québec, QC G1V 0A6, Canada
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences, and Society, Bioclinicum, Karolinska Institutet, 171 64 Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, 171 77 Solna, Sweden
| | - Daniela Galimberti
- Fondazione Ca' Granda, IRCCS Ospedale Policlinico, 20122 Milan, Italy
- University of Milan, Centro Dino Ferrari, 20122 Milan, Italy
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, 3000 Leuven, Belgium
- Neurology Service, University Hospitals Leuven, 3000 Leuven, Belgium
- Leuven Brain Institute, KU Leuven, 3000 Leuven, Belgium
| | | | - Pietro Tiraboschi
- Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133 Milano, Italy
| | - Isabel Santana
- University Hospital of Coimbra (HUC), Neurology Service, Faculty of Medicine, University of Coimbra, 3004-531 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, 3004-531 Coimbra, Portugal
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, M20 3LJ Manchester, UK
- Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, 45141 Essen, Germany
| | - Johannes Levin
- Department of Neurology, Ludwig-Maximilians Universität München, 80539 Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), 81377 Munich, Germany
- Munich Cluster of Systems Neurology (SyNergy), 81377 Munich, Germany
| | - Sandro Sorbi
- Department of Neurofarba, University of Florence, 50139 Florence, Italy
- IRCCS Fondazione Don Carlo Gnocchi, 50143 Florence, Italy
| | - Markus Otto
- Department of Neurology, University of Ulm, 89081 Ulm, Germany
- Department of Neurology, Martin-Luther-University Hospital of Halle-Wittenberg, 06120 Halle (Saale), Germany
| | - Florence Pasquier
- University of Lille, 59000 Lille, France
- Inserm 1172, Lille, 59000 Lille, France
- CHU, CNR-MAJ, Labex Distalz, LiCEND Lille, 59000 Lille, France
| | - Simon Ducharme
- Department of Psychiatry, McGill University Health Centre, McGill University, Montreal, Québec H4A 3J1, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec H3A 0G4, Canada
| | - Chris R Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, OX3 9DU Oxford, UK
- Department of Brain Sciences, Imperial College London, W12 0NN London, UK
| | - Isabelle Le Ber
- Sorbonne Université, Paris Brain Institute - Institut du Cerveau - ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, 75013 Paris, France
- Centre de référence des démences rares ou précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, 75013 Paris, France
- Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, 75013 Paris, France
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario N6A 5A5, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - James B Rowe
- Department of Clinical Neurosciences, University of Cambridge, CB2 3EB Cambridge, UK
| | - Matthis Synofzik
- Division Translational Genomics of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, 72076 Tübingen, Germany
- Center for Neurodegenerative Diseases (DZNE), 72076 Tübingen, Germany
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia Universitary Hospital, 20014 San Sebastian, Spain
- Neuroscience Area, Biodonostia Health Research Institute, 20014 San Sebastian, Gipuzkoa, Spain
| | - Barbara Borroni
- Department of Clinical and Experimental Sciences, University of Brescia, 25123 Brescia, Italy
- Department of Continuity of Care and Frialy, ASST Spedali Civili Brescia, 25123 Brescia, Italy
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 431 39 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
- Institut du Cerveau et de la Moelle épinière (ICM), Pitié-Salpêtrière Hospital, Sorbonne Université, 75013 Paris, France
- University of Science and Technology of China and First Affiliated Hospital of USTC, Hefei, Anhui, P.R. China
| | - Henrik Zetterberg
- UK Dementia Research Institute at University College London, WC1N 3BG London, UK
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 431 39 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, Queen Square, WC1N 3BG London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53792, USA
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, UK
| | - Johan Gobom
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 431 39 Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, SE-43180 Mölndal, Sweden
| |
Collapse
|
2
|
Mravinacová S, Bergström S, Olofsson J, de San José NG, Anderl-Straub S, Diehl-Schmid J, Fassbender K, Fliessbach K, Jahn H, Kornhuber J, Landwehrmeyer GB, Lauer M, Levin J, Ludolph AC, Prudlo J, Schneider A, Schroeter ML, Wiltfang J, Steinacker P, Otto M, Nilsson P, Månberg A. Addressing inter individual variability in CSF levels of brain derived proteins across neurodegenerative diseases. Sci Rep 2025; 15:668. [PMID: 39753643 PMCID: PMC11698900 DOI: 10.1038/s41598-024-83281-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/12/2024] [Indexed: 01/06/2025] Open
Abstract
Accurate diagnosis and monitoring of neurodegenerative diseases require reliable biomarkers. Cerebrospinal fluid (CSF) proteins are promising candidates for reflecting brain pathology; however, their diagnostic utility may be compromised by natural variability between individuals, weakening their association with disease. Here, we measured the levels of 69 pre-selected proteins in cerebrospinal fluid using antibody-based suspension bead array technology in a multi-disease cohort of 499 individuals with neurodegenerative disorders including Alzheimer's disease (AD), behavioral variant frontotemporal dementia, primary progressive aphasias, amyotrophic lateral sclerosis (ALS), corticobasal syndrome, primary supranuclear palsy, along with healthy controls. We identify significant inter-individual variability in overall CSF levels of brain-derived proteins, which could not be attributed to specific disease associations. Using linear modelling, we show that adjusting for median CSF levels of brain-derived proteins increases the diagnostic accuracy of proteins previously identified as altered in CSF in the context of neurodegenerative disorders. We further demonstrate a simplified approach for the adjustment using pairs of correlated proteins with opposite alteration in the diseases. With this approach, the proteins adjust for each other and further increase the biomarker performance through additive effect. When comparing the diseases, two proteins-neurofilament medium and myelin basic protein-showed increased levels in ALS compared to other diseases, and neurogranin showed a specific increase in AD. Several other proteins showed similar trends across the studied diseases, indicating that these proteins likely reflect shared processes related to neurodegeneration. Overall, our findings suggest that accounting for inter-individual variability is crucial in future studies to improve the identification and performance of relevant biomarkers. Importantly, we highlight the need for multi-disease studies to identify disease-specific biomarkers.
Collapse
Affiliation(s)
- Sára Mravinacová
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Sofia Bergström
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Jennie Olofsson
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | | | | | - Janine Diehl-Schmid
- Department of Psychiatry, Technical University of Munich, Munich, Germany
- Kbo-Inn-Salzach-Klinikum Gemeinnützige GmbH, Wasserburg Am Inn, Germany
| | | | - Klaus Fliessbach
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn and DZNE Bonn, Bonn, Germany
| | - Holger Jahn
- Department of Psychiatry, University Hospital, Hamburg, Germany
| | - Johannes Kornhuber
- Department of Psychiatry, Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany
| | | | - Martin Lauer
- Center for Mental Health, Department of Psychiatry, Psychosomatics and Psychotherapy, University Hospital Würzburg, Würzburg, Germany
| | - Johannes Levin
- Department of Neurology, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Neurodegenerative Diseases, Site Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Albert C Ludolph
- Department of Neurology, University Hospital Ulm (UKU), Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany
| | - Johannes Prudlo
- Rostock University Medical Center and German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Anja Schneider
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University of Bonn and DZNE Bonn, Bonn, Germany
| | - Matthias L Schroeter
- Clinic for Cognitive Neurology, University Clinic Leipzig, and Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Jens Wiltfang
- Department of Psychiatry and Psychotherapy, University Medical Center Goettingen, and DZNE, Goettingen, Germany
- Neurosciences and Signaling Group, Institute of Biomedicine (iBiMED), Department of Medical Sciences, University of Aveiro, Aveiro, Portugal
| | - Petra Steinacker
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Markus Otto
- Department of Neurology, University Hospital Ulm (UKU), Ulm, Germany
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Peter Nilsson
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden
| | - Anna Månberg
- Department of Protein Science, SciLifeLab, KTH Royal Institute of Technology, Stockholm, Sweden.
| |
Collapse
|
3
|
Hok-A-Hin YS, Vermunt L, Peeters CF, van der Ende EL, de Boer SC, Meeter LH, van Swieten JC, Hu WT, Lleó A, Alcolea D, Engelborghs S, Sieben A, Chen-Plotkin A, Irwin DJ, van der Flier WM, Pijnenburg YA, Teunissen CE, del Campo M. Large-scale CSF proteome profiling identifies biomarkers for accurate diagnosis of Frontotemporal Dementia. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.19.24312100. [PMID: 39228745 PMCID: PMC11370532 DOI: 10.1101/2024.08.19.24312100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Diagnosis of Frontotemporal dementia (FTD) and the specific underlying neuropathologies (frontotemporal lobar degeneration; FTLD- Tau and FTLD-TDP) is challenging, and thus fluid biomarkers are needed to improve diagnostic accuracy. We used proximity extension assays to analyze 665 proteins in cerebrospinal fluid (CSF) samples from a multicenter cohort including patients with FTD (n = 189), Alzheimer's Disease dementia (AD; n = 232), and cognitively unimpaired individuals (n = 196). In a subset, FTLD neuropathology was determined based on phenotype or genotype (FTLD-Tau = 87 and FTLD-TDP = 68). Forty three proteins were differentially regulated in FTD compared to controls and AD, reflecting axon development, regulation of synapse assembly, and cell-cell adhesion mediator activity pathways. Classification analysis identified a 14- and 13-CSF protein panel that discriminated FTD from controls (AUC: 0.96) or AD (AUC: 0.91). Custom multiplex panels confirmed the highly accurate discrimination between FTD and controls (AUCs > 0.96) or AD (AUCs > 0.88) in three validation cohorts, including one with autopsy confirmation (AUCs > 0.90). Six proteins were differentially regulated between FTLD-TDP and FTLD-Tau, but no reproducible classification model could be generated (AUC: 0.80). Overall, this study introduces novel FTD-specific biomarker panels with potential use in diagnostic setting.
Collapse
Affiliation(s)
- Yanaika S. Hok-A-Hin
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Lisa Vermunt
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
| | - Carel F.W. Peeters
- Mathematical & Statistical Methods group – Biometris, Wageningen University & Research, Wageningen, The Netherlands
| | - Emma L. van der Ende
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Sterre C.M. de Boer
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
- School of Psychology and Brain & Mind Centre, The University of Sydney, Sydney, Australia
| | - Lieke H. Meeter
- Alzheimer center and department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - John C. van Swieten
- Alzheimer center and department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - William T. Hu
- Department of Neurology, Center for Neurodegenerative Diseases Research, Emory University School of Medicine, Atlanta, USA
| | - Alberto Lleó
- Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau (IIB SANT PAU) - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalunya, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Daniel Alcolea
- Department of Neurology, Institut d’Investigacions Biomèdiques Sant Pau (IIB SANT PAU) - Hospital de Sant Pau, Universitat Autònoma de Barcelona, Hospital de la Santa Creu i Sant Pau, Barcelona, Catalunya, Spain
- Center of Biomedical Investigation Network for Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | - Sebastiaan Engelborghs
- Reference Center for Biological Markers of Dementia (BIODEM), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Vrije Universiteit Brussel, Center for Neurosciences (C4N), Neuroprotection and Neuromodulation Research Group (NEUR), Brussels, Belgium
- Universitair Ziekenhuis Brussel, Department of Neurology, Brussels, Belgium
| | - Anne Sieben
- Lab of neuropathology, Neurobiobank, Institute Born-Bunge, Antwerp University, Edegem, Belgium
| | - Alice Chen-Plotkin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - David J. Irwin
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wiesje M. van der Flier
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
| | - Yolande A.L. Pijnenburg
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Alzheimer Center and Department of Neurology, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
| | - Charlotte E. Teunissen
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Marta del Campo
- Neurochemistry Laboratory, Department of Laboratory Medicine, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, The Netherlands
- Barcelonaßeta Brain Research Center, Pasqual Maragall Foundation, Barcelona, Spain
- Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San PabloCEU, CEU Universities, Madrid, Spain
| |
Collapse
|
4
|
Wise A, Li J, Yamakawa M, Loureiro J, Peterson B, Worringer K, Sivasankaran R, Palma JA, Mitic L, Heuer HW, Lario-Lago A, Staffaroni AM, Clark A, Taylor J, Ljubenkov PA, Vandevrede L, Grinberg LT, Spina S, Seeley WW, Miller BL, Boeve BF, Dickerson BC, Grossman M, Litvan I, Pantelyat A, Tartaglia MC, Zhang Z, Wills AMA, Rexach J, Rojas JC, Boxer AL. CSF Proteomics in Patients With Progressive Supranuclear Palsy. Neurology 2024; 103:e209585. [PMID: 38959435 PMCID: PMC11226322 DOI: 10.1212/wnl.0000000000209585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 05/15/2024] [Indexed: 07/05/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Identification of fluid biomarkers for progressive supranuclear palsy (PSP) is critical to enhance therapeutic development. We implemented unbiased DNA aptamer (SOMAmer) proteomics to identify novel CSF PSP biomarkers. METHODS This is a cross-sectional study in original (18 clinically diagnosed PSP-Richardson syndrome [PSP-RS], 28 cognitively healthy controls]), validation (23 PSP-RS, 26 healthy controls), and neuropathology-confirmed (21 PSP, 52 non-PSP frontotemporal lobar degeneration) cohorts. Participants were recruited through the University of California, San Francisco, and the 4-Repeat Neuroimaging Initiative. The original and neuropathology cohorts were analyzed with the SomaScan platform version 3.0 (5026-plex) and the validation cohort with version 4.1 (7595-plex). Clinical severity was measured with the PSP Rating Scale (PSPRS). CSF proteomic data were analyzed to identify differentially expressed targets, implicated biological pathways using enrichment and weighted consensus gene coexpression analyses, diagnostic value of top targets with receiver-operating characteristic curves, and associations with disease severity with linear regressions. RESULTS A total of 136 participants were included (median age 70.6 ± 8 years, 68 [50%] women). One hundred fifty-five of 5,026 (3.1%), 959 of 7,595 (12.6%), and 321 of 5,026 (6.3%) SOMAmers were differentially expressed in PSP compared with controls in original, validation, and neuropathology-confirmed cohorts, with most of the SOMAmers showing reduced signal (83.1%, 95.1%, and 73.2%, respectively). Three coexpression modules were associated with PSP across cohorts: (1) synaptic function/JAK-STAT (β = -0.044, corrected p = 0.002), (2) vesicle cytoskeletal trafficking (β = 0.039, p = 0.007), and (3) cytokine-cytokine receptor interaction (β = -0.032, p = 0.035) pathways. Axon guidance was the top dysregulated pathway in PSP in original (strength = 1.71, p < 0.001), validation (strength = 0.84, p < 0.001), and neuropathology-confirmed (strength = 0.78, p < 0.001) cohorts. A panel of axon guidance pathway proteins discriminated between PSP and controls in original (area under the curve [AUC] = 0.924), validation (AUC = 0.815), and neuropathology-confirmed (AUC = 0.932) cohorts. Two inflammatory proteins, galectin-10 and cytotoxic T lymphocyte-associated protein-4, correlated with PSPRS scores across cohorts. DISCUSSION Axon guidance pathway proteins and several other molecular pathways are downregulated in PSP, compared with controls. Proteins in these pathways may be useful targets for biomarker or therapeutic development.
Collapse
Affiliation(s)
- Amy Wise
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Jingyao Li
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Mai Yamakawa
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Joseph Loureiro
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Brant Peterson
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Kathleen Worringer
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Rajeev Sivasankaran
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Jose-Alberto Palma
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Laura Mitic
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Hilary W Heuer
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Argentina Lario-Lago
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Adam M Staffaroni
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Annie Clark
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Jack Taylor
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Peter A Ljubenkov
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Lawren Vandevrede
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Lea T Grinberg
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Salvatore Spina
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - William W Seeley
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Bruce L Miller
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Bradley F Boeve
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Bradford C Dickerson
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Murray Grossman
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Irene Litvan
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Alexander Pantelyat
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Maria Carmela Tartaglia
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Zihan Zhang
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Anne-Marie A Wills
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Jessica Rexach
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Julio C Rojas
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| | - Adam L Boxer
- From the Weill Institute for Neurosciences (A.W., L.M., H.W.H., A.L.-L., A.M.S., A.C., J.T., P.A.L., L.V., L.T.G., S.S., W.W.S., B.L.M., J.C.R., A.L.B.), Department of Neurology, Memory and Aging Center, University of California, San Francisco; Novartis Institutes for Biomedical Research, Inc. (J. Li, J. Loureiro, B.P., K.W., R.S., J.-A.P.), Cambridge, MA; Department of Neurology (M.Y., J.R.), University of California, Los Angeles; The Bluefield Project to Cure FTD (L.M.); Department of Neurology (B.F.B.), Mayo Clinic, Rochester, MN; Department of Neurology (B.C.D., A.-M.A.W.), Massachusetts General Hospital and Harvard Medical School, Boston; Department of Neurology (M.G.), University of Pennsylvania, Philadelphia; Department of Neurology (I.L.), University of California, San Diego; Department of Neurology (A.P.), Johns Hopkins University, Baltimore, MD; Department of Neurology (M.C.T.), University of Toronto, Ontario, Canada; and Departments of Mathematics and Statistics (Z.Z.), University of California, Los Angeles
| |
Collapse
|
5
|
Stezin A, Sathe GJ, Gajbhiye A, Bharadwaj S, Ghose V, Bellad A, Malo PK, Holla V, Hegde S, Bharath RD, Saini J, Jain S, Yadav R, Pandey A, Pal PK. Dysregulated Cerebrospinal Fluid Proteome of Spinocerebellar Ataxia Type 2 and its Clinical Implications. Mov Disord 2024; 39:1418-1423. [PMID: 38769639 DOI: 10.1002/mds.29834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/07/2024] [Accepted: 04/29/2024] [Indexed: 05/22/2024] Open
Abstract
BACKGROUND Abnormalities in ataxin-2 associated with spinocerebellar ataxia type 2 (SCA2) may lead to widespread disruptions in the proteome. This study was performed to identify dysregulated proteome in SCA2 and to explore its clinical-radiological correlations. METHODS Cerebrospinal fluid (CSF) samples from 21 genetically confirmed SCA2 were subjected to shotgun proteome analysis using mass spectrometry (MS) and tandem mass tag (TMT)-based multiplexing. Proteins with at least 1.5-fold change in abundance were identified. Their relative abundance was measured using parallel reaction monitoring (PRM) and correlated against disease-related factors. RESULTS Eleven proteins were significantly upregulated in SCA2. They belonged to the family of cell adhesion molecules and granins. Their fold changes showed significant clinical, genetic, and radiological correlations. CONCLUSIONS Significant dysregulation of CSF proteome is seen in SCA2. The dysregulated protein may have potential use in clinical evaluation of patients with SCA2.
Collapse
Affiliation(s)
- Albert Stezin
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Clinical Neurosciences, Centre for Brain Research (CBR), Indian Institute of Science (IISc), Bangalore, India
| | | | | | - Sujas Bharadwaj
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Vivek Ghose
- Institute of Bioinformatics (IOB), Bangalore, India
| | | | - Palash Kumar Malo
- Clinical Neurosciences, Centre for Brain Research (CBR), Indian Institute of Science (IISc), Bangalore, India
| | - Vikram Holla
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Shantala Hegde
- Department of Clinical Psychology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Rose Dawn Bharath
- Department of Neuroimaging and Interventional Neuroimaging, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Jitender Saini
- Department of Neuroimaging and Interventional Neuroimaging, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Sanjeev Jain
- Molecular Genetics Laboratory, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
- Department of Psychiatry, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Ravi Yadav
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| | - Akhilesh Pandey
- Institute of Bioinformatics (IOB), Bangalore, India
- Center for Individualized Medicine, Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Pramod Kumar Pal
- Department of Neurology, National Institute of Mental Health and Neurosciences (NIMHANS), Bangalore, India
| |
Collapse
|
6
|
Ramos-Campoy O, Comas-Albertí A, Hervás D, Borrego-Écija S, Bosch B, Sandoval J, Fort-Aznar L, Moreno-Izco F, Fernández-Villullas G, Molina-Porcel L, Balasa M, Lladó A, Sánchez-Valle R, Antonell A. Genome-Wide DNA Methylation in Early-Onset-Dementia Patients Brain Tissue and Lymphoblastoid Cell Lines. Int J Mol Sci 2024; 25:5445. [PMID: 38791483 PMCID: PMC11121630 DOI: 10.3390/ijms25105445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024] Open
Abstract
Epigenetics, a potential underlying pathogenic mechanism of neurodegenerative diseases, has been in the scope of several studies performed so far. However, there is a gap in regard to analyzing different forms of early-onset dementia and the use of Lymphoblastoid cell lines (LCLs). We performed a genome-wide DNA methylation analysis on sixty-four samples (from the prefrontal cortex and LCLs) including those taken from patients with early-onset forms of Alzheimer's disease (AD) and frontotemporal dementia (FTD) and healthy controls. A beta regression model and adjusted p-values were used to obtain differentially methylated positions (DMPs) via pairwise comparisons. A correlation analysis of DMP levels with Clariom D array gene expression data from the same cohort was also performed. The results showed hypermethylation as the most frequent finding in both tissues studied in the patient groups. Biological significance analysis revealed common pathways altered in AD and FTD patients, affecting neuron development, metabolism, signal transduction, and immune system pathways. These alterations were also found in LCL samples, suggesting the epigenetic changes might not be limited to the central nervous system. In the brain, CpG methylation presented an inverse correlation with gene expression, while in LCLs, we observed mainly a positive correlation. This study enhances our understanding of the biological pathways that are associated with neurodegeneration, describes differential methylation patterns, and suggests LCLs are a potential cell model for studying neurodegenerative diseases in earlier clinical phases than brain tissue.
Collapse
Affiliation(s)
- Oscar Ramos-Campoy
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, FRCB-IDIBAPS, Universitat de Barcelona (UB), 08036 Barcelona, Spain
| | - Aina Comas-Albertí
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, FRCB-IDIBAPS, Universitat de Barcelona (UB), 08036 Barcelona, Spain
| | - David Hervás
- Department of Applied Statistics and Operations Research and Quality, Universitat Politècnica de València, 46022 Valencia, Spain
| | - Sergi Borrego-Écija
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, FRCB-IDIBAPS, Universitat de Barcelona (UB), 08036 Barcelona, Spain
| | - Beatriz Bosch
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, FRCB-IDIBAPS, Universitat de Barcelona (UB), 08036 Barcelona, Spain
| | - Juan Sandoval
- Epigenomics Core Facility, Health Research Institute La Fe, 46026 Valencia, Spain
| | - Laura Fort-Aznar
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, FRCB-IDIBAPS, Universitat de Barcelona (UB), 08036 Barcelona, Spain
| | - Fermín Moreno-Izco
- Cognitive Disorders Unit, Department of Neurology, Hospital Universitario Donostia, 20014 San Sebastian, Spain
- Instituto de Investigación Sanitaria Biogipuzkoa, Neurosciences Area, Group of Neurodegenerative Diseases, 20014 San Sebastian, Spain
| | - Guadalupe Fernández-Villullas
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, FRCB-IDIBAPS, Universitat de Barcelona (UB), 08036 Barcelona, Spain
| | - Laura Molina-Porcel
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, FRCB-IDIBAPS, Universitat de Barcelona (UB), 08036 Barcelona, Spain
- Neurological Tissue Bank, Biobank-Hospital Clinic-IDIBAPS, 08036 Barcelona, Spain
| | - Mircea Balasa
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, FRCB-IDIBAPS, Universitat de Barcelona (UB), 08036 Barcelona, Spain
| | - Albert Lladó
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, FRCB-IDIBAPS, Universitat de Barcelona (UB), 08036 Barcelona, Spain
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, FRCB-IDIBAPS, Universitat de Barcelona (UB), 08036 Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona (UB), 08036 Barcelona, Spain
| | - Anna Antonell
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, FRCB-IDIBAPS, Universitat de Barcelona (UB), 08036 Barcelona, Spain
- Facultat de Medicina i Ciències de la Salut, Institut de Neurociències, Universitat de Barcelona (UB), 08036 Barcelona, Spain
| |
Collapse
|
7
|
Morderer D, Wren MC, Liu F, Kouri N, Maistrenko A, Khalil B, Pobitzer N, Salemi M, Phinney BS, Dickson DW, Murray ME, Rossoll W. Probe-dependent Proximity Profiling (ProPPr) Uncovers Similarities and Differences in Phospho-Tau-Associated Proteomes Between Tauopathies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.585597. [PMID: 38585836 PMCID: PMC10996607 DOI: 10.1101/2024.03.25.585597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Tauopathies represent a diverse group of neurodegenerative disorders characterized by the abnormal aggregation of the microtubule-associated protein tau. Despite extensive research, the precise mechanisms underlying the complexity of different types of tau pathology remain incompletely understood. Here we describe an approach for proteomic profiling of aggregate-associated proteomes on slides with formalin-fixed, paraffin-embedded (FFPE) tissue that utilizes proximity labelling upon high preservation of aggregate morphology, which permits the profiling of pathological aggregates regardless of their size. To comprehensively investigate the common and unique protein interactors associated with the variety of tau lesions present across different human tauopathies, Alzheimer's disease (AD), corticobasal degeneration (CBD), Pick's disease (PiD), and progressive supranuclear palsy (PSP), were selected to represent the major tauopathy diseases. Implementation of our widely applicable Probe-dependent Proximity Profiling (ProPPr) strategy, using the AT8 antibody, permitted identification and quantification of proteins associated with phospho-tau lesions in well-characterized human post-mortem tissue. The analysis revealed both common and disease-specific proteins associated with phospho-tau aggregates, highlighting potential targets for therapeutic intervention and biomarker development. Candidate validation through high-resolution co-immunofluorescence of distinct aggregates across disease and control cases, confirmed the association of retromer complex protein VPS35 with phospho-tau lesions across the studied tauopathies. Furthermore, we discovered disease-specific associations of proteins including ferritin light chain (FTL) and the neuropeptide precursor VGF within distinct pathological lesions. Notably, examination of FTL-positive microglia in CBD astrocytic plaques indicate a potential role for microglial involvement in the pathogenesis of these tau lesions. Our findings provide valuable insights into the proteomic landscape of tauopathies, shedding light on the molecular mechanisms underlying tau pathology. This first comprehensive characterization of tau-associated proteomes across different tauopathies enhances our understanding of disease heterogeneity and provides a resource for future functional investigation, as well as development of targeted therapies and diagnostic biomarkers.
Collapse
|
8
|
Hsiao-Nakamoto J, Chiu CL, VandeVrede L, Ravi R, Vandenberg B, De Groot J, Tsogtbaatar B, Fang M, Auger P, Gould NS, Marchioni F, Powers CA, Davis SS, Suh JH, Alkabsh J, Heuer HW, Lago AL, Scearce-Levie K, Seeley WW, Boeve BF, Rosen HJ, Berger A, Tsai R, Di Paolo G, Boxer AL, Bhalla A, Huang F. Alterations in Lysosomal, Glial and Neurodegenerative Biomarkers in Patients with Sporadic and Genetic Forms of Frontotemporal Dementia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.09.579529. [PMID: 38405775 PMCID: PMC10888909 DOI: 10.1101/2024.02.09.579529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Background Frontotemporal dementia (FTD) is the most common cause of early-onset dementia with 10-20% of cases caused by mutations in one of three genes: GRN, C9orf72, or MAPT. To effectively develop therapeutics for FTD, the identification and characterization of biomarkers to understand disease pathogenesis and evaluate the impact of specific therapeutic strategies on the target biology as well as the underlying disease pathology are essential. Moreover, tracking the longitudinal changes of these biomarkers throughout disease progression is crucial to discern their correlation with clinical manifestations for potential prognostic usage. Methods We conducted a comprehensive investigation of biomarkers indicative of lysosomal biology, glial cell activation, synaptic and neuronal health in cerebrospinal fluid (CSF) and plasma from non-carrier controls, sporadic FTD (symptomatic non-carriers) and symptomatic carriers of mutations in GRN, C9orf72, or MAPT, as well as asymptomatic GRN mutation carriers. We also assessed the longitudinal changes of biomarkers in GRN mutation carriers. Furthermore, we examined biomarker levels in disease impacted brain regions including middle temporal gyrus (MTG) and superior frontal gyrus (SFG) and disease-unaffected inferior occipital gyrus (IOG) from sporadic FTD and symptomatic GRN carriers. Results We confirmed glucosylsphingosine (GlcSph), a lysosomal biomarker regulated by progranulin, was elevated in the plasma from GRN mutation carriers, both symptomatic and asymptomatic. GlcSph and other lysosomal biomarkers such as ganglioside GM2 and globoside GB3 were increased in the disease affected SFG and MTG regions from sporadic FTD and symptomatic GRN mutation carriers, but not in the IOG, compared to the same brain regions from controls. The glial biomarkers GFAP in plasma and YKL40 in CSF were elevated in asymptomatic GRN carriers, and all symptomatic groups, except the symptomatic C9orf72 mutation group. YKL40 was also increased in SFG and MTG regions from sporadic FTD and symptomatic GRN mutation carriers. Neuronal injury and degeneration biomarkers NfL in CSF and plasma, and UCHL1 in CSF were elevated in patients with all forms of FTD. Synaptic biomarkers NPTXR, NPTX1/2, and VGF were reduced in CSF from patients with all forms of FTD, with the most pronounced reductions observed in symptomatic MAPT mutation carriers. Furthermore, we demonstrated plasma NfL was significantly positively correlated with disease severity as measured by CDR+NACC FTLD SB in genetic forms of FTD and CSF NPTXR was significantly negatively correlated with CDR+NACC FTLD SB in symptomatic GRN and MAPT mutation carriers. Conclusions In conclusion, our comprehensive investigation replicated alterations in biofluid biomarkers indicative of lysosomal function, glial activation, synaptic and neuronal health across sporadic and genetic forms of FTD and unveiled novel insights into the dysregulation of these biomarkers within brain tissues from patients with GRN mutations. The observed correlations between biomarkers and disease severity open promising avenues for prognostic applications and for indicators of drug efficacy in clinical trials. Our data also implicated a complicated relationship between biofluid and tissue biomarker changes and future investigations should delve into the mechanistic underpinnings of these biomarkers, which will serve as a foundation for the development of targeted therapeutics for FTD.
Collapse
Affiliation(s)
- Jennifer Hsiao-Nakamoto
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- These authors contributed equally
| | - Chi-Lu Chiu
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- These authors contributed equally
| | - Lawren VandeVrede
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Ritesh Ravi
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Brittany Vandenberg
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- Present address: Brittany Vandenberg, Washington State University, Pullman, WA 99164, USA
| | - Jack De Groot
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- Present address: Jack DeGroot: Prime Medicine Inc., Cambridge, MA 02139, USA
| | | | - Meng Fang
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Paul Auger
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- Present address: Paul Auger: Nurix Therapeutics, San Francisco, CA 94158, USA
| | - Neal S Gould
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Filippo Marchioni
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Casey A Powers
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- Present address: Casey A. Powers: Stanford University, Stanford, CA 94305, USA
| | - Sonnet S Davis
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Jung H Suh
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Jamal Alkabsh
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Hilary W Heuer
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Argentina Lario Lago
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Kimberly Scearce-Levie
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- Present address: Kimberly Scearce-Levie: Cajal Neuroscience, Seattle, WA 98109, USA
| | - William W Seeley
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Howard J Rosen
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
| | - Amy Berger
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Richard Tsai
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Gilbert Di Paolo
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
| | - Adam L Boxer
- Department of Neurology, Memory and Aging Center, University of California San Francisco, San Francisco, CA, 94158, USA
- These authors contributed equally
| | - Akhil Bhalla
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- These authors contributed equally
| | - Fen Huang
- Denali Therapeutics Inc., 161 Oyster Point, South San Francisco, CA, 94080, USA
- These authors contributed equally
| |
Collapse
|
9
|
Kortazar-Zubizarreta I, Manero-Azua A, Afonso-Agüera J, Perez de Nanclares G. C9ORF72 Gene GGGGCC Hexanucleotide Expansion: A High Clinical Variability from Amyotrophic Lateral Sclerosis to Frontotemporal Dementia. J Pers Med 2023; 13:1396. [PMID: 37763163 PMCID: PMC10532825 DOI: 10.3390/jpm13091396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
The expanded GGGGCC hexanucleotide repeat (HRE) in the non-coding region of the C9ORF72 gene (C9ORF72-HRE) is the most common genetic cause of familial forms of amyotrophic lateral sclerosis (ALS), FTD, and concurrent ALS and FTD (ALS-FTD), in addition to contributing to the sporadic forms of these diseases. Both syndromes overlap not only genetically, but also sharing similar clinical and neuropathological findings, being considered as a spectrum. In this paper we describe the clinical-genetic findings in a Basque family with different manifestations within the spectrum, our difficulties in reaching the diagnosis, and a narrative review, carried out as a consequence, of the main features associated with C9ORF72-HRE. Family members underwent a detailed clinical assessment, neurological examination, and genetic analysis by repeat-primed PCR. We studied 10 relatives of a symptomatic carrier of the C9ORF72-HRE expansion. Two of them presented the expansion in the pathological range, one of them was symptomatic whereas the other one remained asymptomatic at 72 years. Given the great intrafamilial clinical variability of C9ORF72-HRE, the characterization of patients and family members with particular clinical and genetic subgroups within ALS and FTD becomes a bottleneck for medication development, in particular for genetically focused medicines for ALS and FTD.
Collapse
Affiliation(s)
- Izaro Kortazar-Zubizarreta
- Department of Neurology, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, 01009 Vitoria-Gasteiz, Spain
| | - Africa Manero-Azua
- Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, 01009 Vitoria-Gasteiz, Spain; (A.M.-A.); (G.P.d.N.)
| | - Juan Afonso-Agüera
- Department of Neurology, Central University Hospital of Asturias, 33006 Oviedo, Spain;
| | - Guiomar Perez de Nanclares
- Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, 01009 Vitoria-Gasteiz, Spain; (A.M.-A.); (G.P.d.N.)
| |
Collapse
|
10
|
Warth Perez Arias CC, Silbern I, Caldi Gomes L, Wartmann H, Dambeck V, Fanz J, Neuenroth L, Bähr M, Outeiro TF, Bonn S, Stadelmann-Nessler C, Rizzoli SO, Lenz C, Urlaub H, Lingor P. Proteomic analysis of the human hippocampus identifies neuronal pentraxin 1 (NPTX1) as synapto-axonal target in late-stage Parkinson's disease. J Neurochem 2023; 166:862-874. [PMID: 37515330 DOI: 10.1111/jnc.15924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/06/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023]
Abstract
Parkinson's disease (PD) affects a significant proportion of the population over the age of 60 years, and its prevalence is increasing. While symptomatic treatment is available for motor symptoms of PD, non-motor complications such as dementia result in diminished life quality for patients and are far more difficult to treat. In this study, we analyzed PD-associated alterations in the hippocampus of PD patients, since this brain region is strongly affected by PD dementia. We focused on synapses, analyzing the proteome of post-mortal hippocampal tissue from 16 PD cases and 14 control subjects by mass spectrometry. Whole tissue lysates and synaptosomal fractions were analyzed in parallel. Differential analysis combined with bioinformatic network analyses identified neuronal pentraxin 1 (NPTX1) to be significantly dysregulated in PD and interacting with proteins of the synaptic compartment. Modulation of NPTX1 protein levels in primary hippocampal neuron cultures validated its role in synapse morphology. Our analysis suggests that NPTX1 contributes to synaptic pathology in late-stage PD and represents a putative target for novel therapeutic strategies.
Collapse
Affiliation(s)
- Carmina C Warth Perez Arias
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- Collaborative Research Center 1286 "Quantitative Synaptology", University of Göttingen, Göttingen, Germany
| | - Ivan Silbern
- Collaborative Research Center 1286 "Quantitative Synaptology", University of Göttingen, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Lucas Caldi Gomes
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- Clinical Department of Neurology, School of Medicine, rechts der Isar Hospital, Technical University of Munich, Munich, Germany
| | - Hannes Wartmann
- Institute for Medical Systems Biology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vivian Dambeck
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
| | - Jonas Fanz
- Department of Neuropathology, University Medical Center Göttingen, Göttingen, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), University of Göttingen, Göttingen, Germany
| | - Lisa Neuenroth
- Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
| | - Tiago F Outeiro
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- Max Planck Institute for Natural Sciences, Göttingen, Germany
- Faculty of Medical Sciences, Translational and Clinical Research Institute, Newcastle University, UK
- Scientific employee with an honorary contract at German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
- Department of Experimental Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Stefan Bonn
- Collaborative Research Center 1286 "Quantitative Synaptology", University of Göttingen, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Center for Biomedical AI, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Silvio O Rizzoli
- Center for Biostructural Imaging of Neurodegeneration, Göttingen, Germany
- Collaborative Research Center 1286 "Quantitative Synaptology", University of Göttingen, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Department for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Christof Lenz
- Collaborative Research Center 1286 "Quantitative Synaptology", University of Göttingen, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Bioanalytics Group, Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Henning Urlaub
- Collaborative Research Center 1286 "Quantitative Synaptology", University of Göttingen, Göttingen, Germany
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Paul Lingor
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
- Collaborative Research Center 1286 "Quantitative Synaptology", University of Göttingen, Göttingen, Germany
- Clinical Department of Neurology, School of Medicine, rechts der Isar Hospital, Technical University of Munich, Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
11
|
Grossman M, Seeley WW, Boxer AL, Hillis AE, Knopman DS, Ljubenov PA, Miller B, Piguet O, Rademakers R, Whitwell JL, Zetterberg H, van Swieten JC. Frontotemporal lobar degeneration. Nat Rev Dis Primers 2023; 9:40. [PMID: 37563165 DOI: 10.1038/s41572-023-00447-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/12/2023] [Indexed: 08/12/2023]
Abstract
Frontotemporal lobar degeneration (FTLD) is one of the most common causes of early-onset dementia and presents with early social-emotional-behavioural and/or language changes that can be accompanied by a pyramidal or extrapyramidal motor disorder. About 20-25% of individuals with FTLD are estimated to carry a mutation associated with a specific FTLD pathology. The discovery of these mutations has led to important advances in potentially disease-modifying treatments that aim to slow progression or delay disease onset and has improved understanding of brain functioning. In both mutation carriers and those with sporadic disease, the most common underlying diagnoses are linked to neuronal and glial inclusions containing tau (FTLD-tau) or TDP-43 (FTLD-TDP), although 5-10% of patients may have inclusions containing proteins from the FUS-Ewing sarcoma-TAF15 family (FTLD-FET). Biomarkers definitively identifying specific pathological entities in sporadic disease have been elusive, which has impeded development of disease-modifying treatments. Nevertheless, disease-monitoring biofluid and imaging biomarkers are becoming increasingly sophisticated and are likely to serve as useful measures of treatment response during trials of disease-modifying treatments. Symptomatic trials using novel approaches such as transcranial direct current stimulation are also beginning to show promise.
Collapse
Affiliation(s)
- Murray Grossman
- Department of Neurology and Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, PA, USA
| | - William W Seeley
- Departments of Neurology and Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA.
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| | - Adam L Boxer
- Departments of Neurology and Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Argye E Hillis
- Department of Neurology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Peter A Ljubenov
- Departments of Neurology and Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Bruce Miller
- Departments of Neurology and Memory and Aging Center, University of California, San Francisco, San Francisco, CA, USA
| | - Olivier Piguet
- School of Psychology and Brain and Mind Center, University of Sydney, Sydney, New South Wales, Australia
| | - Rosa Rademakers
- VIB Center for Molecular Neurology, University of Antwerp, Antwerp, Belgium
| | | | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The University of Gothenburg, Mölndal, Sweden
- Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
- Hong Kong Center for Neurodegenerative Diseases, Clear Water Bay, Hong Kong, China
- Wisconsin Alzheimer's Disease Research Center, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | | |
Collapse
|
12
|
Yu L, Petyuk VA, de Paiva Lopes K, Tasaki S, Menon V, Wang Y, Schneider JA, De Jager PL, Bennett DA. Associations of VGF with Neuropathologies and Cognitive Health in Older Adults. Ann Neurol 2023; 94:232-244. [PMID: 37177846 PMCID: PMC10524948 DOI: 10.1002/ana.26676] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/18/2023] [Accepted: 04/27/2023] [Indexed: 05/15/2023]
Abstract
OBJECTIVE VGF is proposed as a potential therapeutic target for Alzheimer's (AD) and other neurodegenerative conditions. The cell-type specific and, separately, peptide specific associations of VGF with pathologic and cognitive outcomes remain largely unknown. We leveraged gene expression and protein data from the human neocortex and investigated the VGF associations with common neuropathologies and late-life cognitive decline. METHODS Community-dwelling older adults were followed every year, died, and underwent brain autopsy. Cognitive decline was captured via annual cognitive testing. Common neurodegenerative and cerebrovascular conditions were assessed during neuropathologic evaluations. Bulk brain RNASeq and targeted proteomics analyses were conducted using frozen tissues from dorsolateral prefrontal cortex of 1,020 individuals. Cell-type specific gene expressions were quantified in a subsample (N = 424) following single nuclei RNASeq analysis from the same cortex. RESULTS The bulk brain VGF gene expression was primarily associated with AD and Lewy bodies. The VGF gene association with cognitive decline was in part accounted for by neuropathologies. Similar associations were observed for the VGF protein. Cell-type specific analyses revealed that, while VGF was differentially expressed in most major cell types in the cortex, its association with neuropathologies and cognitive decline was restricted to the neuronal cells. Further, the peptide fragments across the VGF polypeptide resembled each other in relation to neuropathologies and cognitive decline. INTERPRETATION Multiple pathways link VGF to cognitive health in older age, including neurodegeneration. The VGF gene functions primarily in neuronal cells and its protein associations with pathologic and cognitive outcomes do not map to a specific peptide. ANN NEUROL 2023;94:232-244.
Collapse
Affiliation(s)
- Lei Yu
- Rush Alzheimer’s Disease Center, Rush University Medical Center; Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
| | | | - Katia de Paiva Lopes
- Rush Alzheimer’s Disease Center, Rush University Medical Center; Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
| | - Shinya Tasaki
- Rush Alzheimer’s Disease Center, Rush University Medical Center; Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
| | - Vilas Menon
- Center for Translational and Computational Neuroimmunology, Department of Neurology & Taub Institute for Research on Alzheimer’s disease and the Aging Brain, Columbia University Irving Medical Center; New York, NY, USA
| | - Yanling Wang
- Rush Alzheimer’s Disease Center, Rush University Medical Center; Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
| | - Julie A. Schneider
- Rush Alzheimer’s Disease Center, Rush University Medical Center; Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
- Department of Pathology, Rush University Medical Center; Chicago, IL, USA
| | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology, Department of Neurology & Taub Institute for Research on Alzheimer’s disease and the Aging Brain, Columbia University Irving Medical Center; New York, NY, USA
| | - David A. Bennett
- Rush Alzheimer’s Disease Center, Rush University Medical Center; Chicago, IL, USA
- Department of Neurological Sciences, Rush University Medical Center; Chicago, IL, USA
| |
Collapse
|
13
|
Kong W, Xu F, Wang S, Wei K, Wen G, Yu Y. Application of orthogonal sparse joint non-negative matrix factorization based on connectivity in Alzheimer's disease research. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2023; 20:9923-9947. [PMID: 37322917 DOI: 10.3934/mbe.2023435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Based on the mining of micro- and macro-relationships of genetic variation and brain imaging data, imaging genetics has been widely applied in the early diagnosis of Alzheimer's disease (AD). However, effective integration of prior knowledge remains a barrier to determining the biological mechanism of AD. This paper proposes a new connectivity-based orthogonal sparse joint non-negative matrix factorization (OSJNMF-C) method based on integrating the structural magnetic resonance image, single nucleotide polymorphism and gene expression data of AD patients; the correlation information, sparseness, orthogonal constraint and brain connectivity information between the brain image data and genetic data are designed as constraints in the proposed algorithm, which efficiently improved the accuracy and convergence through multiple iterative experiments. Compared with the competitive algorithm, OSJNMF-C has significantly smaller related errors and objective function values than the competitive algorithm, showing its good anti-noise performance. From the biological point of view, we have identified some biomarkers and statistically significant relationship pairs of AD/mild cognitive impairment (MCI), such as rs75277622 and BCL7A, which may affect the function and structure of multiple brain regions. These findings will promote the prediction of AD/MCI.
Collapse
Affiliation(s)
- Wei Kong
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Feifan Xu
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Shuaiqun Wang
- College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Kai Wei
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Gen Wen
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Yaling Yu
- Department of Orthopedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
- Institute of Microsurgery on Extremities, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| |
Collapse
|
14
|
Vignaroli F, Mele A, Tondo G, De Giorgis V, Manfredi M, Comi C, Mazzini L, De Marchi F. The Need for Biomarkers in the ALS-FTD Spectrum: A Clinical Point of View on the Role of Proteomics. Proteomes 2023; 11:proteomes11010001. [PMID: 36648959 PMCID: PMC9844364 DOI: 10.3390/proteomes11010001] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 01/11/2023] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are severely debilitating and progressive neurodegenerative disorders. A distinctive pathological feature of several neurodegenerative diseases, including ALS and FTD, is the deposition of aberrant protein inclusions in neuronal cells, which leads to cellular dysfunction and neuronal damage and loss. Despite this, to date, the biological process behind developing these protein inclusions must be better clarified, making the development of disease-modifying treatment impossible until this is done. Proteomics is a powerful tool to characterize the expression, structure, functions, interactions, and modifications of proteins of tissue and biological fluid, including plasma, serum, and cerebrospinal fluid. This protein-profiling characterization aims to identify disease-specific protein alteration or specific pathology-based mechanisms which may be used as markers of these conditions. Our narrative review aims to highlight the need for biomarkers and the potential use of proteomics in clinical practice for ALS-FTD spectrum disorders, considering the emerging rationale in proteomics for new drug development. Certainly, new data will emerge in the near future in this regard and support clinicians in the development of personalized medicine.
Collapse
Affiliation(s)
| | - Angelica Mele
- Neurology Unit, Maggiore della Carità Hospital, 28100 Novara, Italy
| | - Giacomo Tondo
- Department of Neurology, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy
| | - Veronica De Giorgis
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
- Center for Translational Research and Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Marcello Manfredi
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
- Center for Translational Research and Autoimmune and Allergic Diseases (CAAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Cristoforo Comi
- Department of Neurology, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Letizia Mazzini
- Neurology Unit, Maggiore della Carità Hospital, 28100 Novara, Italy
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
| | - Fabiola De Marchi
- Neurology Unit, Maggiore della Carità Hospital, 28100 Novara, Italy
- Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy
- Correspondence: ; Tel.: +39-0321-3733962
| |
Collapse
|
15
|
Bruijstens AL, Stingl C, Güzel C, Stoop MP, Wong YYM, van Pelt ED, Banwell BL, Bar-Or A, Luider TM, Neuteboom RF. Neurodegeneration and humoral response proteins in cerebrospinal fluid associate with pediatric-onset multiple sclerosis and not monophasic demyelinating syndromes in childhood. Mult Scler 2023; 29:52-62. [PMID: 36154753 PMCID: PMC9896265 DOI: 10.1177/13524585221125369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Pediatric-onset multiple sclerosis (POMS) represents the earliest stage of disease pathogenesis. Investigating the cerebrospinal fluid (CSF) proteome in POMS may provide novel insights into early MS processes. OBJECTIVE To analyze CSF obtained from children at time of initial central nervous system (CNS) acquired demyelinating syndrome (ADS), to compare CSF proteome of those subsequently ascertained as having POMS versus monophasic acquired demyelinating syndrome (mADS). METHODS Patients were selected from two prospective pediatric ADS studies. Liquid chromatography-mass spectrometry (LC-MS) was performed in a Dutch discovery cohort (POMS n = 28; mADS n = 39). Parallel reaction monitoring-mass spectrometry (PRM-MS) was performed on selected proteins more abundant in POMS in a combined Dutch and Canadian validation cohort (POMS n = 48; mADS n = 106). RESULTS Discovery identified 5580 peptides belonging to 576 proteins; 58 proteins were differentially abundant with ⩾2 peptides between POMS and mADS, of which 28 more abundant in POMS. Fourteen had increased abundance in POMS with ⩾8 unique peptides. Five selected proteins were all confirmed within validation. Adjusted for age, 2 out of 5 proteins remained more abundant in POMS, that is, Carboxypeptidase E (CPE) and Semaphorin-7A (SEMA7A). CONCLUSION This exploratory study identified several CSF proteins associated with POMS and not mADS, potentially reflecting neurodegeneration, compensatory neuroprotection, and humoral response in POMS. The proteins associated with POMS highly correlated with age at CSF sampling.
Collapse
Affiliation(s)
- Arlette L Bruijstens
- AL Bruijstens Department of Neurology, Erasmus University Medical Center, Room Ee-2230, P.O. Box 2040, 3000 CA Rotterdam, The Netherlands.
| | - Christoph Stingl
- Laboratory of Neuro-Oncology, Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Coşkun Güzel
- Laboratory of Neuro-Oncology, Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marcel P Stoop
- Laboratory of Neuro-Oncology, Clinical and Cancer Proteomics, Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yu Yi M Wong
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - E Daniëlle van Pelt
- Department of Neurology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
Zecca C, Tortelli R, Carrera P, Dell'Abate MT, Logroscino G, Ferrari M. Genotype-phenotype correlation in the spectrum of frontotemporal dementia-parkinsonian syndromes and advanced diagnostic approaches. Crit Rev Clin Lab Sci 2022; 60:171-188. [PMID: 36510705 DOI: 10.1080/10408363.2022.2150833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The term frontotemporal dementia (FTD) refers to a group of progressive neurodegenerative disorders characterized mainly by atrophy of the frontal and anterior temporal lobes. Based on clinical presentation, three main clinical syndromes have traditionally been described: behavioral variant frontotemporal dementia (bvFTD), non-fluent/agrammatic primary progressive aphasia (nfPPA), and semantic variant PPA (svPPA). However, over the last 20 years, it has been recognized that cognitive phenotypes often overlap with motor phenotypes, either motor neuron diseases or parkinsonian signs and/or syndromes like progressive supranuclear palsy (PSP) and cortico-basal syndrome (CBS). Furthermore, FTD-related genes are characterized by genetic pleiotropy and can cause, even in the same family, pure motor phenotypes, findings that underlie the clinical continuum of the spectrum, which has pure cognitive and pure motor phenotypes as the extremes. The genotype-phenotype correlation of the spectrum, FTD-motor neuron disease, has been well defined and extensively investigated, while the continuum, FTD-parkinsonism, lacks a comprehensive review. In this narrative review, we describe the current knowledge about the genotype-phenotype correlation of the spectrum, FTD-parkinsonism, focusing on the phenotypes that are less frequent than bvFTD, namely nfPPA, svPPA, PSP, CBS, and cognitive-motor overlapping phenotypes (i.e. PPA + PSP). From a pathological point of view, they are characterized mainly by the presence of phosphorylated-tau inclusions, either 4 R or 3 R. The genetic correlate of the spectrum can be heterogeneous, although some variants seem to lead preferentially to specific clinical syndromes. Furthermore, we critically review the contribution of genome-wide association studies (GWAS) and next-generation sequencing (NGS) in disentangling the complex heritability of the FTD-parkinsonism spectrum and in defining the genotype-phenotype correlation of the entire clinical scenario, owing to the ability of these techniques to test multiple genes, and so to allow detailed investigations of the overlapping phenotypes. Finally, we conclude with the importance of a detailed genetic characterization and we offer to patients and families the chance to be included in future randomized clinical trials focused on autosomal dominant forms of FTLD.
Collapse
Affiliation(s)
- Chiara Zecca
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy
| | - Rosanna Tortelli
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Pharma Research and Early Development, F. Hoffmann-La Roche Ltd, Basel, Switzerland
| | - Paola Carrera
- Unit of Genomics for Human Disease Diagnosis and Clinical Molecular Biology Laboratory, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Teresa Dell'Abate
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy
| | - Giancarlo Logroscino
- Department of Clinical Research in Neurology, Center for Neurodegenerative Diseases and the Aging Brain, University of Bari "Aldo Moro", Pia Fondazione Card G. Panico Hospital, Tricase, Italy.,Department of Basic Medicine Sciences, Neuroscience, and Sense Organs, University of Bari "Aldo Moro", Bari, Italy
| | | |
Collapse
|
17
|
del Campo M, Zetterberg H, Gandy S, Onyike CU, Oliveira F, Udeh‐Momoh C, Lleó A, Teunissen CE, Pijnenburg Y. New developments of biofluid-based biomarkers for routine diagnosis and disease trajectories in frontotemporal dementia. Alzheimers Dement 2022; 18:2292-2307. [PMID: 35235699 PMCID: PMC9790674 DOI: 10.1002/alz.12643] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 02/04/2022] [Accepted: 02/04/2022] [Indexed: 01/31/2023]
Abstract
Frontotemporal dementia (FTD) covers a spectrum of neurodegenerative disorders with different phenotypes, genetic backgrounds, and pathological states. Its clinicopathological diversity challenges the diagnostic process and the execution of clinical trials, calling for specific diagnostic biomarkers of pathologic FTD types. There is also a need for biomarkers that facilitate disease staging, quantification of severity, monitoring in clinics and observational studies, and for evaluation of target engagement and treatment response in clinical trials. This review discusses current FTD biofluid-based biomarker knowledge taking into account the differing applications. The limitations, knowledge gaps, and challenges for the development and implementation of such markers are also examined. Strategies to overcome these hurdles are proposed, including the technologies available, patient cohorts, and collaborative research initiatives. Access to robust and reliable biomarkers that define the exact underlying pathophysiological FTD process will meet the needs for specific diagnosis, disease quantitation, clinical monitoring, and treatment development.
Collapse
Affiliation(s)
- Marta del Campo
- Departamento de Ciencias Farmacéuticas y de la SaludFacultad de FarmaciaUniversidad San Pablo‐CEUCEU UniversitiesMadridSpain
| | - Henrik Zetterberg
- Institute of Neuroscience and PhysiologyThe Sahlgrenska Academy at the University of GothenburgGothenburgSweden,Clinical Neurochemistry LaboratorySahlgrenska University HospitalMölndalSweden,UK Dementia Research Institute at UCLLondonUK,Department of Neurodegenerative DiseaseUCL Institute of NeurologyLondonUK,Hong Kong Center for Neurodegenerative DiseasesHong KongChina
| | - Sam Gandy
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Chiadi U Onyike
- Division of Geriatric Psychiatry and NeuropsychiatryThe Johns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Fabricio Oliveira
- Department of Neurology and NeurosurgeryEscola Paulista de MedicinaFederal University of São Paulo (UNIFESP)São PauloSão PauloBrazil
| | - Chi Udeh‐Momoh
- Ageing Epidemiology Research UnitSchool of Public HealthFaculty of MedicineImperial College LondonLondonUK,Translational Health SciencesFaculty of MedicineUniversity of BristolBristolUK
| | - Alberto Lleó
- Neurology DepartmentHospital de la Santa Creu I Sant PauBarcelonaSpain
| | - Charlotte E. Teunissen
- Neurochemistry LaboratoryDepartment of Clinical ChemistryAmsterdam NeuroscienceAmsterdam University Medical CentersVrije UniversiteitAmsterdamthe Netherlands
| | - Yolande Pijnenburg
- Alzheimer Center AmsterdamDepartment of NeurologyAmsterdam NeuroscienceVrije Universiteit AmsterdamAmsterdam UMCAmsterdamthe Netherlands
| |
Collapse
|
18
|
Saunders TS, Gadd DA, Spires‐Jones TL, King D, Ritchie C, Muniz‐Terrera G. Associations between cerebrospinal fluid markers and cognition in ageing and dementia: A systematic review. Eur J Neurosci 2022; 56:5650-5713. [PMID: 35338546 PMCID: PMC9790745 DOI: 10.1111/ejn.15656] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/08/2022] [Accepted: 03/13/2022] [Indexed: 12/30/2022]
Abstract
A biomarker associated with cognition in neurodegenerative dementias would aid in the early detection of disease progression, complement clinical staging and act as a surrogate endpoint in clinical trials. The current systematic review evaluates the association between cerebrospinal fluid protein markers of synapse loss and neuronal injury and cognition. We performed a systematic search which revealed 67 studies reporting an association between cerebrospinal fluid markers of interest and neuropsychological performance. Despite the substantial heterogeneity between studies, we found some evidence for an association between neurofilament-light and worse cognition in Alzheimer's diseases, frontotemporal dementia and typical cognitive ageing. Moreover, there was an association between cerebrospinal fluid neurogranin and cognition in those with an Alzheimer's-like cerebrospinal fluid biomarker profile. Some evidence was found for cerebrospinal fluid neuronal pentraxin-2 as a correlate of cognition across dementia syndromes. Due to the substantial heterogeneity of the field, no firm conclusions can be drawn from this review. Future research should focus on improving standardization and reporting as well as establishing the importance of novel markers such as neuronal pentraxin-2 and whether such markers can predict longitudinal cognitive decline.
Collapse
Affiliation(s)
- Tyler S. Saunders
- UK Dementia Research InstituteThe University of EdinburghEdinburghUK
- Center for Discovery Brain SciencesThe University of EdinburghEdinburghUK
- Center for Clinical Brain SciencesThe University of EdinburghEdinburghUK
- Center for Dementia PreventionThe University of EdinburghEdinburghUK
| | - Danni A. Gadd
- Center for Genomic and Experimental Medicine, Institute of Genetics and Molecular MedicineUniversity of EdinburghEdinburghUK
| | - Tara L. Spires‐Jones
- UK Dementia Research InstituteThe University of EdinburghEdinburghUK
- Center for Discovery Brain SciencesThe University of EdinburghEdinburghUK
| | - Declan King
- UK Dementia Research InstituteThe University of EdinburghEdinburghUK
- Center for Discovery Brain SciencesThe University of EdinburghEdinburghUK
| | - Craig Ritchie
- Center for Clinical Brain SciencesThe University of EdinburghEdinburghUK
- Center for Dementia PreventionThe University of EdinburghEdinburghUK
| | - Graciela Muniz‐Terrera
- Center for Clinical Brain SciencesThe University of EdinburghEdinburghUK
- Center for Dementia PreventionThe University of EdinburghEdinburghUK
| |
Collapse
|
19
|
Biswas D, Kumari N, Lachén-Montes M, Dutta S, Agrawal I, Samanta D, Shenoy SV, Halder A, Fernández-Irigoyen J, Padhye AR, Santamaría E, Srivastava S. Deep Phosphoproteome Landscape of Interhemispheric Functionality of Neuroanatomical Regions of the Human Brain. J Proteome Res 2022; 22:1043-1055. [PMID: 36317652 DOI: 10.1021/acs.jproteome.2c00244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Post-translational modifications (PTMs) are one of the compulsive and predominant biological processes that regulate the diverse molecular mechanism, modulate the onset of disease, and are the reason behind the functional diversity of proteins. Despite the widespread research findings in neuroproteomics, one of the key drawbacks has been the lack of proteome-level knowledge of hemispheric lateralization. We have investigated the proteome level expression in different neuroanatomical regions under the Human Brain Proteome Project (HBPP) and developed the global interhemispheric brain proteome map (Brainprot) earlier. Furthermore, this study has extended to decipher the phosphoproteome map of human brain interhemispheric regions through high-resolution mass spectrometry. The phosphoproteomics examination of 12 unique interhemispheric neurological brain regions using Orbitrap fusion liquid chromatography with tandem mass spectrometry provided comprehensive coverage of 996 phosphoproteins, 2010 phosphopeptides, and 3567 phosphosites. Moreover, interhemispheric phosphoproteome profiling has been categorized according to synaptic ontologies and interhemispheric expression to understand the functionality. Finally, we have integrated the phosphosites data under the PhosphoMap section in the Inter-Hemispheric Brain Proteome Map Portal (https://www.brainprot.org/) for the advancement and support of the ongoing neuroproteomics research worldwide. Data is available via ProteomeXchange with the identifier PXD031188.
Collapse
Affiliation(s)
- Deeptarup Biswas
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Neha Kumari
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Mercedes Lachén-Montes
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), 31008Pamplona, Spain
| | - Sampurna Dutta
- School of Biological Sciences, Indian Association for the Cultivation of Science, 2B, Raja S. C. Mullick Road, Jadavpur, Kolkata700032, India
| | - Ishita Agrawal
- Department of Molecular and Human Genetics, Banaras Hindu University, Varanasi221005, India
| | - Debabrata Samanta
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal721302, India
| | - Sanjyot Vinayak Shenoy
- Department of Mathematics, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Ankit Halder
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Joaquín Fernández-Irigoyen
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), 31008Pamplona, Spain
| | - Advait Rahul Padhye
- Department of Computer Science and Engineering, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| | - Enrique Santamaría
- Clinical Neuroproteomics Unit, Proteomics Platform, Proteored-ISCIII, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), Navarra Institute for Health Research (IdiSNA), 31008Pamplona, Spain
| | - Sanjeeva Srivastava
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai400076, India
| |
Collapse
|
20
|
Mofrad RB, Del Campo M, Peeters CFW, Meeter LHH, Seelaar H, Koel-Simmelink M, Ramakers IHGB, Middelkoop HAM, De Deyn PP, Claassen JAHR, van Swieten JC, Bridel C, Hoozemans JJM, Scheltens P, van der Flier WM, Pijnenburg YAL, Teunissen CE. Plasma proteome profiling identifies changes associated to AD but not to FTD. Acta Neuropathol Commun 2022; 10:148. [PMID: 36273219 PMCID: PMC9587555 DOI: 10.1186/s40478-022-01458-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 10/06/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Frontotemporal dementia (FTD) is caused by frontotemporal lobar degeneration (FTLD), characterized mainly by inclusions of Tau (FTLD-Tau) or TAR DNA binding43 (FTLD-TDP) proteins. Plasma biomarkers are strongly needed for specific diagnosis and potential treatment monitoring of FTD. We aimed to identify specific FTD plasma biomarker profiles discriminating FTD from AD and controls, and between FTD pathological subtypes. In addition, we compared plasma results with results in post-mortem frontal cortex of FTD cases to understand the underlying process. METHODS Plasma proteins (n = 1303) from pathologically and/or genetically confirmed FTD patients (n = 56; FTLD-Tau n = 16; age = 58.2 ± 6.2; 44% female, FTLD-TDP n = 40; age = 59.8 ± 7.9; 45% female), AD patients (n = 57; age = 65.5 ± 8.0; 39% female), and non-demented controls (n = 148; 61.3 ± 7.9; 41% female) were measured using an aptamer-based proteomic technology (SomaScan). In addition, exploratory analysis in post-mortem frontal brain cortex of FTD (n = 10; FTLD-Tau n = 5; age = 56.2 ± 6.9, 60% female, and FTLD-TDP n = 5; age = 64.0 ± 7.7, 60% female) and non-demented controls (n = 4; age = 61.3 ± 8.1; 75% female) were also performed. Differentially regulated plasma and tissue proteins were identified by global testing adjusting for demographic variables and multiple testing. Logistic lasso regression was used to identify plasma protein panels discriminating FTD from non-demented controls and AD, or FTLD-Tau from FTLD-TDP. Performance of the discriminatory plasma protein panels was based on predictions obtained from bootstrapping with 1000 resampled analysis. RESULTS Overall plasma protein expression profiles differed between FTD, AD and controls (6 proteins; p = 0.005), but none of the plasma proteins was specifically associated to FTD. The overall tissue protein expression profile differed between FTD and controls (7-proteins; p = 0.003). There was no difference in overall plasma or tissue expression profile between FTD subtypes. Regression analysis revealed a panel of 12-plasma proteins discriminating FTD from AD with high accuracy (AUC: 0.99). No plasma protein panels discriminating FTD from controls or FTD pathological subtypes were identified. CONCLUSIONS We identified a promising plasma protein panel as a minimally-invasive tool to aid in the differential diagnosis of FTD from AD, which was primarily associated to AD pathophysiology. The lack of plasma profiles specifically associated to FTD or its pathological subtypes might be explained by FTD heterogeneity, calling for FTD studies using large and well-characterize cohorts.
Collapse
Affiliation(s)
- R Babapour Mofrad
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.,Alzheimer Center and Department of Neurology Amsterdam, Department of Neurology, Neuroscience Campus Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - M Del Campo
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.,Departamento de Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Madrid, Spain.,Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - C F W Peeters
- Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Mathematical and Statistical Methods Group (Biometris), Wageningen University and Research Wageningen, Wageningen, The Netherlands
| | - L H H Meeter
- Alzheimer Center Erasmus MC and Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - H Seelaar
- Alzheimer Center Rotterdam and Department of Neurology, Erasmus University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - M Koel-Simmelink
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - I H G B Ramakers
- Alzheimer Center Limburg, Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - H A M Middelkoop
- Institute of Psychology, Health, Medical and Neuropsychology Unit, Leiden University, Leiden, the Netherlands.,Department of Neurology, Leiden University Medical Centre, Leiden, The Netherlands
| | - P P De Deyn
- Laboratory of Neurochemistry and Behavior, Department of Biomedical Sciences, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium.,Department of Neurology and Alzheimer Center, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - J A H R Claassen
- Department of Geriatric Medicine, Radboud University Medical Center, Radboudumc Alzheimer Center, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
| | - J C van Swieten
- Alzheimer Center Erasmus MC and Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - C Bridel
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - J J M Hoozemans
- Department of Pathology, Amsterdam University Medical Centers Location VUmc, Amsterdam, The Netherlands
| | - P Scheltens
- Alzheimer Center and Department of Neurology Amsterdam, Department of Neurology, Neuroscience Campus Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - W M van der Flier
- Alzheimer Center and Department of Neurology Amsterdam, Department of Neurology, Neuroscience Campus Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.,Department of Epidemiology and Biostatistics, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Y A L Pijnenburg
- Alzheimer Center and Department of Neurology Amsterdam, Department of Neurology, Neuroscience Campus Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Charlotte E Teunissen
- Neurochemistry Laboratory and Biobank, Department of Clinical Chemistry, Amsterdam Neuroscience, VU University Medical Center, Amsterdam UMC, Vrije Universiteit Amsterdam, PO Box 7057, 1007 MB, Amsterdam, The Netherlands.
| |
Collapse
|
21
|
Bolsewig K, Hok-A-Hin Y, Sepe F, Boonkamp L, Jacobs D, Bellomo G, Paoletti FP, Vanmechelen E, Teunissen C, Parnetti L, Willemse E. A Combination of Neurofilament Light, Glial Fibrillary Acidic Protein, and Neuronal Pentraxin-2 Discriminates Between Frontotemporal Dementia and Other Dementias. J Alzheimers Dis 2022; 90:363-380. [DOI: 10.3233/jad-220318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: The differential diagnosis of frontotemporal dementia (FTD) is still a challenging task due to its symptomatic overlap with other neurological diseases and the lack of biofluid-based biomarkers. Objective: To investigate the diagnostic potential of a combination of novel biomarkers in cerebrospinal fluid (CSF) and blood. Methods: We included 135 patients from the Centre for Memory Disturbances, University of Perugia, with the diagnoses FTD (n = 37), mild cognitive impairment due to Alzheimer’s disease (MCI-AD, n = 47), Lewy body dementia (PDD/DLB, n = 22), and cognitively unimpaired patients as controls (OND, n = 29). Biomarker levels of neuronal pentraxin-2 (NPTX2), neuronal pentraxin receptor, neurofilament light (NfL) and glial fibrillary acidic protein (GFAP) were measured in CSF, as well as NfL and GFAP in serum. We assessed biomarker differences by analysis of covariance and generalized linear models (GLM). We performed receiver operating characteristics analyses and Spearman correlation to determine biomarker associations. Results: CSF NPTX2 and serum GFAP levels varied most between diagnostic groups. The combination of CSF NPTX2, serum NfL and serum GFAP differentiated FTD from the other groups with good accuracy FTD versus MCI-AD: area under the curve (AUC [95% CI] = 0.89 [0.81–0.96]; FTD versus PDD/DLB: AUC = 0.82 [0.71–0.93]; FTD versus OND: AUC = 0.80 [0.70–0.91]). CSF NPTX2 and serum GFAP correlated positively only in PDD/DLB (ρ= 0.56, p < 0.05). NPTX2 and serum NfL did not correlate in any of the diagnostic groups. Serum GFAP and serum NfL correlated positively in all groups (ρ= 0.47–0.74, p < 0.05). Conclusion: We show the combined potential of CSF NPTX2, serum NfL, and serum GFAP to differentiate FTD from other neurodegenerative disorders.
Collapse
Affiliation(s)
- Katharina Bolsewig
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
| | - Yanaika Hok-A-Hin
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
| | - Federica Sepe
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
- Department of Medicine and Surgery, Laboratory of Clinical Neuro chemistry, University of Perugia, Perugia, Italy
| | - Lynn Boonkamp
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
| | | | - Giovanni Bellomo
- Department of Medicine and Surgery, Laboratory of Clinical Neuro chemistry, University of Perugia, Perugia, Italy
| | - Federico Paolini Paoletti
- Department of Medicine and Surgery, Laboratory of Clinical Neuro chemistry, University of Perugia, Perugia, Italy
| | | | - Charlotte Teunissen
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
| | - Lucilla Parnetti
- Department of Medicine and Surgery, Laboratory of Clinical Neuro chemistry, University of Perugia, Perugia, Italy
| | - Eline Willemse
- Department of Clinical Chemistry, Neuro chemistry Laboratory and Biobank, Amsterdam Neuroscience, Amsterdam UMC, VU University, The Netherlands
| |
Collapse
|
22
|
Sogorb-Esteve A, Nilsson J, Swift IJ, Heller C, Bocchetta M, Russell LL, Peakman G, Convery RS, van Swieten JC, Seelaar H, Borroni B, Galimberti D, Sanchez-Valle R, Laforce R, Moreno F, Synofzik M, Graff C, Masellis M, Tartaglia MC, Rowe JB, Vandenberghe R, Finger E, Tagliavini F, Santana I, Butler CR, Ducharme S, Gerhard A, Danek A, Levin J, Otto M, Sorbi S, Le Ber I, Pasquier F, Gobom J, Brinkmalm A, Blennow K, Zetterberg H, Rohrer JD. Differential impairment of cerebrospinal fluid synaptic biomarkers in the genetic forms of frontotemporal dementia. Alzheimers Res Ther 2022; 14:118. [PMID: 36045450 PMCID: PMC9429339 DOI: 10.1186/s13195-022-01042-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 07/06/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Approximately a third of frontotemporal dementia (FTD) is genetic with mutations in three genes accounting for most of the inheritance: C9orf72, GRN, and MAPT. Impaired synaptic health is a common mechanism in all three genetic variants, so developing fluid biomarkers of this process could be useful as a readout of cellular dysfunction within therapeutic trials. METHODS A total of 193 cerebrospinal fluid (CSF) samples from the GENetic FTD Initiative including 77 presymptomatic (31 C9orf72, 23 GRN, 23 MAPT) and 55 symptomatic (26 C9orf72, 17 GRN, 12 MAPT) mutation carriers as well as 61 mutation-negative controls were measured using a microflow LC PRM-MS set-up targeting 15 synaptic proteins: AP-2 complex subunit beta, complexin-2, beta-synuclein, gamma-synuclein, 14-3-3 proteins (eta, epsilon, zeta/delta), neurogranin, Rab GDP dissociation inhibitor alpha (Rab GDI alpha), syntaxin-1B, syntaxin-7, phosphatidylethanolamine-binding protein 1 (PEBP-1), neuronal pentraxin receptor (NPTXR), neuronal pentraxin 1 (NPTX1), and neuronal pentraxin 2 (NPTX2). Mutation carrier groups were compared to each other and to controls using a bootstrapped linear regression model, adjusting for age and sex. RESULTS CSF levels of eight proteins were increased only in symptomatic MAPT mutation carriers (compared with controls) and not in symptomatic C9orf72 or GRN mutation carriers: beta-synuclein, gamma-synuclein, 14-3-3-eta, neurogranin, Rab GDI alpha, syntaxin-1B, syntaxin-7, and PEBP-1, with three other proteins increased in MAPT mutation carriers compared with the other genetic groups (AP-2 complex subunit beta, complexin-2, and 14-3-3 zeta/delta). In contrast, CSF NPTX1 and NPTX2 levels were affected in all three genetic groups (decreased compared with controls), with NPTXR concentrations being affected in C9orf72 and GRN mutation carriers only (decreased compared with controls). No changes were seen in the CSF levels of these proteins in presymptomatic mutation carriers. Concentrations of the neuronal pentraxins were correlated with brain volumes in the presymptomatic period for the C9orf72 and GRN groups, suggesting that they become abnormal in proximity to symptom onset. CONCLUSIONS Differential synaptic impairment is seen in the genetic forms of FTD, with abnormalities in multiple measures in those with MAPT mutations, but only changes in neuronal pentraxins within the GRN and C9orf72 mutation groups. Such markers may be useful in future trials as measures of synaptic dysfunction, but further work is needed to understand how these markers change throughout the course of the disease.
Collapse
Affiliation(s)
- Aitana Sogorb-Esteve
- grid.511435.7UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK
- grid.83440.3b0000000121901201Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG UK
| | - Johanna Nilsson
- grid.8761.80000 0000 9919 9582Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
| | - Imogen J. Swift
- grid.511435.7UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK
- grid.83440.3b0000000121901201Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG UK
| | - Carolin Heller
- grid.511435.7UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK
- grid.83440.3b0000000121901201Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG UK
| | - Martina Bocchetta
- grid.83440.3b0000000121901201Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG UK
| | - Lucy L. Russell
- grid.83440.3b0000000121901201Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG UK
| | - Georgia Peakman
- grid.83440.3b0000000121901201Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG UK
| | - Rhian S. Convery
- grid.83440.3b0000000121901201Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG UK
| | - John C. van Swieten
- grid.5645.2000000040459992XDepartment of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Harro Seelaar
- grid.5645.2000000040459992XDepartment of Neurology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Barbara Borroni
- grid.7637.50000000417571846Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Daniela Galimberti
- grid.4708.b0000 0004 1757 2822Department of Biomedical, Surgical and Dental Sciences, University of Milan, Milan, Italy
- grid.414818.00000 0004 1757 8749Fondazione IRCCS Ca’ Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Raquel Sanchez-Valle
- grid.5841.80000 0004 1937 0247Alzheimer’s Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital ClínicInstitut d’Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Robert Laforce
- grid.23856.3a0000 0004 1936 8390Clinique Interdisciplinaire de MémoireDépartement Des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, Quebec City, QC Canada
| | - Fermin Moreno
- grid.414651.30000 0000 9920 5292Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Gipuzkoa, Spain
- grid.432380.eNeuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa, Spain
| | - Matthis Synofzik
- grid.10392.390000 0001 2190 1447Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- grid.424247.30000 0004 0438 0426Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Caroline Graff
- Center for Alzheimer Research, Division of Neurogeriatrics, Department of Neurobiology, Care Sciences and Society, BioclinicumKarolinska Institutet, Solna, Sweden
- grid.24381.3c0000 0000 9241 5705Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Mario Masellis
- grid.17063.330000 0001 2157 2938Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Maria Carmela Tartaglia
- grid.17063.330000 0001 2157 2938Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - James B. Rowe
- grid.5335.00000000121885934Department of Clinical Neurosciences and Cambridge University Hospitals NHS Trust and Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Rik Vandenberghe
- grid.5596.f0000 0001 0668 7884Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Louvain, Belgium
- grid.410569.f0000 0004 0626 3338Neurology Service, University Hospitals Leuven, Louvain, Belgium
- grid.5596.f0000 0001 0668 7884Leuven Brain Institute, KU Leuven, Louvain, Belgium
| | - Elizabeth Finger
- grid.39381.300000 0004 1936 8884Department of Clinical Neurological Sciences, University of Western Ontario, London, ON Canada
| | - Fabrizio Tagliavini
- grid.417894.70000 0001 0707 5492Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Isabel Santana
- grid.28911.330000000106861985Faculty of Medicine, University Hospital of Coimbra (HUC), Neurology Service, University of Coimbra, Coimbra, Portugal
- grid.8051.c0000 0000 9511 4342Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Chris R. Butler
- grid.4991.50000 0004 1936 8948Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
- grid.7445.20000 0001 2113 8111Department of Brain Sciences, Imperial College London, London, UK
| | - Simon Ducharme
- grid.412078.80000 0001 2353 5268Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Canada
- grid.14709.3b0000 0004 1936 8649McConnell Brain Imaging Centre, Department of Neurology & Neurosurgery, Montreal Neurological Institute, McGill University, Montreal, Canada
| | - Alexander Gerhard
- grid.5379.80000000121662407Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
- grid.5718.b0000 0001 2187 5445Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg-Essen, Duisburg, Germany
| | - Adrian Danek
- grid.5252.00000 0004 1936 973XNeurologische Klinik Und Poliklinik, Ludwig-Maximilians-Universität, Munich, Germany
| | - Johannes Levin
- grid.5252.00000 0004 1936 973XNeurologische Klinik Und Poliklinik, Ludwig-Maximilians-Universität, Munich, Germany
- grid.424247.30000 0004 0438 0426German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- grid.452617.3Munich Cluster of Systems Neurology, Munich, Germany
| | - Markus Otto
- grid.6582.90000 0004 1936 9748Department of Neurology, University of Ulm, Ulm, Germany
| | - Sandro Sorbi
- grid.8404.80000 0004 1757 2304Department of Neurofarba, University of Florence, Florence, Italy
- grid.418563.d0000 0001 1090 9021IRCCS Fondazione Don Carlo Gnocchi, Florence, Italy
| | - Isabelle Le Ber
- grid.462844.80000 0001 2308 1657Sorbonne Université, Paris Brain Institute – Institut du Cerveau – ICM, Inserm U1127, CNRS UMR 7225, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- grid.411439.a0000 0001 2150 9058Centre de Référence Des Démences Rares Ou Précoces, IM2A, Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- grid.411439.a0000 0001 2150 9058Département de Neurologie, AP-HP - Hôpital Pitié-Salpêtrière, Paris, France
- Reference Network for Rare Neurological Diseases (ERN-RND), Tübingen, Germany
| | - Florence Pasquier
- grid.503422.20000 0001 2242 6780University of Lille, Lille, France
- grid.457380.d0000 0004 0638 5749Inserm, 1172, Lille, France
- grid.410463.40000 0004 0471 8845CHU, CNR-MAJ, Labex Distalz, LiCEND, Lille, France
| | - Johan Gobom
- grid.8761.80000 0000 9919 9582Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
- grid.8761.80000 0000 9919 9582Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Ann Brinkmalm
- grid.8761.80000 0000 9919 9582Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
- grid.8761.80000 0000 9919 9582Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Kaj Blennow
- grid.8761.80000 0000 9919 9582Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
- grid.8761.80000 0000 9919 9582Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Henrik Zetterberg
- grid.511435.7UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK
- grid.8761.80000 0000 9919 9582Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, 43180 Mölndal, Sweden
- grid.8761.80000 0000 9919 9582Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
- grid.1649.a000000009445082XClinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- grid.24515.370000 0004 1937 1450Hong Kong Center for Neurodegenerative Diseases, Sha Tin, Hong Kong, China
| | - Jonathan D. Rohrer
- grid.511435.7UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK
- grid.83440.3b0000000121901201Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG UK
| | | |
Collapse
|
23
|
Zhu S, Bäckström D, Forsgren L, Trupp M. Alterations in Self-Aggregating Neuropeptides in Cerebrospinal Fluid of Patients with Parkinsonian Disorders. JOURNAL OF PARKINSON'S DISEASE 2022; 12:1169-1189. [PMID: 35253777 PMCID: PMC9198747 DOI: 10.3233/jpd-213031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Parkinson’s disease (PD), progressive supranuclear palsy (PSP), and multiple system atrophy (MSA) present with similar movement disorder symptoms but distinct protein aggregates upon pathological examination. Objective: Discovery and validation of candidate biomarkers in parkinsonian disorders for differential diagnosis of subgroup molecular etiologies. Methods: Untargeted liquid chromatography (LC)-mass spectrometry (MS) proteomics was used for discovery profiling in cerebral spinal fluid (CSF) followed by LC-MS/MS based multiple reaction monitoring for validation of candidates. We compared clinical variation within the parkinsonian cohort including PD subgroups exhibiting tremor dominance (TD) or postural instability gait disturbance and those with detectable leukocytes in CSF. Results: We have identified candidate peptide biomarkers and validated related proteins with targeted quantitative multiplexed assays. Dopamine-drug naïve patients at first diagnosis exhibit reduced levels of signaling neuropeptides, chaperones, and processing proteases for packaging of self-aggregating peptides into dense core vesicles. Distinct patterns of biomarkers were detected in the parkinsonian disorders but were not robust enough to offer a differential diagnosis. Different biomarker changes were detected in male and female patients with PD. Subgroup specific candidate biomarkers were identified for TD PD and PD patients with leukocytes detected in CSF. Conclusion: PD, MSA, and PSP exhibit overlapping as well as distinct protein biomarkers that suggest specific molecular etiologies. This indicates common sensitivity of certain populations of selectively vulnerable neurons in the brain, and distinct therapeutic targets for PD subgroups. Our report validates a decrease in CSF levels of self-aggregating neuropeptides in parkinsonian disorders and supports the role of native amyloidogenic proteins in etiologies of neurodegenerative diseases.
Collapse
Affiliation(s)
- Shaochun Zhu
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - David Bäckström
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Lars Forsgren
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| | - Miles Trupp
- Department of Clinical Sciences, Neurosciences, Umeå University, Umeå, Sweden
| |
Collapse
|
24
|
Blažević A, Iyer AM, van Velthuysen MLF, Hofland J, van Koestveld PM, Franssen GJH, Feelders RA, Zajec M, Luider TM, de Herder WW, Hofland LJ. Aberrant tryptophan metabolism in stromal cells is associated with mesenteric fibrosis in small intestinal neuroendocrine tumors. Endocr Connect 2022; 11:EC-22-0020. [PMID: 35275095 PMCID: PMC9066570 DOI: 10.1530/ec-22-0020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Increased levels of serotonin secretion are associated with mesenteric fibrosis (MF) in small intestinal neuroendocrine tumors (SI-NETs). However, the profibrotic potential of serotonin differs between patients, and in this study, we aimed to gain an understanding of the mechanisms underlying this variability. To this end, we analyzed the proteins involved in tryptophan metabolism in SI-NETs. METHODS Proteomes of tumor and stroma from primary SI-NETs and paired mesenteric metastases of patients with MF (n = 6) and without MF (n = 6) were identified by liquid chromatography-mass spectrometry (LC-MS). The differential expression of proteins involved in tryptophan metabolism between patients with and without MF was analyzed. Concurrently, monoamine oxidase A (MAO-A) expression was analyzed in the tumor and stromal compartment by immunohistochemistry (IHC) and reported as intensity over area (I/A). RESULTS Of the 42 proteins involved in tryptophan metabolism, 20 were detected by LC-MS. Lower abundance of ten proteins was found in mesenteric metastases stroma in patients with MF. No differential expression was found in primary SI-NETs. In patients with MF, IHC showed lower MAO-A expression in the stroma of the primary SI-NETs (median 4.2 I/A vs 6.5 I/A in patients without MF, P = 0.003) and mesenteric metastases (median 2.1 I/A vs 2.8 I/A in patients without MF, P= 0.019). CONCLUSION We found a decreased expression of tryptophan and serotonin-metabolizing enzymes in the stroma in patients with MF, most notably in the mesenteric stroma. This might account for the increased profibrotic potential of serotonin and explain the variability in the development of SI-NET-associated fibrotic complications.
Collapse
Affiliation(s)
- Anela Blažević
- Department of Internal Medicine, Section Endocrinology, Erasmus University Medical Center and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Anand M Iyer
- Department of Internal Medicine, Section Endocrinology, Erasmus University Medical Center and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | | | - Johannes Hofland
- Department of Internal Medicine, Section Endocrinology, Erasmus University Medical Center and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Peter M van Koestveld
- Department of Internal Medicine, Section Endocrinology, Erasmus University Medical Center and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Gaston J H Franssen
- Department of Surgery, Erasmus University Medical Center and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Richard A Feelders
- Department of Internal Medicine, Section Endocrinology, Erasmus University Medical Center and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Marina Zajec
- Laboratory of Neuro-Oncology/Clinical & Cancer Proteomics, Department of Neurology, Erasmus University Medical Center and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Theo M Luider
- Laboratory of Neuro-Oncology/Clinical & Cancer Proteomics, Department of Neurology, Erasmus University Medical Center and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Wouter W de Herder
- Department of Internal Medicine, Section Endocrinology, Erasmus University Medical Center and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| | - Leo J Hofland
- Department of Internal Medicine, Section Endocrinology, Erasmus University Medical Center and Erasmus MC Cancer Institute, Rotterdam, Netherlands
| |
Collapse
|
25
|
Katzeff JS, Bright F, Phan K, Kril JJ, Ittner LM, Kassiou M, Hodges JR, Piguet O, Kiernan MC, Halliday GM, Kim WS. Biomarker discovery and development for frontotemporal dementia and amyotrophic lateral sclerosis. Brain 2022; 145:1598-1609. [PMID: 35202463 PMCID: PMC9166557 DOI: 10.1093/brain/awac077] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 02/08/2022] [Accepted: 02/13/2022] [Indexed: 11/12/2022] Open
Abstract
Frontotemporal dementia refers to a group of neurodegenerative disorders characterized by behaviour and language alterations and focal brain atrophy. Amyotrophic lateral sclerosis is a rapidly progressing neurodegenerative disease characterized by loss of motor neurons resulting in muscle wasting and paralysis. Frontotemporal dementia and amyotrophic lateral sclerosis are considered to exist on a disease spectrum given substantial overlap of genetic and molecular signatures. The predominant genetic abnormality in both frontotemporal dementia and amyotrophic lateral sclerosis is an expanded hexanucleotide repeat sequence in the C9orf72 gene. In terms of brain pathology, abnormal aggregates of TAR-DNA-binding protein-43 are predominantly present in frontotemporal dementia and amyotrophic lateral sclerosis patients. Currently, sensitive and specific diagnostic and disease surveillance biomarkers are lacking for both diseases. This has impeded the capacity to monitor disease progression during life and the development of targeted drug therapies for the two diseases. The purpose of this review is to examine the status of current biofluid biomarker discovery and development in frontotemporal dementia and amyotrophic lateral sclerosis. The major pathogenic proteins implicated in different frontotemporal dementia and amyotrophic lateral sclerosis molecular subtypes and proteins associated with neurodegeneration and the immune system will be discussed. Furthermore, the use of mass spectrometry-based proteomics as an emerging tool to identify new biomarkers in frontotemporal dementia and amyotrophic lateral sclerosis will be summarized.
Collapse
Affiliation(s)
- Jared S Katzeff
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia.,The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia
| | - Fiona Bright
- The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia.,Dementia Research Centre and Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Katherine Phan
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia.,The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia
| | - Jillian J Kril
- The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia.,Dementia Research Centre and Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Lars M Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Macquarie University, Sydney, NSW, Australia
| | - Michael Kassiou
- The University of Sydney, School of Chemistry, Sydney, NSW, Australia
| | - John R Hodges
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia
| | - Olivier Piguet
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia.,The University of Sydney, School of Psychology, Sydney, NSW, Australia
| | - Matthew C Kiernan
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia.,Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Glenda M Halliday
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia.,The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia
| | - Woojin Scott Kim
- The University of Sydney, Brain and Mind Centre, Sydney, NSW, Australia.,The University of Sydney, School of Medical Sciences, Sydney, NSW, Australia
| |
Collapse
|
26
|
Gómez de San José N, Massa F, Halbgebauer S, Oeckl P, Steinacker P, Otto M. Neuronal pentraxins as biomarkers of synaptic activity: from physiological functions to pathological changes in neurodegeneration. J Neural Transm (Vienna) 2022; 129:207-230. [PMID: 34460014 PMCID: PMC8866268 DOI: 10.1007/s00702-021-02411-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 08/17/2021] [Indexed: 12/22/2022]
Abstract
The diagnosis of neurodegenerative disorders is often challenging due to the lack of diagnostic tools, comorbidities and shared pathological manifestations. Synaptic dysfunction is an early pathological event in many neurodegenerative disorders, but the underpinning mechanisms are still poorly characterised. Reliable quantification of synaptic damage is crucial to understand the pathophysiology of neurodegeneration, to track disease status and to obtain prognostic information. Neuronal pentraxins (NPTXs) are extracellular scaffolding proteins emerging as potential biomarkers of synaptic dysfunction in neurodegeneration. They are a family of proteins involved in homeostatic synaptic plasticity by recruiting post-synaptic receptors into synapses. Recent research investigates the dynamic changes of NPTXs in the cerebrospinal fluid (CSF) as an expression of synaptic damage, possibly related to cognitive impairment. In this review, we summarise the available data on NPTXs structure and expression patterns as well as on their contribution in synaptic function and plasticity and other less well-characterised roles. Moreover, we propose a mechanism for their involvement in synaptic damage and neurodegeneration and assess their potential as CSF biomarkers for neurodegenerative diseases.
Collapse
Affiliation(s)
| | - Federico Massa
- Department of Neurology, University of Ulm, Ulm, Germany
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DINOGMI), University of Genoa, Genoa, Italy
| | | | - Patrick Oeckl
- Department of Neurology, University of Ulm, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE E.V.), Ulm, Germany
| | | | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany.
- Department of Neurology, Martin-Luther-University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany.
| |
Collapse
|
27
|
Bergström S, Öijerstedt L, Remnestål J, Olofsson J, Ullgren A, Seelaar H, van Swieten JC, Synofzik M, Sanchez-Valle R, Moreno F, Finger E, Masellis M, Tartaglia C, Vandenberghe R, Laforce R, Galimberti D, Borroni B, Butler CR, Gerhard A, Ducharme S, Rohrer JD, Månberg A, Graff C, Nilsson P. A panel of CSF proteins separates genetic frontotemporal dementia from presymptomatic mutation carriers: a GENFI study. Mol Neurodegener 2021; 16:79. [PMID: 34838088 PMCID: PMC8626910 DOI: 10.1186/s13024-021-00499-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 11/01/2021] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND A detailed understanding of the pathological processes involved in genetic frontotemporal dementia is critical in order to provide the patients with an optimal future treatment. Protein levels in CSF have the potential to reflect different pathophysiological processes in the brain. We aimed to identify and evaluate panels of CSF proteins with potential to separate symptomatic individuals from individuals without clinical symptoms (unaffected), as well as presymptomatic individuals from mutation non-carriers. METHODS A multiplexed antibody-based suspension bead array was used to analyse levels of 111 proteins in CSF samples from 221 individuals from families with genetic frontotemporal dementia. The data was explored using LASSO and Random forest. RESULTS When comparing affected individuals with unaffected individuals, 14 proteins were identified as potentially important for the separation. Among these, four were identified as most important, namely neurofilament medium polypeptide (NEFM), neuronal pentraxin 2 (NPTX2), neurosecretory protein VGF (VGF) and aquaporin 4 (AQP4). The combined profile of these four proteins successfully separated the two groups, with higher levels of NEFM and AQP4 and lower levels of NPTX2 in affected compared to unaffected individuals. VGF contributed to the models, but the levels were not significantly lower in affected individuals. Next, when comparing presymptomatic GRN and C9orf72 mutation carriers in proximity to symptom onset with mutation non-carriers, six proteins were identified with a potential to contribute to a separation, including progranulin (GRN). CONCLUSION In conclusion, we have identified several proteins with the combined potential to separate affected individuals from unaffected individuals, as well as proteins with potential to contribute to the separation between presymptomatic individuals and mutation non-carriers. Further studies are needed to continue the investigation of these proteins and their potential association to the pathophysiological mechanisms in genetic FTD.
Collapse
Affiliation(s)
- Sofia Bergström
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
- Swedish FTD Initiative, Stockholm, Sweden
| | - Linn Öijerstedt
- Swedish FTD Initiative, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Unit of Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Julia Remnestål
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
- Swedish FTD Initiative, Stockholm, Sweden
| | - Jennie Olofsson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
- Swedish FTD Initiative, Stockholm, Sweden
| | - Abbe Ullgren
- Swedish FTD Initiative, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Unit of Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Harro Seelaar
- Department of Neurology, Erasmus Medical Centre, Rotterdam, Netherlands
| | | | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie-Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany
- Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Raquel Sanchez-Valle
- Alzheimer’s disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic, Institut d’Investigacións Biomèdiques August Pi I Sunyer, University of Barcelona, Barcelona, Spain
| | - Fermin Moreno
- Cognitive Disorders Unit, Department of Neurology, Donostia University Hospital, San Sebastian, Gipuzkoa Spain
- Neuroscience Area, Biodonostia Health Research Institute, San Sebastian, Gipuzkoa Spain
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario Canada
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Canada
| | - Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Neurology Service, University Hospitals Leuven, Leuven, Belgium
- Leuven Brain Institute, KU Leuven, Leuven, Belgium
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire, Département des Sciences Neurologiques, CHU de Québec, and Faculté de Médecine, Université Laval, QC, Canada
| | - Daniela Galimberti
- Fondazione IRCCS Ospedale Policlinico, Milan, Italy
- University of Milan, Centro Dino Ferrari, Milan, Italy
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Chris R. Butler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
- Department of Brain Sciences, Imperial College London, London, UK
| | - Alexander Gerhard
- Division of Neuroscience and Experimental Psychology, Wolfson Molecular Imaging Centre, University of Manchester, Manchester, UK
- Departments of Geriatric Medicine and Nuclear Medicine, University of Duisburg- Essen, Duisburg, Germany
| | - Simon Ducharme
- Department of Psychiatry, Douglas Mental Health University Institute, McGill University, Montreal, Québec Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Québec Canada
| | - Jonathan D. Rohrer
- Department of Neurodegenerative Disease, Dementia Research Centre, UCL Institute of Neurology, Queen Square, London, UK
| | - Anna Månberg
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
- Swedish FTD Initiative, Stockholm, Sweden
| | - Caroline Graff
- Swedish FTD Initiative, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, Unit of Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
- Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Stockholm, Sweden
- Swedish FTD Initiative, Stockholm, Sweden
| |
Collapse
|
28
|
Branch CL, Semenov GA, Wagner DN, Sonnenberg BR, Pitera AM, Bridge ES, Taylor SA, Pravosudov VV. The genetic basis of spatial cognitive variation in a food-caching bird. Curr Biol 2021; 32:210-219.e4. [PMID: 34735793 DOI: 10.1016/j.cub.2021.10.036] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/15/2021] [Accepted: 10/14/2021] [Indexed: 01/02/2023]
Abstract
Spatial cognition is used by most organisms to navigate their environment. Some species rely particularly heavily on specialized spatial cognition to survive, suggesting that a heritable component of cognition may be under natural selection. This idea remains largely untested outside of humans, perhaps because cognition in general is known to be strongly affected by learning and experience.1-4 We investigated the genetic basis of individual variation in spatial cognition used by non-migratory food-caching birds to recover food stores and survive harsh montane winters. Comparing the genomes of wild, free-living birds ranging from best to worst in their performance on a spatial cognitive task revealed significant associations with genes involved in neuron growth and development and hippocampal function. These results identify candidate genes associated with differences in spatial cognition and provide a critical link connecting individual variation in spatial cognition with natural selection.
Collapse
Affiliation(s)
- Carrie L Branch
- Cornell Lab of Ornithology, Cornell University, Ithaca, NY 14850, USA.
| | - Georgy A Semenov
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Dominique N Wagner
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Benjamin R Sonnenberg
- Ecology, Evolution, and Conservation Biology Graduate Program, University of Nevada, Reno, NV 89557, USA
| | - Angela M Pitera
- Ecology, Evolution, and Conservation Biology Graduate Program, University of Nevada, Reno, NV 89557, USA
| | - Eli S Bridge
- Ecology and Evolutionary Biology, University of Oklahoma, Norman, OK 73019, USA
| | - Scott A Taylor
- Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309, USA
| | - Vladimir V Pravosudov
- Ecology, Evolution, and Conservation Biology Graduate Program, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
29
|
Quinn JP, Kandigian SE, Trombetta BA, Arnold SE, Carlyle BC. VGF as a biomarker and therapeutic target in neurodegenerative and psychiatric diseases. Brain Commun 2021; 3:fcab261. [PMID: 34778762 PMCID: PMC8578498 DOI: 10.1093/braincomms/fcab261] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 12/20/2022] Open
Abstract
Neurosecretory protein VGF (non-acronymic) belongs to the granin family of neuropeptides. VGF and VGF-derived peptides have been repeatedly identified in well-powered and well-designed multi-omic studies as dysregulated in neurodegenerative and psychiatric diseases. New therapeutics is urgently needed for these devastating and costly diseases, as are new biomarkers to improve disease diagnosis and mechanistic understanding. From a list of 537 genes involved in Alzheimer's disease pathogenesis, VGF was highlighted by the Accelerating Medicines Partnership in Alzheimer's disease as the potential therapeutic target of greatest interest. VGF levels are consistently decreased in brain tissue and CSF samples from patients with Alzheimer's disease compared to controls, and its levels correlate with disease severity and Alzheimer's disease pathology. In the brain, VGF exists as multiple functional VGF-derived peptides. Full-length human VGF1-615 undergoes proteolytic processing by prohormone convertases and other proteases in the regulated secretory pathway to produce at least 12 active VGF-derived peptides. In cell and animal models, these VGF-derived peptides have been linked to energy balance regulation, neurogenesis, synaptogenesis, learning and memory, and depression-related behaviours throughout development and adulthood. The C-terminal VGF-derived peptides, TLQP-62 (VGF554-615) and TLQP-21 (VGF554-574) have differential effects on Alzheimer's disease pathogenesis, neuronal and microglial activity, and learning and memory. TLQP-62 activates neuronal cell-surface receptors and regulates long-term hippocampal memory formation. TLQP-62 also prevents immune-mediated memory impairment, depression-like and anxiety-like behaviours in mice. TLQP-21 binds to microglial cell-surface receptors, triggering microglial chemotaxis and phagocytosis. These actions were reported to reduce amyloid-β plaques and decrease neuritic dystrophy in a transgenic mouse model of familial Alzheimer's disease. Expression differences of VGF-derived peptides have also been associated with frontotemporal lobar dementias, amyotrophic lateral sclerosis, Lewy body diseases, Huntington's disease, pain, schizophrenia, bipolar disorder, depression and antidepressant response. This review summarizes current knowledge and highlights questions for future investigation regarding the roles of VGF and its dysregulation in neurodegenerative and psychiatric disease. Finally, the potential of VGF and VGF-derived peptides as biomarkers and novel therapeutic targets for neurodegenerative and psychiatric diseases is highlighted.
Collapse
Affiliation(s)
- James P Quinn
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Savannah E Kandigian
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Bianca A Trombetta
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Steven E Arnold
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Becky C Carlyle
- Department of Neurology, Alzheimer's Clinical & Translational Research Unit, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
30
|
Barranco N, Plá V, Alcolea D, Sánchez-Domínguez I, Fischer-Colbrie R, Ferrer I, Lleó A, Aguado F. Dense core vesicle markers in CSF and cortical tissues of patients with Alzheimer's disease. Transl Neurodegener 2021; 10:37. [PMID: 34565482 PMCID: PMC8466657 DOI: 10.1186/s40035-021-00263-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 09/14/2021] [Indexed: 12/19/2022] Open
Abstract
Background New fluid biomarkers for Alzheimer's disease (AD) that reveal synaptic and neural network dysfunctions are needed for clinical practice and therapeutic trial design. Dense core vesicle (DCV) cargos are promising cerebrospinal fluid (CSF) indicators of synaptic failure in AD patients. However, their value as biomarkers has not yet been determined. Methods Immunoassays were performed to analyze the secretory proteins prohormone convertases PC1/3 and PC2, carboxypeptidase E (CPE), secretogranins SgIII and SgII, and Cystatin C in the cerebral cortex (n = 45, provided by Bellvitge University Hospital) and CSF samples (n = 66, provided by The Sant Pau Initiative on Neurodegeneration cohort) from AD patients (n = 56) and age-matched controls (n = 55).
Results In AD tissues, most DCV proteins were aberrantly accumulated in dystrophic neurites and activated astrocytes, whereas PC1/3, PC2 and CPE were also specifically accumulated in hippocampal granulovacuolar degeneration bodies. AD individuals displayed an overall decline of secretory proteins in the CSF. Interestingly, in AD patients, the CSF levels of prohormone convertases strongly correlated inversely with those of neurodegeneration markers and directly with cognitive impairment status. Conclusions These results demonstrate marked alterations of neuronal-specific prohormone convertases in CSF and cortical tissues of AD patients. The neuronal DCV cargos are biomarker candidates for synaptic dysfunction and neurodegeneration in AD. Supplementary Information The online version contains supplementary material available at 10.1186/s40035-021-00263-0.
Collapse
Affiliation(s)
- Neus Barranco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain
| | - Virginia Plá
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.,Center for Translational Neuromedicine, University of Rochester Medical Center, Rochester, NY, 14642, USA
| | - Daniel Alcolea
- Memory Unit, Department of Neurology, Sant Pau Biomedical Research Institute. Sant Pau Hospital, Autonomous University of Barcelona, 08041, Barcelona, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Irene Sánchez-Domínguez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain.,Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain
| | | | - Isidro Ferrer
- Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain.,Department of Pathology and Experimental Therapeutics, University of Barcelona, and Bellvitge University Hospital, Bellvitge Biomedical Research Institute, Hospitalet de Llobregat, Spain
| | - Alberto Lleó
- Memory Unit, Department of Neurology, Sant Pau Biomedical Research Institute. Sant Pau Hospital, Autonomous University of Barcelona, 08041, Barcelona, Spain.,Center for Networked Biomedical Research on Neurodegenerative Diseases (CIBERNED), 28031, Madrid, Spain
| | - Fernando Aguado
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, 08028, Barcelona, Spain. .,Institute of Neurosciences, University of Barcelona, 08028, Barcelona, Spain.
| |
Collapse
|
31
|
VanDusen KW, Li YJ, Cai V, Hall A, Hiles S, Thompson JW, Moseley MA, Cooter M, Acker L, Levy JH, Ghadimi K, Quiñones QJ, Devinney MJ, Chung S, Terrando N, Moretti EW, Browndyke JN, Mathew JP, Berger M. Cerebrospinal Fluid Proteome Changes in Older Non-Cardiac Surgical Patients with Postoperative Cognitive Dysfunction. J Alzheimers Dis 2021; 80:1281-1297. [PMID: 33682719 PMCID: PMC8052629 DOI: 10.3233/jad-201544] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background: Postoperative cognitive dysfunction (POCD), a syndrome of cognitive deficits occurring 1–12 months after surgery primarily in older patients, is associated with poor postoperative outcomes. POCD is hypothesized to result from neuroinflammation; however, the pathways involved remain unclear. Unbiased proteomic analyses have been used to identify neuroinflammatory pathways in multiple neurologic diseases and syndromes but have not yet been applied to POCD. Objective: To utilize unbiased mass spectrometry-based proteomics to identify potential neuroinflammatory pathways underlying POCD. Methods: Unbiased LC-MS/MS proteomics was performed on immunodepleted cerebrospinal fluid (CSF) samples obtained before, 24 hours after, and 6 weeks after major non-cardiac surgery in older adults who did (n = 8) or did not develop POCD (n = 6). Linear mixed models were used to select peptides and proteins with intensity differences for pathway analysis. Results: Mass spectrometry quantified 8,258 peptides from 1,222 proteins in > 50%of patient samples at all three time points. Twelve peptides from 11 proteins showed differences in expression over time between patients with versus without POCD (q < 0.05), including proteins previously implicated in neurodegenerative disease pathophysiology. Additionally, 283 peptides from 182 proteins were identified with trend-level differences (q < 0.25) in expression over time between these groups. Among these, pathway analysis revealed that 50 were from 17 proteins mapping to complement and coagulation pathways (q = 2.44*10–13). Conclusion: These data demonstrate the feasibility of performing unbiased mass spectrometry on perioperative CSF samples to identify pathways associated with POCD. Additionally, they provide hypothesis-generating evidence for CSF complement and coagulation pathway changes in patients with POCD.
Collapse
Affiliation(s)
- Keith W VanDusen
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Yi-Ju Li
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA.,Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Victor Cai
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Ashley Hall
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Sarah Hiles
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - J Will Thompson
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - M Arthur Moseley
- Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Mary Cooter
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Leah Acker
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Jerrold H Levy
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Kamrouz Ghadimi
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Quintin J Quiñones
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Michael J Devinney
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Stacey Chung
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Niccolò Terrando
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Eugene W Moretti
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Jeffrey N Browndyke
- Department of Psychiatry & Behavioral Sciences, Division of Geriatric Behavioral Health, Duke University Medical Center, Durham, NC, USA.,Duke Institute for Brain Sciences, Duke University, Durham, NC, USA.,Center for Cognitive Neuroscience, Duke University Medical Center, Durham, NC, USA
| | - Joseph P Mathew
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | - Miles Berger
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA.,Department of Anesthesiology, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
32
|
Swift IJ, Sogorb-Esteve A, Heller C, Synofzik M, Otto M, Graff C, Galimberti D, Todd E, Heslegrave AJ, van der Ende EL, Van Swieten JC, Zetterberg H, Rohrer JD. Fluid biomarkers in frontotemporal dementia: past, present and future. J Neurol Neurosurg Psychiatry 2021; 92:204-215. [PMID: 33188134 DOI: 10.1136/jnnp-2020-323520] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/03/2020] [Accepted: 10/03/2020] [Indexed: 12/12/2022]
Abstract
The frontotemporal dementia (FTD) spectrum of neurodegenerative disorders includes a heterogeneous group of conditions. However, following on from a series of important molecular studies in the early 2000s, major advances have now been made in the understanding of the pathological and genetic underpinnings of the disease. In turn, alongside the development of novel methodologies for measuring proteins and other molecules in biological fluids, the last 10 years have seen a huge increase in biomarker studies within FTD. This recent past has focused on attempting to develop markers that will help differentiate FTD from other dementias (particularly Alzheimer's disease (AD)), as well as from non-neurodegenerative conditions such as primary psychiatric disorders. While cerebrospinal fluid, and more recently blood, markers of AD have been successfully developed, specific markers identifying primary tauopathies or TDP-43 proteinopathies are still lacking. More focus at the moment has been on non-specific markers of neurodegeneration, and in particular, multiple studies of neurofilament light chain have highlighted its importance as a diagnostic, prognostic and staging marker of FTD. As clinical trials get under way in specific genetic forms of FTD, measures of progranulin and dipeptide repeat proteins in biofluids have become important potential measures of therapeutic response. However, understanding of whether drugs restore cellular function will also be important, and studies of key pathophysiological processes, including neuroinflammation, lysosomal function and synaptic health, are also now becoming more common. There is much still to learn in the fluid biomarker field in FTD, but the creation of large multinational cohorts is facilitating better powered studies and will pave the way for larger omics studies, including proteomics, metabolomics and lipidomics, as well as investigations of multimodal biomarker combinations across fluids, brain imaging and other domains. Here we provide an overview of the past, present and future of fluid biomarkers within the FTD field.
Collapse
Affiliation(s)
- Imogen Joanna Swift
- UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK
| | - Aitana Sogorb-Esteve
- UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK.,Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Carolin Heller
- UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research and Center of Neurology, University of Tübingen, Tübingen, Germany.,German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
| | - Caroline Graff
- Division for Neurogeriatrics, Center for Alzheimer Research, Department of NVS, Karolinska Institutet, Stockholm, Sweden.,Unit for Hereditary Dementias, Theme Aging, Karolinska University Hospital, Solna, Sweden
| | - Daniela Galimberti
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, Centro Dino Ferrari, Milan, Italy.,Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Emily Todd
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | - Amanda J Heslegrave
- UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK
| | | | | | - Henrik Zetterberg
- UK Dementia Research Institute at University College London, UCL Queen Square Institute of Neurology, London, UK.,Department of Psychiatry and Neurochemistry, Sahlgrenska Academy at the University of Gothenburg, Mölndal, Sweden
| | - Jonathan Daniel Rohrer
- Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
33
|
Fluid Biomarkers of Frontotemporal Lobar Degeneration. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1281:123-139. [PMID: 33433873 DOI: 10.1007/978-3-030-51140-1_9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A timely diagnosis of frontotemporal degeneration (FTD) is frequently challenging due to the heterogeneous symptomatology and poor phenotype-pathological correlation. Fluid biomarkers that reflect FTD pathophysiology could be instrumental in both clinical practice and pharmaceutical trials. In recent years, significant progress has been made in developing biomarkers of neurodegenerative diseases: amyloid-β and tau in cerebrospinal fluid (CSF) can be used to exclude Alzheimer's disease, while neurofilament light chain (NfL) is emerging as a promising, albeit nonspecific, marker of neurodegeneration in both CSF and blood. Gene-specific biomarkers such as PGRN in GRN mutation carriers and dipeptide repeat proteins in C9orf72 mutation carriers are potential target engagement markers in genetic FTD trials. Novel techniques capable of measuring very low concentrations of brain-derived proteins in peripheral fluids are facilitating studies of blood biomarkers as a minimally invasive alternative to CSF. A major remaining challenge is the identification of a biomarker that can be used to predict the neuropathological substrate in sporadic FTD patients.
Collapse
|
34
|
Yi XX, Li JY, Tang ZZ, Jiang S, Liu YH, Deng JG, Gao CH. Marinoid J, a phenylglycoside from Avicennia marina fruit, ameliorates cognitive impairment in rat vascular dementia: a quantitative iTRAQ proteomic study. PHARMACEUTICAL BIOLOGY 2020; 58:1211-1220. [PMID: 33280468 PMCID: PMC7723022 DOI: 10.1080/13880209.2020.1837187] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Revised: 04/11/2020] [Accepted: 10/09/2020] [Indexed: 06/12/2023]
Abstract
CONTEXT Fruit of Avicennia marina (Forsk.) Vierh. (Acanthaceae) is used as a Chinese herb. Studies have found that it contains marinoid J, a novel phenylethanoid glycoside (PG) compound, but its neuroprotective functions are largely unknown. OBJECTIVE This study evaluated the effects of marinoid J on vascular dementia (VD) and determined its potential mechanisms of action. MATERIALS AND METHODS The VD model was established by the ligation of the bilateral common carotid artery in Sprague-Dawley rats, who received daily intragastrically administration of saline, marinoid J (125 or 500 mg/kg body weight/d), or oxiracetam (250 mg/kg body weight/d) for 14 days (20 rats in each group). The Morris water maze (MWM) was used to evaluate cognitive performance. The hippocampus was subjected to histological and proteomic analyses. RESULTS Marinoid J shortened the escape latency of VD rats (31.07 ± 3.74 s, p < 0.05). It also decreased malondialdehyde (MDA) (27.53%) and nitric oxide (NO) (20.41%) while increasing superoxide dismutase (SOD) (11.26%) and glutathione peroxidase (GSH-Px) (20.38%) content in hippocampus tissues. Proteomic analysis revealed 45 differentially expressed proteins (DEPs) in marinoid J-treated VD rats, which included angiotensin-converting enzyme (ACE), keratin 18 (KRT18), cluster of differentiation 34 (CD34), and synaptotagmin II (SYT2). CONCLUSIONS Marinoid J played a role in protecting hippocampal neurons by regulating a set of proteins that influence oxidative stress and apoptosis, this effect may thereby alleviate the symptoms of VD rats. Thus, pharmacological manipulation of marinoid J may offer a novel opportunity for VD treatment.
Collapse
Affiliation(s)
- Xiang-xi Yi
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, China
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Guangxi, China
| | - Jia-yi Li
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Guangxi, China
| | - Zhen-zhou Tang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, China
| | - Shu Jiang
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, China
| | - Yong-hong Liu
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, China
| | - Jia-gang Deng
- Faculty of Pharmacy, Guangxi University of Chinese Medicine, Guangxi, China
| | - Cheng-hai Gao
- Institute of Marine Drugs, Guangxi University of Chinese Medicine, Guangxi, China
| |
Collapse
|
35
|
Camporesi E, Nilsson J, Brinkmalm A, Becker B, Ashton NJ, Blennow K, Zetterberg H. Fluid Biomarkers for Synaptic Dysfunction and Loss. Biomark Insights 2020; 15:1177271920950319. [PMID: 32913390 PMCID: PMC7444114 DOI: 10.1177/1177271920950319] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 07/13/2020] [Indexed: 12/11/2022] Open
Abstract
Synapses are the site for brain communication where information is transmitted between neurons and stored for memory formation. Synaptic degeneration is a global and early pathogenic event in neurodegenerative disorders with reduced levels of pre- and postsynaptic proteins being recognized as a core feature of Alzheimer's disease (AD) pathophysiology. Together with AD, other neurodegenerative and neurodevelopmental disorders show altered synaptic homeostasis as an important pathogenic event, and due to that, they are commonly referred to as synaptopathies. The exact mechanisms of synapse dysfunction in the different diseases are not well understood and their study would help understanding the pathogenic role of synaptic degeneration, as well as differences and commonalities among them and highlight candidate synaptic biomarkers for specific disorders. The assessment of synaptic proteins in cerebrospinal fluid (CSF), which can reflect synaptic dysfunction in patients with cognitive disorders, is a keen area of interest. Substantial research efforts are now directed toward the investigation of CSF synaptic pathology to improve the diagnosis of neurodegenerative disorders at an early stage as well as to monitor clinical progression. In this review, we will first summarize the pathological events that lead to synapse loss and then discuss the available data on established (eg, neurogranin, SNAP-25, synaptotagmin-1, GAP-43, and α-syn) and emerging (eg, synaptic vesicle glycoprotein 2A and neuronal pentraxins) CSF biomarkers for synapse dysfunction, while highlighting possible utilities, disease specificity, and technical challenges for their detection.
Collapse
Affiliation(s)
- Elena Camporesi
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Nilsson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ann Brinkmalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bruno Becker
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Nicholas J Ashton
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- King’s College London, Institute of Psychiatry, Psychology & Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, London, UK
- NIHR Biomedical Research Centre for Mental Health & Biomedical Research Unit for Dementia at South London & Maudsley NHS Foundation, London, UK
- Wallenberg Centre for Molecular and Translational Medicine, Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mölndal, Sweden
- Department of Neurodegenerative Disease, UCL Institute of Neurology, London, UK
- UK Dementia Research Institute at UCL, London, UK
| |
Collapse
|
36
|
Altered serum protein levels in frontotemporal dementia and amyotrophic lateral sclerosis indicate calcium and immunity dysregulation. Sci Rep 2020; 10:13741. [PMID: 32792518 PMCID: PMC7426269 DOI: 10.1038/s41598-020-70687-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/03/2020] [Indexed: 12/11/2022] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative diseases that are considered to be on the same disease spectrum because of overlapping genetic, pathological and clinical traits. Changes in serum proteins in FTD and ALS are poorly understood, and currently no definitive biomarkers exist for diagnosing or monitoring disease progression for either disease. Here we applied quantitative discovery proteomics to analyze protein changes in FTD (N = 72) and ALS (N = 28) patient serum compared to controls (N = 22). Twenty three proteins were significantly altered in FTD compared to controls (increased-APOL1, C3, CTSH, EIF5A, MYH2, S100A8, SUSD5, WDR1; decreased-C1S, C7, CILP2, COMP, CRTAC1, EFEMP1, FBLN1, GSN, HSPG2, IGHV1, ITIH2, PROS1, SHBG, UMOD, VASN) and 14 proteins were significantly altered in ALS compared to controls (increased-APOL1, CKM, CTSH, IGHG1, IGKC, MYH2; decreased-C7, COMP, CRTAC1, EFEMP1, FBLN1, GSN, HSPG2, SHBG). There was substantial overlap in the proteins that were altered in FTD and ALS. These results were validated using western blotting. Gene ontology tools were used to assess functional pathways potentially dysregulated in the two diseases, and calcium ion binding and innate immunity pathways were altered in both diseases. When put together, these results suggest significant overlap in pathophysiological peripheral changes in FTD and ALS. This study represents the first proteomics side-by-side comparison of serum changes in FTD and ALS, providing new insights into under-recognized perturbed pathways and an avenue for biomarker development for FTD and ALS.
Collapse
|
37
|
Goodier JL, Soares AO, Pereira GC, DeVine LR, Sanchez L, Cole RN, García-Pérez JL. C9orf72-associated SMCR8 protein binds in the ubiquitin pathway and with proteins linked with neurological disease. Acta Neuropathol Commun 2020; 8:110. [PMID: 32678027 PMCID: PMC7364817 DOI: 10.1186/s40478-020-00982-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/26/2020] [Indexed: 02/08/2023] Open
Abstract
A pathogenic GGGCCC hexanucleotide expansion in the first intron/promoter region of the C9orf72 gene is the most common mutation associated with amyotrophic lateral sclerosis (ALS). The C9orf72 gene product forms a complex with SMCR8 (Smith-Magenis Syndrome Chromosome Region, Candidate 8) and WDR41 (WD Repeat domain 41) proteins. Recent studies have indicated roles for the complex in autophagy regulation, vesicle trafficking, and immune response in transgenic mice, however a direct connection with ALS etiology remains unclear. With the aim of increasing understanding of the multi-functional C9orf72-SMCR8-WDR41 complex, we determined by mass spectrometry analysis the proteins that directly associate with SMCR8. SMCR8 protein binds many components of the ubiquitin-proteasome system, and we demonstrate its poly-ubiquitination without obvious degradation. Evidence is also presented for localization of endogenous SMCR8 protein to cytoplasmic stress granules. However, in several cell lines we failed to reproduce previous observations that C9orf72 protein enters these granules. SMCR8 protein associates with many products of genes associated with various Mendelian neurological disorders in addition to ALS, implicating SMCR8-containing complexes in a range of neuropathologies. We reinforce previous observations that SMCR8 and C9orf72 protein levels are positively linked, and now show in vivo that SMCR8 protein levels are greatly reduced in brain tissues of C9orf72 gene expansion carrier individuals. While further study is required, these data suggest that SMCR8 protein level might prove a useful biomarker for the C9orf72 expansion in ALS.
Collapse
Affiliation(s)
- John L. Goodier
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Alisha O. Soares
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Gavin C. Pereira
- McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Lauren R. DeVine
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Laura Sanchez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
| | - Robert N. Cole
- Mass Spectrometry and Proteomics Facility, Department of Biological Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD USA
| | - Jose Luis García-Pérez
- GENYO. Centre for Genomics and Oncological Research: Pfizer, University of Granada, Andalusian Regional Government, Granada, Spain
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine (IGMM), University of Edinburgh, Western General Hospital, Edinburgh, UK
| |
Collapse
|
38
|
Remnestål J, Öijerstedt L, Ullgren A, Olofsson J, Bergström S, Kultima K, Ingelsson M, Kilander L, Uhlén M, Månberg A, Graff C, Nilsson P. Altered levels of CSF proteins in patients with FTD, presymptomatic mutation carriers and non-carriers. Transl Neurodegener 2020; 9:27. [PMID: 32576262 PMCID: PMC7310563 DOI: 10.1186/s40035-020-00198-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 05/07/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND The clinical presentations of frontotemporal dementia (FTD) are diverse and overlap with other neurological disorders. There are, as of today, no biomarkers in clinical practice for diagnosing the disorders. Here, we aimed to find protein markers in cerebrospinal fluid (CSF) from patients with FTD, presymptomatic mutation carriers and non-carriers. METHODS Antibody suspension bead arrays were used to analyse 328 proteins in CSF from patients with behavioural variant FTD (bvFTD, n = 16) and progressive primary aphasia (PPA, n = 13), as well as presymptomatic mutation carriers (PMC, n = 16) and non-carriers (NC, n = 8). A total of 492 antibodies were used to measure protein levels by direct labelling of the CSF samples. The findings were further examined in an independent cohort including 13 FTD patients, 79 patients with Alzheimer's disease and 18 healthy controls. RESULTS We found significantly altered protein levels in CSF from FTD patients compared to unaffected individuals (PMC and NC) for 26 proteins. The analysis show patterns of separation between unaffected individuals and FTD patients, especially for those with a clinical diagnosis of bvFTD. The most statistically significant differences in protein levels were found for VGF, TN-R, NPTXR, TMEM132D, PDYN and NF-M. Patients with FTD were found to have higher levels of TN-R and NF-M, and lower levels of VGF, NPTXR, TMEM132D and PDYN, compared to unaffected individuals. The main findings were reproduced in the independent cohort. CONCLUSION In this pilot study, we show a separation of FTD patients from unaffected individuals based on protein levels in CSF. Further investigation is required to explore the CSF profiles in larger cohorts, but the results presented here has the potential to enable future clinical utilization of these potential biomarkers within FTD.
Collapse
Affiliation(s)
- Julia Remnestål
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Tomtebodavägen 23 A, Alpha 2, 171 65 Solna, Stockholm, Sweden.,Swedish FTD Initiative, Stockholm, Sweden
| | - Linn Öijerstedt
- Swedish FTD Initiative, Stockholm, Sweden.,Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64, Solna, Sweden.,Unit for hereditary dementias, Theme Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Abbe Ullgren
- Swedish FTD Initiative, Stockholm, Sweden.,Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64, Solna, Sweden
| | - Jennie Olofsson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Tomtebodavägen 23 A, Alpha 2, 171 65 Solna, Stockholm, Sweden.,Swedish FTD Initiative, Stockholm, Sweden
| | - Sofia Bergström
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Tomtebodavägen 23 A, Alpha 2, 171 65 Solna, Stockholm, Sweden.,Swedish FTD Initiative, Stockholm, Sweden
| | - Kim Kultima
- Department of Medical Sciences, Clinical Chemistry, Uppsala University, Uppsala, Sweden
| | - Martin Ingelsson
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Lena Kilander
- Department of Public Health and Caring Sciences, Geriatrics, Uppsala University, Uppsala, Sweden
| | - Mathias Uhlén
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Tomtebodavägen 23 A, Alpha 2, 171 65 Solna, Stockholm, Sweden.,Department of Neuroscience, Karolinska Institutet, Solna, Sweden
| | - Anna Månberg
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Tomtebodavägen 23 A, Alpha 2, 171 65 Solna, Stockholm, Sweden.,Swedish FTD Initiative, Stockholm, Sweden
| | - Caroline Graff
- Swedish FTD Initiative, Stockholm, Sweden. .,Division of Neurogeriatrics, Centre for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 64, Solna, Sweden. .,Unit for hereditary dementias, Theme Aging, Karolinska University Hospital, Stockholm, Sweden.
| | - Peter Nilsson
- Division of Affinity Proteomics, Department of Protein Science, KTH Royal Institute of Technology, SciLifeLab, Tomtebodavägen 23 A, Alpha 2, 171 65 Solna, Stockholm, Sweden. .,Swedish FTD Initiative, Stockholm, Sweden.
| |
Collapse
|
39
|
van der Ende EL, Xiao M, Xu D, Poos JM, Panman JL, Jiskoot LC, Meeter LH, Dopper EG, Papma JM, Heller C, Convery R, Moore K, Bocchetta M, Neason M, Peakman G, Cash DM, Teunissen CE, Graff C, Synofzik M, Moreno F, Finger E, Sánchez-Valle R, Vandenberghe R, Laforce R, Masellis M, Tartaglia MC, Rowe JB, Butler CR, Ducharme S, Gerhard A, Danek A, Levin J, Pijnenburg YA, Otto M, Borroni B, Tagliavini F, de Mendonca A, Santana I, Galimberti D, Seelaar H, Rohrer JD, Worley PF, van Swieten JC. Neuronal pentraxin 2: a synapse-derived CSF biomarker in genetic frontotemporal dementia. J Neurol Neurosurg Psychiatry 2020; 91:612-621. [PMID: 32273328 PMCID: PMC7279197 DOI: 10.1136/jnnp-2019-322493] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/26/2020] [Accepted: 03/02/2020] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Synapse dysfunction is emerging as an early pathological event in frontotemporal dementia (FTD), however biomarkers are lacking. We aimed to investigate the value of cerebrospinal fluid (CSF) neuronal pentraxins (NPTXs), a family of proteins involved in homeostatic synapse plasticity, as novel biomarkers in genetic FTD. METHODS We included 106 presymptomatic and 54 symptomatic carriers of a pathogenic mutation in GRN, C9orf72 or MAPT, and 70 healthy non-carriers participating in the Genetic Frontotemporal dementia Initiative (GENFI), all of whom had at least one CSF sample. We measured CSF concentrations of NPTX2 using an in-house ELISA, and NPTX1 and NPTX receptor (NPTXR) by Western blot. We correlated NPTX2 with corresponding clinical and neuroimaging datasets as well as with CSF neurofilament light chain (NfL) using linear regression analyses. RESULTS Symptomatic mutation carriers had lower NPTX2 concentrations (median 643 pg/mL, IQR (301-872)) than presymptomatic carriers (1003 pg/mL (624-1358), p<0.001) and non-carriers (990 pg/mL (597-1373), p<0.001) (corrected for age). Similar results were found for NPTX1 and NPTXR. Among mutation carriers, NPTX2 concentration correlated with several clinical disease severity measures, NfL and grey matter volume of the frontal, temporal and parietal lobes, insula and whole brain. NPTX2 predicted subsequent decline in phonemic verbal fluency and Clinical Dementia Rating scale plus FTD modules. In longitudinal CSF samples, available in 13 subjects, NPTX2 decreased around symptom onset and in the symptomatic stage. DISCUSSION We conclude that NPTX2 is a promising synapse-derived disease progression biomarker in genetic FTD.
Collapse
Affiliation(s)
- Emma L van der Ende
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Meifang Xiao
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Desheng Xu
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - Jackie M Poos
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jessica L Panman
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, Rotterdam, Netherlands
- Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - Lize C Jiskoot
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, Rotterdam, Netherlands
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Lieke H Meeter
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Elise Gp Dopper
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Janne M Papma
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Carolin Heller
- Dementia Research Institute, Department of Neurodegenerative Disease, University College London, London, United Kingdom
| | - Rhian Convery
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Katrina Moore
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Martina Bocchetta
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Mollie Neason
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Georgia Peakman
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - David M Cash
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Charlotte E Teunissen
- Neurochemistry Laboratory, Department of Clinical Chemistry, Amsterdam Neuroscience, Amsterdam University Medical Center, Amsterdam, Netherlands
| | - Caroline Graff
- Karolinska Institutet, Dept NVS, Division of Neurogeriatrics, Bioclinicum, Stockholm, Sweden
- Unit of Hereditary Dementia, Theme Aging, Karolinska University Hospital-Solna, Stockholm, Sweden
| | - Matthis Synofzik
- German Center for Neurodegenerative Diseases (DZNE), University of Tübingen, Tübingen, Germany
- Department of Neurodegenerative Diseases, Hertie Institute for Clinical Brain Research, Tübingen, Germany
| | - Fermin Moreno
- Department of Neurology, Donostia University Hospital, San Sebastian, Gipuzkoa, Spain
| | - Elizabeth Finger
- Department of Clinical Neurological Sciences, University of Western Ontario, London, Ontario, Canada
| | - Raquel Sánchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Hospital Clinic de Barcelona, Barcelona, Spain
| | - Rik Vandenberghe
- Laboratory for Cognitive Neurology, Department of Neurosciences, KU Leuven, Leuven, Belgium
| | - Robert Laforce
- Clinique Interdisciplinaire de Mémoire du CHU de Québec, Département des Sciences Neurologiques, Université Laval, Québec, Quebec City, Canada
| | - Mario Masellis
- Sunnybrook Health Sciences Centre, Sunnybrook Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - Maria Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, Ontario, Canada
| | - James B Rowe
- Cambridge University Centre for Frontotemporal Dementia, University of Cambridge, Cambridge, United Kingdom
| | | | - Simon Ducharme
- Montreal Neurological Institute and McGill University Health Centre, McGill University, Montreal, Québec, Canada
| | - Alex Gerhard
- Department of Nuclear Medicine and Geriatric Medicine, University Hospital Essen, Essen, Germany
- Divison of Neuroscience and Experimental Psychology, University of Manchester, Manchester, United Kingdom
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Johannes Levin
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians-Universität München, Munich, Germany
- German Center for Neurodegenerative Diseases, (DZNE), Munich, Germany
- Munich Cluster for Systems Neurology, (SyNergy), Munich, Germany
| | - Yolande Al Pijnenburg
- Alzheimer Center Amsterdam, Department of Neurology, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, Amsterdam UMC, Amsterdam, Netherlands
| | - Markus Otto
- Department of Neurology, Universität Ulm, Ulm, Germany
| | - Barbara Borroni
- Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | | | | | - Isabel Santana
- Center for Neuroscience and Cell Biology, Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Daniela Galimberti
- Department of Neurological Sciences, Dino Ferrari Center, University of Milan, Milan, Italy
- Fondazione IRCCS Ca' Granda, Ospedale Maggiore Policlinico, Milan, Italy
| | - Harro Seelaar
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, Rotterdam, Netherlands
| | - Jonathan D Rohrer
- Dementia Research Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Paul F Worley
- Solomon H Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, United States
| | - John C van Swieten
- Department of Neurology and Alzheimer Center, Erasmus University Medical Center, Rotterdam, Netherlands
| |
Collapse
|
40
|
Van Gool A, Corrales F, Čolović M, Krstić D, Oliver-Martos B, Martínez-Cáceres E, Jakasa I, Gajski G, Brun V, Kyriacou K, Burzynska-Pedziwiatr I, Wozniak LA, Nierkens S, Pascual García C, Katrlik J, Bojic-Trbojevic Z, Vacek J, Llorente A, Antohe F, Suica V, Suarez G, t'Kindt R, Martin P, Penque D, Martins IL, Bodoki E, Iacob BC, Aydindogan E, Timur S, Allinson J, Sutton C, Luider T, Wittfooth S, Sammar M. Analytical techniques for multiplex analysis of protein biomarkers. Expert Rev Proteomics 2020; 17:257-273. [PMID: 32427033 DOI: 10.1080/14789450.2020.1763174] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION The importance of biomarkers for pharmaceutical drug development and clinical diagnostics is more significant than ever in the current shift toward personalized medicine. Biomarkers have taken a central position either as companion markers to support drug development and patient selection, or as indicators aiming to detect the earliest perturbations indicative of disease, minimizing therapeutic intervention or even enabling disease reversal. Protein biomarkers are of particular interest given their central role in biochemical pathways. Hence, capabilities to analyze multiple protein biomarkers in one assay are highly interesting for biomedical research. AREAS COVERED We here review multiple methods that are suitable for robust, high throughput, standardized, and affordable analysis of protein biomarkers in a multiplex format. We describe innovative developments in immunoassays, the vanguard of methods in clinical laboratories, and mass spectrometry, increasingly implemented for protein biomarker analysis. Moreover, emerging techniques are discussed with potentially improved protein capture, separation, and detection that will further boost multiplex analyses. EXPERT COMMENTARY The development of clinically applied multiplex protein biomarker assays is essential as multi-protein signatures provide more comprehensive information about biological systems than single biomarkers, leading to improved insights in mechanisms of disease, diagnostics, and the effect of personalized medicine.
Collapse
Affiliation(s)
- Alain Van Gool
- Translational Metabolic Laboratory, Department of Laboratory Medicine, Radboud Institute of Molecular Life Sciences, Radboud University Medical Center , Nijmegen, The Netherlands
| | - Fernado Corrales
- Functional Proteomics Laboratory, Centro Nacional De Biotecnología , Madrid, Spain
| | - Mirjana Čolović
- Department of Physical Chemistry, "Vinča" Institute of Nuclear Sciences, University of Belgrade , Belgrade, Serbia
| | - Danijela Krstić
- Institute of Medical Chemistry, Faculty of Medicine, University of Belgrade , Belgrade, Serbia
| | - Begona Oliver-Martos
- Neuroimmunology and Neuroinflammation Group. Instituto De Investigación Biomédica De Málaga-IBIMA. UGC Neurociencias, Hospital Regional Universitario De Málaga , Malaga, Spain
| | - Eva Martínez-Cáceres
- Immunology Division, LCMN, Germans Trias I Pujol University Hospital and Research Institute, Campus Can Ruti, Badalona, and Department of Cellular Biology, Physiology and Immunology, Universitat Autònoma De Barcelona , Cerdanyola Del Vallès, Spain
| | - Ivone Jakasa
- Laboratory for Analytical Chemistry, Department of Chemistry and Biochemistry, Faculty of Food Technology and Biotechnology, University of Zagreb , Zagreb, Croatia
| | - Goran Gajski
- Mutagenesis Unit, Institute for Medical Research and Occupational Health , Zagreb, Croatia
| | - Virginie Brun
- Université Grenoble Alpes, CEA, Inserm, IRIG, BGE , Grenoble, France
| | - Kyriacos Kyriacou
- Department of Electron Microscopy/Molecular Biology, The Cyprus School of Molecular Medicine/The Cyprus Institute of Neurology and Genetics , Nicosia, Cyprus
| | - Izabela Burzynska-Pedziwiatr
- Medical Faculty, Department of Biomedical Sciences, Chair of Medical Biology & Department of Structural Biology, Medical University of Lodz , Łódź, Poland
| | - Lucyna Alicja Wozniak
- Medical Faculty, Department of Biomedical Sciences, Chair of Medical Biology & Department of Structural Biology, Medical University of Lodz , Łódź, Poland
| | - Stephan Nierkens
- Center for Translational Immunology, University Medical Center Utrecht & Princess Máxima Center for Pediatric Oncology , Utrecht, The Netherlands
| | - César Pascual García
- Materials Research and Technology Department, Luxembourg Institute of Science and Technology (LIST) , Belvaux, Luxembourg
| | - Jaroslav Katrlik
- Department of Glycobiotechnology, Institute of Chemistry, Slovak Academy of Sciences , Bratislava, Slovakia
| | - Zanka Bojic-Trbojevic
- Laboratory for Biology of Reproduction, Institute for the Application of Nuclear Energy - INEP, University of Belgrade , Belgrade, Serbia
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University , Olomouc, Czech Republic
| | - Alicia Llorente
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital , Oslo, Norway
| | - Felicia Antohe
- Proteomics Department, Institute of Cellular Biology and Pathology "N. Simionescu" of the Romanian Academy , Bucharest, Romania
| | - Viorel Suica
- Proteomics Department, Institute of Cellular Biology and Pathology "N. Simionescu" of the Romanian Academy , Bucharest, Romania
| | - Guillaume Suarez
- Center for Primary Care and Public Health (Unisanté), University of Lausanne , Lausanne, Switzerland
| | - Ruben t'Kindt
- Research Institute for Chromatography (RIC) , Kortrijk, Belgium
| | - Petra Martin
- Department of Medical Oncology, Midland Regional Hospital Tullamore/St. James's Hospital , Dublin, Ireland
| | - Deborah Penque
- Human Genetics Department, Instituto Nacional De Saúde Dr Ricardo Jorge, Lisboa, Portugal and Centre for Toxicogenomics and Human Health, Universidade Nova De Lisboa , Lisbon,Portugal
| | - Ines Lanca Martins
- Human Genetics Department, Instituto Nacional De Saúde Dr Ricardo Jorge, Lisboa, Portugal and Centre for Toxicogenomics and Human Health, Universidade Nova De Lisboa , Lisbon,Portugal
| | - Ede Bodoki
- Analytical Chemistry Department, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Bogdan-Cezar Iacob
- Analytical Chemistry Department, Faculty of Pharmacy, "Iuliu Hatieganu" University of Medicine and Pharmacy , Cluj-Napoca, Romania
| | - Eda Aydindogan
- Department of Chemistry, Graduate School of Sciences and Engineering, Koç University , Istanbul, Turkey
| | - Suna Timur
- Institute of Natural Sciences, Department of Biochemistry, Ege University , Izmir, Turkey
| | | | | | - Theo Luider
- Department of Neurology, Erasmus MC , Rotterdam, The Netherlands
| | | | - Marei Sammar
- Ephraim Katzir Department of Biotechnology Engineering, ORT Braude College , Karmiel, Israel
| |
Collapse
|
41
|
Barschke P, Oeckl P, Steinacker P, Al Shweiki MR, Weishaupt JH, Landwehrmeyer GB, Anderl-Straub S, Weydt P, Diehl-Schmid J, Danek A, Kornhuber J, Schroeter ML, Prudlo J, Jahn H, Fassbender K, Lauer M, van der Ende EL, van Swieten JC, Volk AE, Ludolph AC, Otto M. Different CSF protein profiles in amyotrophic lateral sclerosis and frontotemporal dementia with C9orf72 hexanucleotide repeat expansion. J Neurol Neurosurg Psychiatry 2020; 91:503-511. [PMID: 32132225 DOI: 10.1136/jnnp-2019-322476] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/03/2020] [Accepted: 02/12/2020] [Indexed: 11/03/2022]
Abstract
OBJECTIVES The hexanucleotide repeat expansion in the C9orf72 gene is the most common mutation associated with amyotrophic lateral sclerosis (C9-ALS) and frontotemporal dementia (C9-FTD). Until now, it is unknown which factors define whether C9orf72 mutation carriers develop ALS or FTD. Our aim was to identify protein biomarker candidates in the cerebrospinal fluid (CSF) which differentiate between C9-ALS and C9-FTD and might be indicative for the outcome of the mutation. METHODS We compared the CSF proteome of 16 C9-ALS and 8 C9-FTD patients and 11 asymptomatic C9orf72 mutation carriers (CAR) by isobaric tags for relative and absolute quantitation. Eleven biomarker candidates were selected from the pool of differentially regulated proteins for further validation by multiple reaction monitoring and single-molecule array in a larger cohort (n=156). RESULTS In total, 2095 CSF proteins were identified and 236 proteins were significantly different in C9-ALS versus C9-FTD including neurofilament medium polypeptide (NEFM) and chitotriosidase-1 (CHIT1). Eight candidates were successfully validated including significantly increased ubiquitin carboxyl-terminal hydrolase isozyme L1 (UCHL1) levels in C9-ALS compared with C9-FTD and controls and decreased neuronal pentraxin receptor (NPTXR) levels in C9-FTD versus CAR. CONCLUSIONS This study presents a deep proteomic CSF analysis of C9-ALS versus C9-FTD patients. As a proof of concept, we observed higher NEFM and CHIT1 CSF levels in C9-ALS. In addition, we also show clear upregulation of UCHL1 in C9-ALS and downregulation of NPTXR in C9-FTD. Significant differences in UCHL1 CSF levels may explain diverging ubiquitination and autophagy processes and NPTXR levels might reflect different synapses organisation processes.
Collapse
Affiliation(s)
- Peggy Barschke
- Department of Neurology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Patrick Oeckl
- Department of Neurology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Petra Steinacker
- Department of Neurology, Ulm University, Ulm, Baden-Württemberg, Germany
| | | | - Jochen H Weishaupt
- Department of Neurology, Ulm University, Ulm, Baden-Württemberg, Germany
| | | | | | - Patrick Weydt
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Bonn, Germany
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Technical University of Munich, Munich, Germany
| | - Adrian Danek
- Neurologische Klinik und Poliklinik, Ludwig-Maximilians Universität, Munich, Germany
| | - Johannes Kornhuber
- Department of Psychiatry and Psychotherapy, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias L Schroeter
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Saxony, Germany.,Clinic for Cognitive Neurology, University Hospital Leipzig, Leipzig, Germany
| | - Johannes Prudlo
- Department of Neurology, Rostock University Medical Center, German Center for Neurodegenerative Diseases (DZNE), Rostock, Germany
| | - Holger Jahn
- Clinic for Psychiatry and Psychotherapy, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Klaus Fassbender
- Department of Neurology, University of Saarland, Homburg, Germany
| | - Martin Lauer
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University of Würzburg, Würzburg, Germany
| | | | | | - Alexander E Volk
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Albert C Ludolph
- Department of Neurology, Ulm University, Ulm, Baden-Württemberg, Germany
| | - Markus Otto
- Department of Neurology, Ulm University, Ulm, Baden-Württemberg, Germany
| | | |
Collapse
|
42
|
Lim B, Sando SB, Grøntvedt GR, Bråthen G, Diamandis EP. Cerebrospinal fluid neuronal pentraxin receptor as a biomarker of long-term progression of Alzheimer's disease: a 24-month follow-up study. Neurobiol Aging 2020; 93:97.e1-97.e7. [PMID: 32362369 DOI: 10.1016/j.neurobiolaging.2020.03.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 03/11/2020] [Accepted: 03/17/2020] [Indexed: 12/20/2022]
Abstract
Lower cerebrospinal fluid (CSF) levels of neuronal pentraxin receptor (NPTXR) are associated with Alzheimer's disease (AD), but few studies show longitudinal changes in CSF NPTXR. In the present study, CSF NPTXR was measured at 0, 12, and 24 months using an enzyme-linked immunosorbent assay. The study groups included 28 patients with mild cognitive impairment (MCI) (MCI-MCI), 27 MCI patients who progressed to AD (MCI-AD) during the study, and 28 AD patients (AD-AD). Baseline levels were assessed for 46 control individuals. AD patients had lower baseline CSF NPTXR than controls (p = 0.023). Linear mixed models estimated a 6.7% annualized decrease in CSF NPTXR in the AD-AD group, significantly different from MCI-MCI (p = 0.03) and MCI-AD groups (p = 0.048). CSF NPTXR did not correlate with CSF Aβ42 and weakly correlated with CSF Aβ40, T-tau, P-tau (all R2 < 0.22, p < 0.06). These trends suggest CSF NPTXR may be a candidate biomarker of AD progression but not sufficiently sensitive to resolve when patients convert from MCI to dementia.
Collapse
Affiliation(s)
- Bryant Lim
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Sigrid Botne Sando
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway; Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Gøril Rolfseng Grøntvedt
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway; Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Geir Bråthen
- Department of Neurology and Clinical Neurophysiology, University Hospital of Trondheim, Trondheim, Norway; Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology (NTNU), Trondheim, Norway
| | - Eleftherios P Diamandis
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Pathology and Laboratory Medicine, Mount Sinai Hospital, Toronto, Canada; Department of Clinical Biochemistry, University Health Network, Toronto, Canada.
| |
Collapse
|
43
|
Transcriptomic and Network Analysis Identifies Shared and Unique Pathways across Dementia Spectrum Disorders. Int J Mol Sci 2020; 21:ijms21062050. [PMID: 32192109 PMCID: PMC7139711 DOI: 10.3390/ijms21062050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 03/11/2020] [Accepted: 03/14/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Dementia is a growing public health concern with an estimated prevalence of 50 million people worldwide. Alzheimer’s disease (AD) and vascular and frontotemporal dementias (VaD, FTD), share many clinical, genetical, and pathological features making the diagnosis difficult. Methods: In this study, we compared the transcriptome from the frontal cortex of patients with AD, VaD, and FTD to identify dysregulated pathways. Results: Upregulated genes in AD were enriched in adherens and tight junctions, mitogen-activated protein kinase, and phosphatidylinositol 3-kinase and protein kinase B/Akt signaling pathways, whereas downregulated genes associated with calcium signaling. Upregulated genes in VaD were centered on infectious diseases and nuclear factor kappa beta signaling, whereas downregulated genes are involved in biosynthesis of amino acids and the pentose phosphate pathway. Upregulated genes in FTD were associated with ECM receptor interactions and the lysosome, whereas downregulated genes were involved in glutamatergic synapse and MAPK signaling. The transcription factor KFL4 was shared among the 3 types of dementia. Conclusions: Collectively, we identified similarities and differences in dysregulated pathways and transcription factors among the dementias. The shared pathways and transcription factors may indicate a potential common etiology, whereas the differences may be useful for distinguishing dementias.
Collapse
|
44
|
Robust, reproducible and quantitative analysis of thousands of proteomes by micro-flow LC-MS/MS. Nat Commun 2020; 11:157. [PMID: 31919466 PMCID: PMC6952431 DOI: 10.1038/s41467-019-13973-x] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2019] [Accepted: 12/10/2019] [Indexed: 02/07/2023] Open
Abstract
Nano-flow liquid chromatography tandem mass spectrometry (nano-flow LC–MS/MS) is the mainstay in proteome research because of its excellent sensitivity but often comes at the expense of robustness. Here we show that micro-flow LC–MS/MS using a 1 × 150 mm column shows excellent reproducibility of chromatographic retention time (<0.3% coefficient of variation, CV) and protein quantification (<7.5% CV) using data from >2000 samples of human cell lines, tissues and body fluids. Deep proteome analysis identifies >9000 proteins and >120,000 peptides in 16 h and sample multiplexing using tandem mass tags increases throughput to 11 proteomes in 16 h. The system identifies >30,000 phosphopeptides in 12 h and protein-protein or protein-drug interaction experiments can be analyzed in 20 min per sample. We show that the same column can be used to analyze >7500 samples without apparent loss of performance. This study demonstrates that micro-flow LC–MS/MS is suitable for a broad range of proteomic applications. Mass spectrometry-based proteomics typically relies on highly sensitive nano-flow liquid chromatography (LC) but this can reduce robustness and reproducibility. Here, the authors show that micro-flow LC enables robust and reproducible high-throughput proteomics experiments at a very moderate loss of sensitivity.
Collapse
|
45
|
Han Y, Chen W, Song Y, Yuan Y, Li Z, Zhou Y, Liu T, Han D, Mi X, Li M, Wang G, Zhong L, Zhou J, Guo X. Proteomic Analysis of Preoperative CSF Reveals Risk Biomarkers of Postoperative Delirium. Front Psychiatry 2020; 11:170. [PMID: 32194463 PMCID: PMC7064445 DOI: 10.3389/fpsyt.2020.00170] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/21/2020] [Indexed: 01/21/2023] Open
Abstract
Objective: To analyze the proteome of preoperative cerebrospinal fluid (CSF) in older orthopedic patients with or without postoperative delirium (POD) using untargeted proteomics. Methods: A prospective cohort study was conducted. Eighty hip fracture patients aged ≥65 years were recruited. After successful spinal anesthesia, CSF was collected. The patients were divided into POD and No-POD groups based on the Confusion Assessment Method, and patients with POD were graded using the Memorial Delirium Assessment Scale (MDAS). Thirty No-POD patients were matched to 10 POD patients by age (±2 years) and Mini-Mental State Examination score (±2 scores). Label-free proteomic analysis was performed using a liquid chromatography coupled to mass spectrometry (LC-MS) workflow. Validation was performed using mass-spectrometry-based parallel reaction monitoring (PRM) for the 30 No-POD and 10 POD patients, as well as for an additional 5 POD patients. Bioinformatics were used to investigate possible relevant pathological mechanisms. Results: The incidence of POD in older orthopedic patients was 18.8% in our cohort of 80 patients. Proteomics results revealed 63 dysregulated CSF proteins, and PRM analysis validated these results. The preoperative CSF levels of both V-set and transmembrane domain-containing protein 2B (VSTM2B) and coagulation factor V (FA5) were positively correlated with MDAS scores on postoperative day 1 (r > 0.8, p < 0.05). Bioinformatic analysis revealed that several nervous-system-related pathways are relevant to POD development. Conclusion: We identified and validated several novel CSF proteins that are dysregulated in POD, and revealed several pathways that are relevant to POD development. Our results not only provide risk biomarkers for POD, but also give clues for further investigations into the pathological mechanisms of delirium. Clinical trial registration: This study was registered in the Chinese Clinical Trial Registry (ChiCTR1900021533).
Collapse
Affiliation(s)
- Yongzheng Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Wei Chen
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, China
| | - Yanan Song
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yi Yuan
- Department of Anesthesiology, Beijing Jishuitan Hospital, Beijing, China
| | - Zhengqian Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Yang Zhou
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Taotao Liu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Dengyang Han
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Xinning Mi
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Min Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Geng Wang
- Department of Anesthesiology, Beijing Jishuitan Hospital, Beijing, China
| | - Lijun Zhong
- Center of Medical and Health Analysis, Peking University Health Science Center, Beijing, China
| | - Juntuo Zhou
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China
| | - Xiangyang Guo
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| |
Collapse
|
46
|
Galasko D, Xiao M, Xu D, Smirnov D, Salmon DP, Dewit N, Vanbrabant J, Jacobs D, Vanderstichele H, Vanmechelen E, Worley P. Synaptic biomarkers in CSF aid in diagnosis, correlate with cognition and predict progression in MCI and Alzheimer's disease. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2019; 5:871-882. [PMID: 31853477 PMCID: PMC6911971 DOI: 10.1016/j.trci.2019.11.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
INTRODUCTION Amyloid, Tau, and neurodegeneration biomarkers can stage Alzheimer's Disease (AD). Synaptic biomarkers may help track cognition. METHODS In cognitively normal controls, Mild Cognitive Impairment (MCI) and AD, we investigated CSF biomarkers in relation to cognitive measures and as predictors of cognitive and global decline. RESULTS There were 90 normal controls (mean age 73.0, 58% women), 57 MCI (mean age 74.3, 35% women), and 46 AD (mean age 70.7, 41% women). CSF Aβ1-42 and Neuronal Pentraxin 2 (NPTX2) were decreased, and CSF Tau, neurogranin, and SNAP25 increased in AD versus controls. Aβ1-42/Tau or NPTX2/Tau discriminated AD and controls best. NPTX2/Tau correlated strongly with cognition in AD and MCI and predicted a 2-3-year decline. We replicated findings in the ADNI cohort. DISCUSSION CSF synaptic biomarkers, particularly NPTX2, which regulates synaptic homeostasis, relate to cognition and predict progression in AD beyond Aβ1-42 and Tau. This is relevant for prognosis and clinical trials.
Collapse
Affiliation(s)
- Douglas Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - Meifang Xiao
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Desheng Xu
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Denis Smirnov
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | - David P. Salmon
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, USA
| | | | | | | | | | | | | | - Paul Worley
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|