1
|
Mehrvar A, Akbari M, Khosroshahi EM, Nekavand M, Mokhtari K, Baniasadi M, Aghababaian M, Karimi M, Amiri S, Moazen A, Maghsoudloo M, Alimohammadi M, Rahimzadeh P, Farahani N, Vaghar ME, Entezari M, Hashemi M. The impact of exosomes on bone health: A focus on osteoporosis. Pathol Res Pract 2024; 263:155618. [PMID: 39362132 DOI: 10.1016/j.prp.2024.155618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/05/2024]
Abstract
Osteoporosis is a widespread chronic condition. Although standard treatments are generally effective, they are frequently constrained by side effects and the risk of developing drug resistance. A promising area of research is the investigation of extracellular vesicles (EVs), including exosomes, microvesicles, and apoptotic bodies, which play a crucial role in bone metabolism. Exosomes, in particular, have shown significant potential in both the diagnosis and treatment of osteoporosis. EVs derived from osteoclasts, osteoblasts, mesenchymal stem cells, and other sources can influence bone metabolism, while exosomes from inflammatory and tumor cells may exacerbate bone loss, highlighting their dual role in osteoporosis pathology. This review offers a comprehensive overview of EV biogenesis, composition, and function in osteoporosis, focusing on their diagnostic and therapeutic potential. We examine the roles of various types of EVs and their cargo-proteins, RNAs, and lipids-in bone metabolism. Additionally, we explore the emerging applications of EVs as biomarkers and therapeutic agents, emphasizing the need for further research to address current challenges and enhance EV-based strategies for managing osteoporosis.
Collapse
Affiliation(s)
- Amir Mehrvar
- Assistant Professor, Department of Orthopedics, Taleghani Hospital Research Development Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammadarian Akbari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elaheh Mohandesi Khosroshahi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrandokht Nekavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Midwifery, Faculty of nursing and midwifery, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Khatere Mokhtari
- Department of Cell and Molecular Biology and Microbiology, Faculty of Biological Science and Technology, University of Isfahan, Isfahan, Iran
| | - Mojtaba Baniasadi
- Department of Orthopedic Surgery, Isfahan University of Medical Sciences, Isfahan, Iran; MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Majid Aghababaian
- Department of Orthopedic Surgery, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mansour Karimi
- MD, Bone and Joint Reconstruction Research Center, Shafa Orthopedic Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Shayan Amiri
- MD, Assistant Professor of Orthopaedic Surgery, Shohadaye Haftom-e-Tir Hospital, Department of Orthopedic, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Alireza Moazen
- Department of Orthopedics, Bone and Joint Reconstruction Research Center, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mazaher Maghsoudloo
- Key Laboratory of Epigenetics and Oncology, the Research Center for Preclinical Medicine, Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Najma Farahani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohammad Eslami Vaghar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of gynecology, Faculty of Medicine, Tehran Medical sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
2
|
Morey A, Ng M, Spanos M, Zhang P, Xu T, Cheung W, Chatterjee E, Gokulnath P, Carnel-Amar N, Soares Chiaretti AL, Nelson C, George J, Luo M, Chakraborty A, Perucci L, Jones JC, Hoff PD, Franklin JL, Raffai RL, Das S, Routenberg DA, Nolan JP, Charest A, Laurent LC, Alexander RP. The EV antibody database: An interactive database of curated antibodies for extracellular vesicle and nanoparticle research. EXTRACELLULAR VESICLE 2024; 3:100040. [PMID: 38872853 PMCID: PMC11175471 DOI: 10.1016/j.vesic.2024.100040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Antibodies are critical tools for research into extracellular vesicles (EVs) and other extracellular nanoparticles (ENPs), where they can be used for their identification, characterization, and isolation. However, the lack of a centralized antibody platform where researchers can share validation results thus minimizing wasted personnel time and reagents, has been a significant obstacle. Moreover, because the performance of antibodies varies among assay types and conditions, detailed information on assay variables and protocols is also of value. To facilitate sharing of results on antibodies that are relevant to EV/ENP research, the EV Antibody Database has been developed by the investigators of the Extracellular RNA Communication Consortium (ERCC). Hosted by the ExRNA Portal (https://exrna.org/resources/evabdb/), this interactive database aggregates and shares results from antibodies that have been tested by research groups in the EV/ENP field. Currently, the EV Antibody Database includes modules for antibodies tested for western Blot, EV Flow Cytometry, and EV Sandwich Assays, and holds 110 records contributed by 6 laboratories from the ERCC. Detailed information on antibody sources, assay conditions, and results is provided, including negative results. We encourage ongoing expert input and community feedback to enhance the database's utility, making it a valuable resource for comprehensive validation data on antibodies and protocols in EV biology.
Collapse
Affiliation(s)
- Amber Morey
- University of California San Diego, Department of Obstetrics, Gynecology, and Reproductive Medicine, La Jolla, CA 92093, USA
| | - Martin Ng
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA
| | - Michail Spanos
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Piyan Zhang
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Tuoye Xu
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Willi Cheung
- University of California San Diego, Department of Obstetrics, Gynecology, and Reproductive Medicine, La Jolla, CA 92093, USA
| | - Emeli Chatterjee
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Priyanka Gokulnath
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Natacha Carnel-Amar
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Ana Luisa Soares Chiaretti
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Jubin George
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Michelle Luo
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Abhik Chakraborty
- University of California San Diego, Department of Obstetrics, Gynecology, and Reproductive Medicine, La Jolla, CA 92093, USA
| | - Luiza Perucci
- University of California San Diego, Department of Obstetrics, Gynecology, and Reproductive Medicine, La Jolla, CA 92093, USA
| | - Jennifer C. Jones
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Peter De Hoff
- University of California San Diego, Department of Obstetrics, Gynecology, and Reproductive Medicine, La Jolla, CA 92093, USA
| | - Jeffrey L. Franklin
- Department of Medicine, Vanderbilt University Medical Center, Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Robert L. Raffai
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA
- Department of Surgery, Division of Endovascular and Vascular Surgery, University of California, San Francisco, CA 94143, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - John P. Nolan
- Scintillon Institute, San Diego, CA, 92121, USA
- Cellarcus Biosciences, La Jolla, CA, 92037, USA
| | - Al Charest
- Beth Israel Deaconess Medical Center, Department of Medicine, Harvard Medical School, Boston, MA, 02215, USA
| | - Louise C. Laurent
- University of California San Diego, Department of Obstetrics, Gynecology, and Reproductive Medicine, La Jolla, CA 92093, USA
| | | |
Collapse
|
3
|
Fang F, Yang J, Wang J, Li T, Wang E, Zhang D, Liu X, Zhou C. The role and applications of extracellular vesicles in osteoporosis. Bone Res 2024; 12:4. [PMID: 38263267 PMCID: PMC10806231 DOI: 10.1038/s41413-023-00313-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 01/25/2024] Open
Abstract
Osteoporosis is a widely observed condition characterized by the systemic deterioration of bone mass and microarchitecture, which increases patient susceptibility to fragile fractures. The intricate mechanisms governing bone homeostasis are substantially impacted by extracellular vesicles (EVs), which play crucial roles in both pathological and physiological contexts. EVs derived from various sources exert distinct effects on osteoporosis. Specifically, EVs released by osteoblasts, endothelial cells, myocytes, and mesenchymal stem cells contribute to bone formation due to their unique cargo of proteins, miRNAs, and cytokines. Conversely, EVs secreted by osteoclasts and immune cells promote bone resorption and inhibit bone formation. Furthermore, the use of EVs as therapeutic modalities or biomaterials for diagnosing and managing osteoporosis is promising. Here, we review the current understanding of the impact of EVs on bone homeostasis, including the classification and biogenesis of EVs and the intricate regulatory mechanisms of EVs in osteoporosis. Furthermore, we present an overview of the latest research progress on diagnosing and treating osteoporosis by using EVs. Finally, we discuss the challenges and prospects of translational research on the use of EVs in osteoporosis.
Collapse
Affiliation(s)
- Fei Fang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jie Yang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jiahe Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Tiantian Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Erxiang Wang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Demao Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
4
|
Exosomes induce neurogenesis of pluripotent P19 cells. Stem Cell Rev Rep 2023:10.1007/s12015-023-10512-6. [PMID: 36811747 PMCID: PMC10366297 DOI: 10.1007/s12015-023-10512-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2023] [Indexed: 02/24/2023]
Abstract
Exosomes play a role in tissue/organ development and differentiation. Retinoic acid induces differentiation of P19 cells (UD-P19) to P19 neurons (P19N) that behave like cortical neurons and express characteristic neuronal genes such as NMDA receptor subunits. Here we report P19N exosome-mediated differentiation of UD-P19 to P19N. Both UD-P19 and P19N released exosomes with characteristic exosome morphology, size, and common protein markers. P19N internalized significantly higher number of Dil-P19N exosomes as compared to UD-P19 with accumulation in the perinuclear region. Continuous exposure of UD-P19 to P19N exosomes for six days induced formation of small-sized embryoid bodies that differentiated into MAP2-/GluN2B-positive neurons recapitulating RA-induction of neurogenesis. Incubation with UD-P19 exosomes for six days did not affect UD-P19. Small RNA-seq identified enrichment of P19N exosomes with pro-neurogenic non-coding RNAs (ncRNAs) such as miR-9, let-7, MALAT1 and depleted with ncRNAs involved in maintenance of stem cell characteristics. UD-P19 exosomes were rich with ncRNAs required for maintenance of stemness. P19N exosomes provide an alternative method to genetic modifications for cellular differentiation of neurons. Our novel findings on exosomes-mediated differentiation of UD-P19 to P19 neurons provide tools to study pathways directing neuron development/differentiation and develop novel therapeutic strategies in neuroscience.
Collapse
|
5
|
Martel R, Shen ML, DeCorwin-Martin P, de Araujo LO, Juncker D. Extracellular Vesicle Antibody Microarray for Multiplexed Inner and Outer Protein Analysis. ACS Sens 2022; 7:3817-3828. [PMID: 36515500 PMCID: PMC9791990 DOI: 10.1021/acssensors.2c01750] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Proteins are found both outside and inside of extracellular vesicles (EVs) and govern the properties and functions of EVs, while also constituting a signature of the cell of origin and of biological function and disease. Outer proteins on EVs can be directly bound by antibodies to either enrich EVs, or probe the expression of a protein on EVs, including in a combinatorial manner. However, co-profiling of inner proteins remains challenging. Here, we present the high-throughput, multiplexed analysis of EV inner and outer proteins (EVPio). We describe the optimization of fixation and heat-induced protein epitope retrieval for EVs, along with oligo-barcoded antibodies and branched DNA signal amplification for sensitive, multiplexed, and high-throughput assays. We captured four subpopulations of EVs from colorectal cancer (CRC) cell lines HT29 and SW403 based on EpCAM, CD9, CD63, and CD81 expression, and quantified the co-expression of eight outer [integrins (ITGs) and tetraspanins] and four inner (heat shock, endosomal, and inner leaflet) proteins. The differences in co-expression patterns were consistent with the literature and known biological function. In conclusion, EVPio analysis can simultaneously detect multiple inner and outer proteins in EVs immobilized on a surface, opening the way to extensive combinatorial protein profiles for both discovery and clinical translation.
Collapse
Affiliation(s)
- Rosalie Martel
- Biomedical
Engineering Department, McGill University, Montreal, Quebec H3A 2B4, Canada,McGill
Genome Centre, McGill University, Montreal, Quebec H3A 0G1, Canada
| | - Molly L. Shen
- Biomedical
Engineering Department, McGill University, Montreal, Quebec H3A 2B4, Canada,McGill
Genome Centre, McGill University, Montreal, Quebec H3A 0G1, Canada
| | - Philippe DeCorwin-Martin
- Biomedical
Engineering Department, McGill University, Montreal, Quebec H3A 2B4, Canada,McGill
Genome Centre, McGill University, Montreal, Quebec H3A 0G1, Canada
| | - Lorenna Oliveira
Fernandes de Araujo
- Biomedical
Engineering Department, McGill University, Montreal, Quebec H3A 2B4, Canada,McGill
Genome Centre, McGill University, Montreal, Quebec H3A 0G1, Canada
| | - David Juncker
- Biomedical
Engineering Department, McGill University, Montreal, Quebec H3A 2B4, Canada,McGill
Genome Centre, McGill University, Montreal, Quebec H3A 0G1, Canada,
| |
Collapse
|
6
|
Rother N, Yanginlar C, Pieterse E, Hilbrands L, van der Vlag J. Microparticles in Autoimmunity: Cause or Consequence of Disease? Front Immunol 2022; 13:822995. [PMID: 35514984 PMCID: PMC9065258 DOI: 10.3389/fimmu.2022.822995] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/25/2022] [Indexed: 12/15/2022] Open
Abstract
Microparticles (MPs) are small (100 nm - 1 um) extracellular vesicles derived from the plasma membrane of dying or activated cells. MPs are important mediators of intercellular communication, transporting proteins, nucleic acids and lipids from the parent cell to other cells. MPs resemble the state of their parent cells and are easily accessible when released into the blood or urine. MPs also play a role in the pathogenesis of different diseases and are considered as potential biomarkers. MP isolation and characterization is technically challenging and results in different studies are contradictory. Therefore, uniform guidelines to isolate and characterize MPs should be developed. Our understanding of MP biology and how MPs play a role in different pathological mechanisms has greatly advanced in recent years. MPs, especially if derived from apoptotic cells, possess strong immunogenic properties due to the presence of modified proteins and nucleic acids. MPs are often found in patients with autoimmune diseases where MPs for example play a role in the break of immunological tolerance and/or induction of inflammatory conditions. In this review, we describe the main techniques to isolate and characterize MPs, define the characteristics of MPs generated during cell death, illustrate different mechanism of intercellular communication via MPs and summarize the role of MPs in pathological mechanisms with a particular focus on autoimmune diseases.
Collapse
Affiliation(s)
- Nils Rother
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Cansu Yanginlar
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Elmar Pieterse
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Luuk Hilbrands
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Johan van der Vlag
- Department of Nephrology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
7
|
Shaba E, Vantaggiato L, Governini L, Haxhiu A, Sebastiani G, Fignani D, Grieco GE, Bergantini L, Bini L, Landi C. Multi-Omics Integrative Approach of Extracellular Vesicles: A Future Challenging Milestone. Proteomes 2022; 10:proteomes10020012. [PMID: 35645370 PMCID: PMC9149947 DOI: 10.3390/proteomes10020012] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 02/01/2023] Open
Abstract
In the era of multi-omic sciences, dogma on singular cause-effect in physio-pathological processes is overcome and system biology approaches have been providing new perspectives to see through. In this context, extracellular vesicles (EVs) are offering a new level of complexity, given their role in cellular communication and their activity as mediators of specific signals to target cells or tissues. Indeed, their heterogeneity in terms of content, function, origin and potentiality contribute to the cross-interaction of almost every molecular process occurring in a complex system. Such features make EVs proper biological systems being, therefore, optimal targets of omic sciences. Currently, most studies focus on dissecting EVs content in order to either characterize it or to explore its role in various pathogenic processes at transcriptomic, proteomic, metabolomic, lipidomic and genomic levels. Despite valuable results being provided by individual omic studies, the categorization of EVs biological data might represent a limit to be overcome. For this reason, a multi-omic integrative approach might contribute to explore EVs function, their tissue-specific origin and their potentiality. This review summarizes the state-of-the-art of EVs omic studies, addressing recent research on the integration of EVs multi-level biological data and challenging developments in EVs origin.
Collapse
Affiliation(s)
- Enxhi Shaba
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.); (C.L.)
- Correspondence:
| | - Lorenza Vantaggiato
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.); (C.L.)
| | - Laura Governini
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (L.G.); (A.H.)
| | - Alesandro Haxhiu
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy; (L.G.); (A.H.)
| | - Guido Sebastiani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.S.); (D.F.); (G.E.G.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Daniela Fignani
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.S.); (D.F.); (G.E.G.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Giuseppina Emanuela Grieco
- Diabetes Unit, Department of Medicine, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy; (G.S.); (D.F.); (G.E.G.)
- Fondazione Umberto Di Mario, c/o Toscana Life Sciences, 53100 Siena, Italy
| | - Laura Bergantini
- Respiratory Diseases and Lung Transplant Unit, Department of Medical Sciences, Surgery and Neurosciences, University of Siena, 53100 Siena, Italy;
| | - Luca Bini
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.); (C.L.)
| | - Claudia Landi
- Functional Proteomics Lab, Department of Life Sciences, University of Siena, 53100 Siena, Italy; (L.V.); (L.B.); (C.L.)
| |
Collapse
|
8
|
Yang K, Wang W, Wang Y, Yan C. [Proteomic analysis of serum and serum exosomes, and their application in intrahepatic cholangiocarcinoma]. Se Pu 2021; 39:1191-1202. [PMID: 34677014 PMCID: PMC9404187 DOI: 10.3724/sp.j.1123.2021.04009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
外泌体是由各种类型细胞在正常或非正常生理情况下分泌释放至细胞外且携带多种生物活性分子的细胞外囊泡,在细胞间通讯和免疫应答等生物过程中发挥着重要作用。肝内胆管癌是一种胆道上皮恶性肿瘤,早期无明显临床症状且生存率较低,目前常用的诊断手段包括依赖于影像设备的诊断方式和灵敏度及特异性较低的诊断标志物等,这些手段的不足对发展新的特异性标志物提出了需求。该文对血清中的外泌体进行了分离和表征,并采用液相色谱-质谱技术针对健康组与肝内胆管癌患者组的血清样本和血清外泌体样本进行了无标记定量蛋白质组学分析,分别从两种类型样本中鉴定并筛选到271和430种可信蛋白质。基于血清样本和血清外泌体样本的可信蛋白质定量表达值进行多维统计分析都能将健康组与肝内胆管癌患者组良好地区分开。对血清样本中鉴定到的蛋白质进行差异蛋白质筛选,肝内胆管癌患者组相对于健康组有15个上调和8个下调蛋白质;对血清外泌体样本中鉴定到的蛋白质进行差异蛋白质筛选,肝内胆管癌患者组相对于健康组有33个上调和18个下调蛋白质;基于两种样本筛选到的差异蛋白质中仅有4个是重复的,且基于血清外泌体样本的51个差异蛋白质中有35个蛋白质属于外泌体蛋白质数据库。针对差异蛋白质进行生物学信息分析,与差异蛋白质相关的分子功能、生物过程和信号通路主要涉及天然免疫反应、炎症反应和凝血等过程。该研究为发现肝内胆管癌的潜在生物标志物和探究肝内胆管癌的发生、发展和转移等过程提供了参考和借鉴价值。此外,通过比较研究发现血清外泌体样本能够获得较多的差异蛋白质和生物学信息,证明了外泌体作为组学分析样本的价值和应用潜力。
Collapse
Affiliation(s)
- Kaige Yang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Weiwei Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chao Yan
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
9
|
Li J, Guan X, Fan Z, Ching LM, Li Y, Wang X, Cao WM, Liu DX. Non-Invasive Biomarkers for Early Detection of Breast Cancer. Cancers (Basel) 2020; 12:E2767. [PMID: 32992445 PMCID: PMC7601650 DOI: 10.3390/cancers12102767] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/23/2020] [Accepted: 09/24/2020] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common cancer in women worldwide. Accurate early diagnosis of breast cancer is critical in the management of the disease. Although mammogram screening has been widely used for breast cancer screening, high false-positive and false-negative rates and radiation from mammography have always been a concern. Over the last 20 years, the emergence of "omics" strategies has resulted in significant advances in the search for non-invasive biomarkers for breast cancer diagnosis at an early stage. Circulating carcinoma antigens, circulating tumor cells, circulating cell-free tumor nucleic acids (DNA or RNA), circulating microRNAs, and circulating extracellular vesicles in the peripheral blood, nipple aspirate fluid, sweat, urine, and tears, as well as volatile organic compounds in the breath, have emerged as potential non-invasive diagnostic biomarkers to supplement current clinical approaches to earlier detection of breast cancer. In this review, we summarize the current progress of research in these areas.
Collapse
Affiliation(s)
- Jiawei Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (J.L.); (X.G.); (Y.L.)
| | - Xin Guan
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (J.L.); (X.G.); (Y.L.)
- Department of Breast Surgery, the First Hospital of Jilin University, Jilin University, Changchun 130021, China;
| | - Zhimin Fan
- Department of Breast Surgery, the First Hospital of Jilin University, Jilin University, Changchun 130021, China;
| | - Lai-Ming Ching
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand;
| | - Yan Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (J.L.); (X.G.); (Y.L.)
| | - Xiaojia Wang
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital & Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Wen-Ming Cao
- Department of Breast Medical Oncology, Cancer Hospital of the University of Chinese Academy of Sciences, Zhejiang Cancer Hospital & Institute of Cancer and Basic Medicine (IBMC), Chinese Academy of Sciences, Hangzhou 310022, China;
| | - Dong-Xu Liu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland 1010, New Zealand; (J.L.); (X.G.); (Y.L.)
| |
Collapse
|