1
|
Rodilla BL, Arché-Núñez A, Ruiz-Gómez S, Domínguez-Bajo A, Fernández-González C, Guillén-Colomer C, González-Mayorga A, Rodríguez-Díez N, Camarero J, Miranda R, López-Dolado E, Ocón P, Serrano MC, Pérez L, González MT. Flexible metallic core-shell nanostructured electrodes for neural interfacing. Sci Rep 2024; 14:3729. [PMID: 38355737 PMCID: PMC10866994 DOI: 10.1038/s41598-024-53719-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 02/04/2024] [Indexed: 02/16/2024] Open
Abstract
Electrodes with nanostructured surface have emerged as promising low-impedance neural interfaces that can avoid the charge-injection restrictions typically associated to microelectrodes. In this work, we propose a novel approximation, based on a two-step template assisted electrodeposition technique, to obtain flexible nanostructured electrodes coated with core-shell Ni-Au vertical nanowires. These nanowires benefit from biocompatibility of the Au shell exposed to the environment and the mechanical properties of Ni that allow for nanowires longer and more homogeneous in length than their only-Au counterparts. The nanostructured electrodes show impedance values, measured by electrochemical impedance spectroscopy (EIS), at least 9 times lower than those of flat reference electrodes. This ratio is in good accordance with the increased effective surface area determined both from SEM images and cyclic voltammetry measurements, evidencing that only Au is exposed to the medium. The observed EIS profile evolution of Ni-Au electrodes over 7 days were very close to those of Au electrodes and differently from Ni ones. Finally, the morphology, viability and neuronal differentiation of rat embryonic cortical cells cultured on Ni-Au NW electrodes were found to be similar to those on control (glass) substrates and Au NW electrodes, accompanied by a lower glial cell differentiation. This positive in-vitro neural cell behavior encourages further investigation to explore the tissue responses that the implantation of these nanostructured electrodes might elicit in healthy (damaged) neural tissues in vivo, with special emphasis on eventual tissue encapsulation.
Collapse
Affiliation(s)
- Beatriz L Rodilla
- Fundación IMDEA Nanociencia, Calle Faraday 9, 28049, Madrid, Spain
- Departamento de Física de Materiales, Universidad Complutense de Madrid, Plaza de las Ciencias S/N, 28040, Madrid, Spain
| | - Ana Arché-Núñez
- Fundación IMDEA Nanociencia, Calle Faraday 9, 28049, Madrid, Spain
| | - Sandra Ruiz-Gómez
- Max Planck Institute for Chemical Physics of Solids, Dresden, Germany
| | - Ana Domínguez-Bajo
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
- Animal Molecular and Cellular Biology group (AMCB), Louvain Institute of Biomolecular Science and Technology (LIBST), Université catholique de Louvain, Place Croix du Sud 5, 1348 , Louvain la Neuve, Belgium
| | | | | | | | | | - Julio Camarero
- Fundación IMDEA Nanociencia, Calle Faraday 9, 28049, Madrid, Spain
- Department de Física de la Materia Condensada and Instituto "Nicolás Cabrera", Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Rodolfo Miranda
- Fundación IMDEA Nanociencia, Calle Faraday 9, 28049, Madrid, Spain
- Department de Física de la Materia Condensada and Instituto "Nicolás Cabrera", Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Elisa López-Dolado
- Hospital Nacional de Parapléjicos, SESCAM, Finca la Peraleda S/N, 45071, Toledo, Spain
- Design and development of Biomaterials for Neural Regeneration, HNP-SESCAM, Associated Unit With CSIC Through ICMM, Finca La Peraleda S/N, 45071, Toledo, Spain
| | - Pilar Ocón
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - María C Serrano
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Lucas Pérez
- Fundación IMDEA Nanociencia, Calle Faraday 9, 28049, Madrid, Spain
- Departamento de Física de Materiales, Universidad Complutense de Madrid, Plaza de las Ciencias S/N, 28040, Madrid, Spain
| | | |
Collapse
|
2
|
Popescu RC, Calin BS, Tanasa E, Vasile E, Mihailescu M, Paun IA. Magnetically-actuated microcages for cells entrapment, fabricated by laser direct writing via two photon polymerization. Front Bioeng Biotechnol 2023; 11:1273277. [PMID: 38170069 PMCID: PMC10758856 DOI: 10.3389/fbioe.2023.1273277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/14/2023] [Indexed: 01/05/2024] Open
Abstract
The manipulation of biological materials at cellular level constitutes a sine qua non and provocative research area regarding the development of micro/nano-medicine. In this study, we report on 3D superparamagnetic microcage-like structures that, in conjunction with an externally applied static magnetic field, were highly efficient in entrapping cells. The microcage-like structures were fabricated using Laser Direct Writing via Two-Photon Polymerization (LDW via TPP) of IP-L780 biocompatible photopolymer/iron oxide superparamagnetic nanoparticles (MNPs) composite. The unique properties of LDW via TPP technique enabled the reproduction of the complex architecture of the 3D structures, with a very high accuracy i.e., about 90 nm lateral resolution. 3D hyperspectral microscopy was employed to investigate the structural and compositional characteristics of the microcage-like structures. Scanning Electron Microscopy coupled with Energy Dispersive X-Ray Spectroscopy was used to prove the unique features regarding the morphology and the functionality of the 3D structures seeded with MG-63 osteoblast-like cells. Comparative studies were made on microcage-like structures made of IP-L780 photopolymer alone (i.e., without superparamagnetic properties). We found that the cell-seeded structures made by IP-L780/MNPs composite actuated by static magnetic fields of 1.3 T were 13.66 ± 5.11 folds (p < 0.01) more efficient in terms of cells entrapment than the structures made by IP-L780 photopolymer alone (i.e., that could not be actuated magnetically). The unique 3D architecture of the microcage-like superparamagnetic structures and their actuation by external static magnetic fields acted in synergy for entrapping osteoblast-like cells, showing a significant potential for bone tissue engineering applications.
Collapse
Affiliation(s)
- Roxana Cristina Popescu
- Department of Bioengineering and Biotechnology, Faculty of Medical Engineering, Politehnica University from Bucharest, Bucharest, Romania
- Department of Life and Environmental Physics, National Institute for R&D in Physics and Nuclear Engineering “Horia Hulubei”, Magurele, Romania
- Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| | - Bogdan Stefanita Calin
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, Magurelee, Romania
| | - Eugenia Tanasa
- Department of Physics, Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| | - Eugeniu Vasile
- Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| | - Mona Mihailescu
- Department of Physics, Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| | - Irina Alexandra Paun
- Center for Advanced Laser Technologies (CETAL), National Institute for Laser, Plasma and Radiation Physics, Magurelee, Romania
- Department of Physics, Faculty of Applied Physics, Politehnica University from Bucharest, Bucharest, Romania
| |
Collapse
|
3
|
Woeppel K, Dhawan V, Shi D, Cui XT. Nanotopography-enhanced biomimetic coating maintains bioactivity after weeks of dry storage and improves chronic neural recording. Biomaterials 2023; 302:122326. [PMID: 37716282 PMCID: PMC10993103 DOI: 10.1016/j.biomaterials.2023.122326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 09/01/2023] [Accepted: 09/11/2023] [Indexed: 09/18/2023]
Abstract
We developed a nanoparticle base layer technology capable of maintaining the bioactivity of protein-based neural probe coating intended to improve neural recording quality. When covalently bound on thiolated nanoparticle (TNP) modified surfaces, neural adhesion molecule L1 maintained bioactivity throughout 8 weeks of dry storage at room temperature, while those bound to unmodified surfaces lost 66% bioactivity within 3 days. We tested the TNP + L1 coating in mouse brains on two different neural electrode arrays after two different dry storage durations (3 and 28 days). The results show that dry-stored coating is as good as the freshly prepared, and even after 28 days of storage, the number of single units per channel and signal-to-noise ratio of the TNP + L1 coated arrays were significantly higher by 32% and 40% respectively than uncoated controls over 16 weeks. This nanoparticle base layer approach enables the dissemination of biomolecule-functionalized neural probes to users worldwide and may also benefit a broad range of applications that rely on surface-bound biomolecules.
Collapse
Affiliation(s)
- Kevin Woeppel
- University of Pittsburgh, Department of Bioengineering, 4200 Fifth Avenue, Pittsburgh, PA, 15260, USA; Center for the Neural Basis of Cognition, 4400 Fifth Avenue, Suite 115, Pittsburgh, PA, 15213, USA
| | - Vaishnavi Dhawan
- University of Pittsburgh, Department of Bioengineering, 4200 Fifth Avenue, Pittsburgh, PA, 15260, USA; Center for the Neural Basis of Cognition, 4400 Fifth Avenue, Suite 115, Pittsburgh, PA, 15213, USA
| | - Delin Shi
- University of Pittsburgh, Department of Bioengineering, 4200 Fifth Avenue, Pittsburgh, PA, 15260, USA; Center for the Neural Basis of Cognition, 4400 Fifth Avenue, Suite 115, Pittsburgh, PA, 15213, USA
| | - Xinyan Tracy Cui
- University of Pittsburgh, Department of Bioengineering, 4200 Fifth Avenue, Pittsburgh, PA, 15260, USA; Center for the Neural Basis of Cognition, 4400 Fifth Avenue, Suite 115, Pittsburgh, PA, 15213, USA; McGowan Institute for Regenerative Medicine, 450 Technology Drive, Suite 300, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
4
|
Cortés-Llanos B, Rauti R, Ayuso-Sacido Á, Pérez L, Ballerini L. Impact of Magnetite Nanowires on In Vitro Hippocampal Neural Networks. Biomolecules 2023; 13:biom13050783. [PMID: 37238653 DOI: 10.3390/biom13050783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/20/2023] [Accepted: 04/25/2023] [Indexed: 05/28/2023] Open
Abstract
Nanomaterials design, synthesis, and characterization are ever-expanding approaches toward developing biodevices or neural interfaces to treat neurological diseases. The ability of nanomaterials features to tune neuronal networks' morphology or functionality is still under study. In this work, we unveil how interfacing mammalian brain cultured neurons and iron oxide nanowires' (NWs) orientation affect neuronal and glial densities and network activity. Iron oxide NWs were synthesized by electrodeposition, fixing the diameter to 100 nm and the length to 1 µm. Scanning electron microscopy, Raman, and contact angle measurements were performed to characterize the NWs' morphology, chemical composition, and hydrophilicity. Hippocampal cultures were seeded on NWs devices, and after 14 days, the cell morphology was studied by immunocytochemistry and confocal microscopy. Live calcium imaging was performed to study neuronal activity. Using random nanowires (R-NWs), higher neuronal and glial cell densities were obtained compared with the control and vertical nanowires (V-NWs), while using V-NWs, more stellate glial cells were found. R-NWs produced a reduction in neuronal activity, while V-NWs increased the neuronal network activity, possibly due to a higher neuronal maturity and a lower number of GABAergic neurons, respectively. These results highlight the potential of NWs manipulations to design ad hoc regenerative interfaces.
Collapse
Affiliation(s)
- Belén Cortés-Llanos
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Fundación IMDEA Nanociencia, C/Faraday 9, 28049 Madrid, Spain
- Department of Medicine, Duke University, Durham, NC 27705, USA
| | - Rossana Rauti
- International School for Advanced Studies (ISAS-SISSA), 34136 Trieste, Italy
- Deparment of Biomolecular Sciences, Università degli Studi di Urbino Carlo Bo, 61029 Urbino, Italy
| | - Ángel Ayuso-Sacido
- Brain Tumor Laboratory, Fundación Vithas, Grupo Hospitales Vithas, 28043 Madrid, Spain
- Faculty of Experimental Science and Faculty of Medicine, University of Francisco de Vitoria, 28223 Madrid, Spain
| | - Lucas Pérez
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain
- Fundación IMDEA Nanociencia, C/Faraday 9, 28049 Madrid, Spain
| | - Laura Ballerini
- International School for Advanced Studies (ISAS-SISSA), 34136 Trieste, Italy
| |
Collapse
|
5
|
Xiao M, Li X, Pifferi S, Pastore B, Liu Y, Lazzarino M, Torre V, Yang X, Menini A, Tang M. 2D MXene interfaces preserve the basal electrophysiology of targeted neural circuits. NANOSCALE 2022; 14:10992-11002. [PMID: 35861380 DOI: 10.1039/d2nr01542k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Neural interfaces enable the monitoring of the state of the brain and its composite cell networks, as well as stimulate them to treat nervous disorders. In addition to their highly efficient charge transduction and stability during operation, the neural electrodes should avoid altering the physiological properties of targeted neuronal tissues. Two-dimensional (2D) MXene materials integrate the advantages of metallic conductivity, high specific-surface area and surface functionality in aqueous dispersions, showing promising potential in neural interface applications. Here, we apply uncoated Ti3C2Tx MXene to interface neuronal development. The impacts of the uncoated Ti3C2Tx MXene interface on neuronal development and neuronal microcircuit activity were tested for the first time. Compared to the standard neuronal culture with a poly-L-ornithine coated coverslip, uncoated Ti3C2Tx MXene surfaces did not affect the cell morphology, density, neuron ratios, maturation or the compositions of the neuronal network. Moreover, calcium imaging, spontaneous postsynaptic currents (sPSCs) and also miniature postsynaptic currents (mPSCs) were recorded to demonstrate that Ti3C2Tx MXene interfaces preserved the basal physiology of neuronal activity. The ability to interface neuronal circuit development without altering neuronal signaling properties enables the construction of MXene-based neural prosthetic devices for neuroscience research, diagnosis, and therapies.
Collapse
Affiliation(s)
- Miao Xiao
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, China.
- Neurobiology Sector, International School for Advanced Studies (SISSA), via Bonomea 265, Trieste 34136, Italy.
- Suzhou Fishseeds Bio-Technology, Ltd, Suzhou 215138, China
- Anhui Isotex Biotech Co., Xuancheng 242300, China
| | - Xiaoyun Li
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, China.
- Neurobiology Sector, International School for Advanced Studies (SISSA), via Bonomea 265, Trieste 34136, Italy.
| | - Simone Pifferi
- Neurobiology Sector, International School for Advanced Studies (SISSA), via Bonomea 265, Trieste 34136, Italy.
| | - Beatrice Pastore
- Neurobiology Sector, International School for Advanced Studies (SISSA), via Bonomea 265, Trieste 34136, Italy.
| | - Yun Liu
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | | | - Vincent Torre
- Neurobiology Sector, International School for Advanced Studies (SISSA), via Bonomea 265, Trieste 34136, Italy.
| | - Xiaowei Yang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, China.
| | - Anna Menini
- Neurobiology Sector, International School for Advanced Studies (SISSA), via Bonomea 265, Trieste 34136, Italy.
| | - Mingliang Tang
- Institute for Cardiovascular Science & Department of Cardiovascular Surgery of the First Affiliated Hospital, Medical College, Soochow University, Suzhou, 215000, China.
- Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
| |
Collapse
|
6
|
Fernández-González C, Guedeja-Marrón A, Rodilla BL, Arché-Nuñez A, Corcuera R, Lucas I, González MT, Varela M, de la Presa P, Aballe L, Pérez L, Ruiz-Gómez S. Electrodeposited Magnetic Nanowires with Radial Modulation of Composition. NANOMATERIALS 2022; 12:nano12152565. [PMID: 35893533 PMCID: PMC9370789 DOI: 10.3390/nano12152565] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/20/2022] [Accepted: 07/23/2022] [Indexed: 11/29/2022]
Abstract
In the last few years, magnetic nanowires have gained attention due to their potential implementation as building blocks in spintronics applications and, in particular, in domain-wall- based devices. In these devices, the control of the magnetic properties is a must. Cylindrical magnetic nanowires can be synthesized rather easily by electrodeposition and the control of their magnetic properties can be achieved by modulating the composition of the nanowire along the axial direction. In this work, we report the possibility of introducing changes in the composition along the radial direction, increasing the degrees of freedom to harness the magnetization. In particular, we report the synthesis, using template-assisted deposition, of FeNi (or Co) magnetic nanowires, coated with a Au/Co (Au/FeNi) bilayer. The diameter of the nanowire as well as the thickness of both layers can be tuned at will. In addition to a detailed structural characterization, we report a preliminary study on the magnetic properties, establishing the role of each layer in the global collective behavior of the system.
Collapse
Affiliation(s)
- Claudia Fernández-González
- Instituto Madrileño de Estudios Avanzados—IMDEA Nanociencia, 28049 Madrid, Spain; (C.F.-G.); (B.L.R.); (A.A.-N.); (M.T.G.)
| | - Alejandra Guedeja-Marrón
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-M.); (M.V.); (P.d.l.P.)
| | - Beatriz L. Rodilla
- Instituto Madrileño de Estudios Avanzados—IMDEA Nanociencia, 28049 Madrid, Spain; (C.F.-G.); (B.L.R.); (A.A.-N.); (M.T.G.)
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-M.); (M.V.); (P.d.l.P.)
| | - Ana Arché-Nuñez
- Instituto Madrileño de Estudios Avanzados—IMDEA Nanociencia, 28049 Madrid, Spain; (C.F.-G.); (B.L.R.); (A.A.-N.); (M.T.G.)
| | - Rubén Corcuera
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza—-CSIC, Mariano Esquillor, Edificio I+D, 50018 Zaragoza, Spain; (R.C.); (I.L.)
- Departamento Física de la Materia Condensada, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - Irene Lucas
- Instituto de Nanociencia y Materiales de Aragón (INMA), Universidad de Zaragoza—-CSIC, Mariano Esquillor, Edificio I+D, 50018 Zaragoza, Spain; (R.C.); (I.L.)
- Departamento Física de la Materia Condensada, Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| | - María Teresa González
- Instituto Madrileño de Estudios Avanzados—IMDEA Nanociencia, 28049 Madrid, Spain; (C.F.-G.); (B.L.R.); (A.A.-N.); (M.T.G.)
| | - Maria Varela
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-M.); (M.V.); (P.d.l.P.)
| | - Patricia de la Presa
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-M.); (M.V.); (P.d.l.P.)
- Instituto de Magnetismo Aplicado, 28230 Las Rozas, Spain
| | - Lucía Aballe
- Alba Synchrotron Light Facility, Carrer de la Llum 2-26, 08290 Cerdanyola del Valles, Spain;
| | - Lucas Pérez
- Instituto Madrileño de Estudios Avanzados—IMDEA Nanociencia, 28049 Madrid, Spain; (C.F.-G.); (B.L.R.); (A.A.-N.); (M.T.G.)
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (A.G.-M.); (M.V.); (P.d.l.P.)
- Surface Science and Magnetism of Low Dimensional Systems, UCM, Unidad Asociada al IQFR-CSIC, 28040 Madrid, Spain
- Correspondence: (L.P.); (S.R.-G.)
| | - Sandra Ruiz-Gómez
- Max-Planck-Institut für Chemische Physik fester Stoffe, 01187 Dresden, Germany
- Correspondence: (L.P.); (S.R.-G.)
| |
Collapse
|
7
|
Domínguez-Bajo A, Rosa JM, González-Mayorga A, Rodilla BL, Arché-Núñez A, Benayas E, Ocón P, Pérez L, Camarero J, Miranda R, González MT, Aguilar J, López-Dolado E, Serrano MC. Nanostructured gold electrodes promote neural maturation and network connectivity. Biomaterials 2021; 279:121186. [PMID: 34700221 DOI: 10.1016/j.biomaterials.2021.121186] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/05/2021] [Accepted: 10/12/2021] [Indexed: 12/22/2022]
Abstract
Progress in the clinical application of recording and stimulation devices for neural diseases is still limited, mainly because of suboptimal material engineering and unfavorable interactions with biological entities. Nanotechnology is providing upgraded designs of materials to better mimic the native extracellular environment and attain more intimate contacts with individual neurons, besides allowing for the miniaturization of the electrodes. However, little progress has been done to date on the understanding of the biological impact that such neural interfaces have on neural network maturation and functionality. In this work, we elucidate the effect of a gold (Au) highly ordered nanostructure on the morphological and functional interactions with neural cells and tissues. Alumina-templated Au nanostructured electrodes composed of parallel nanowires of 160 nm in diameter and 1.2 μm in length (Au-NWs), with 320 nm of pitch, are designed and characterized. Equivalent non-structured Au electrodes (Au-Flat) are used for comparison. By using diverse techniques in in vitro cell cultures including live calcium imaging, we found that Au-NWs interfaced with primary neural cortical cells for up to 14 days allow neural networks growth and increase spontaneous activity and ability of neuronal synchronization, thus indicating that nanostructured features favor neuronal network. The enhancement in the number of glial cells found is hypothesized to be behind these beneficial functional effects. The in vivo effect of the implantation of these nanostructured electrodes and its potential relevance for future clinical applicability has been explored in an experimental model of rat spinal cord injury. Subacute responses to implanted Au-NWs show no overt reactive or toxic biological reactions besides those triggered by the injury itself. These results highlight the translational potential of Au-NWs electrodes for in vivo applications as neural interfaces in contact with central nervous tissues including the injured spinal cord.
Collapse
Affiliation(s)
- Ana Domínguez-Bajo
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Juliana M Rosa
- Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain
| | | | - Beatriz L Rodilla
- Instituto Madrileño de Estudios Avanzados (IMDEA Nanociencia), Calle Faraday 9, 28049, Madrid, Spain; Departamento de Física de Materiales, Universidad Complutense de Madrid, Plaza de las Ciencias s/n, 28040, Madrid, Spain
| | - Ana Arché-Núñez
- Instituto Madrileño de Estudios Avanzados (IMDEA Nanociencia), Calle Faraday 9, 28049, Madrid, Spain
| | - Esther Benayas
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain
| | - Pilar Ocón
- Departamento de Química Física Aplicada, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - Lucas Pérez
- Instituto Madrileño de Estudios Avanzados (IMDEA Nanociencia), Calle Faraday 9, 28049, Madrid, Spain; Departamento de Física de Materiales, Universidad Complutense de Madrid, Plaza de las Ciencias s/n, 28040, Madrid, Spain
| | - Julio Camarero
- Instituto Madrileño de Estudios Avanzados (IMDEA Nanociencia), Calle Faraday 9, 28049, Madrid, Spain; Instituto "Nicolás Cabrera" and Condensed Matter Physics Center (IFIMAC), Departamento de Física de la Materia Condensada, Universidad Autonoma de Madrid, Madrid, 28049, Spain
| | - Rodolfo Miranda
- Instituto Madrileño de Estudios Avanzados (IMDEA Nanociencia), Calle Faraday 9, 28049, Madrid, Spain; Instituto "Nicolás Cabrera" and Condensed Matter Physics Center (IFIMAC), Departamento de Física de la Materia Condensada, Universidad Autonoma de Madrid, Madrid, 28049, Spain
| | - M Teresa González
- Instituto Madrileño de Estudios Avanzados (IMDEA Nanociencia), Calle Faraday 9, 28049, Madrid, Spain
| | - Juan Aguilar
- Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain; Research Unit of "Design and development of biomaterials for neural regeneration", Hospital Nacional de Parapléjicos, Joint Research Unit with CSIC, Finca La Peraleda s/n, 45071, Toledo, Spain
| | - Elisa López-Dolado
- Hospital Nacional de Parapléjicos, SESCAM, Finca La Peraleda s/n, 45071, Toledo, Spain; Research Unit of "Design and development of biomaterials for neural regeneration", Hospital Nacional de Parapléjicos, Joint Research Unit with CSIC, Finca La Peraleda s/n, 45071, Toledo, Spain
| | - María C Serrano
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Calle Sor Juana Inés de la Cruz 3, 28049, Madrid, Spain.
| |
Collapse
|
8
|
Abend A, Steele C, Jahnke HG, Zink M. Adhesion of Neurons and Glial Cells with Nanocolumnar TiN Films for Brain-Machine Interfaces. Int J Mol Sci 2021; 22:8588. [PMID: 34445294 PMCID: PMC8395253 DOI: 10.3390/ijms22168588] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/29/2021] [Accepted: 08/07/2021] [Indexed: 12/12/2022] Open
Abstract
Coupling of cells to biomaterials is a prerequisite for most biomedical applications; e.g., neuroelectrodes can only stimulate brain tissue in vivo if the electric signal is transferred to neurons attached to the electrodes' surface. Besides, cell survival in vitro also depends on the interaction of cells with the underlying substrate materials; in vitro assays such as multielectrode arrays determine cellular behavior by electrical coupling to the adherent cells. In our study, we investigated the interaction of neurons and glial cells with different electrode materials such as TiN and nanocolumnar TiN surfaces in contrast to gold and ITO substrates. Employing single-cell force spectroscopy, we quantified short-term interaction forces between neuron-like cells (SH-SY5Y cells) and glial cells (U-87 MG cells) for the different materials and contact times. Additionally, results were compared to the spreading dynamics of cells for different culture times as a function of the underlying substrate. The adhesion behavior of glial cells was almost independent of the biomaterial and the maximum growth areas were already seen after one day; however, adhesion dynamics of neurons relied on culture material and time. Neurons spread much better on TiN and nanocolumnar TiN and also formed more neurites after three days in culture. Our designed nanocolumnar TiN offers the possibility for building miniaturized microelectrode arrays for impedance spectroscopy without losing detection sensitivity due to a lowered self-impedance of the electrode. Hence, our results show that this biomaterial promotes adhesion and spreading of neurons and glial cells, which are important for many biomedical applications in vitro and in vivo.
Collapse
Affiliation(s)
- Alice Abend
- Research Group Biotechnology and Biomedicine, Faculty of Physics and Earth Sciences, Peter Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
| | - Chelsie Steele
- Research Group Biotechnology and Biomedicine, Faculty of Physics and Earth Sciences, Peter Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
| | - Heinz-Georg Jahnke
- Centre for Biotechnology and Biomedicine, Molecular Biological-Biochemical Processing Technology, Leipzig University, Deutscher Platz 5, 04103 Leipzig, Germany;
| | - Mareike Zink
- Research Group Biotechnology and Biomedicine, Faculty of Physics and Earth Sciences, Peter Debye Institute for Soft Matter Physics, Leipzig University, Linnéstraße 5, 04103 Leipzig, Germany;
| |
Collapse
|
9
|
Fernández-González C, Guzmán-Mínguez JC, Guedeja-Marrón A, García-Martín E, Foerster M, Niño MÁ, Aballe L, Quesada A, Pérez L, Ruiz-Gómez S. Scaling Up the Production of Electrodeposited Nanowires: A Roadmap towards Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1657. [PMID: 34202505 PMCID: PMC8307701 DOI: 10.3390/nano11071657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 11/16/2022]
Abstract
The use of metallic nanowires is mostly reduced to scientific areas where a small quantity of nanostructures are needed. In order to broaden the applicability of these nanomaterials, it is necessary to establish novel synthesis protocols that provide a larger amount of nanowires than the conventional laboratory fabrication processes at a more competitive cost. In this work, we propose several modifications to the conventional electrochemical synthesis of nanowires in order to increase the production with considerably reduced production time and cost. To that end, we use a soft anodization procedure of recycled aluminum at room temperature to produce the alumina templates, followed by galvanostatic growth of CoFe nanowires. We studied their morphology, composition and magnetic configuration, and found that their properties are very similar to those obtained by conventional methods.
Collapse
Affiliation(s)
- Claudia Fernández-González
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (C.F.-G.); (A.G.-M.)
| | | | - Alejandra Guedeja-Marrón
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (C.F.-G.); (A.G.-M.)
| | | | - Michael Foerster
- Alba Synchrotron Light Facility, 08290 Barcelona, Spain; (M.F.); (M.Á.N.); (L.A.)
| | - Miguel Ángel Niño
- Alba Synchrotron Light Facility, 08290 Barcelona, Spain; (M.F.); (M.Á.N.); (L.A.)
| | - Lucía Aballe
- Alba Synchrotron Light Facility, 08290 Barcelona, Spain; (M.F.); (M.Á.N.); (L.A.)
| | - Adrián Quesada
- Instituto de Cerámica y Vidrio (CSIC), 28049 Madrid, Spain; (J.C.G.-M.); (A.Q.)
| | - Lucas Pérez
- Departamento de Física de Materiales, Universidad Complutense de Madrid, 28040 Madrid, Spain; (C.F.-G.); (A.G.-M.)
- Surface Science and Magnetism of Low Dimensional Systems, Universidad Complutense de Madrid, Unidad Asociada al IQFR-CSIC, 28040 Madrid, Spain
| | - Sandra Ruiz-Gómez
- Alba Synchrotron Light Facility, 08290 Barcelona, Spain; (M.F.); (M.Á.N.); (L.A.)
| |
Collapse
|
10
|
Liang Y, Offenhäusser A, Ingebrandt S, Mayer D. PEDOT:PSS-Based Bioelectronic Devices for Recording and Modulation of Electrophysiological and Biochemical Cell Signals. Adv Healthc Mater 2021; 10:e2100061. [PMID: 33970552 PMCID: PMC11468774 DOI: 10.1002/adhm.202100061] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/31/2021] [Indexed: 12/16/2022]
Abstract
To understand the physiology and pathology of electrogenic cells and the corresponding tissue in their full complexity, the quantitative investigation of the transmission of ions as well as the release of chemical signals is important. Organic (semi-) conducting materials and in particular organic electrochemical transistor are gaining in importance for the investigation of electrophysiological and recently biochemical signals due to their synthetic nature and thus chemical diversity and modifiability, their biocompatible and compliant properties, as well as their mixed electronic and ionic conductivity featuring ion-to-electron conversion. Here, the aim is to summarize recent progress on the development of bioelectronic devices utilizing polymer polyethylenedioxythiophene: poly(styrene sulfonate) (PEDOT:PSS) to interface electronics and biological matter including microelectrode arrays, neural cuff electrodes, organic electrochemical transistors, PEDOT:PSS-based biosensors, and organic electronic ion pumps. Finally, progress in the material development is summarized for the improvement of polymer conductivity, stretchability, higher transistor transconductance, or to extend their field of application such as cation sensing or metabolite recognition. This survey of recent trends in PEDOT:PSS electrophysiological sensors highlights the potential of this multifunctional material to revolve current technology and to enable long-lasting, multichannel polymer probes for simultaneous recordings of electrophysiological and biochemical signals from electrogenic cells.
Collapse
Affiliation(s)
- Yuanying Liang
- Institute of Polymer Optoelectronic Materials and DevicesState Key Laboratory of Luminescent Materials and DevicesSouth China University of TechnologyGuangzhouGuangdong510640China
| | - Andreas Offenhäusser
- Institute of Biological Information ProcessingBioelectronics IBI‐3Forschungszentrum JülichJülich52425Germany
| | - Sven Ingebrandt
- Faculty of Electrical Engineering and Information TechnologyInstitute of Materials in Electrical Engineering 1RWTH Aachen UniversityAachen52074Germany
| | - Dirk Mayer
- Institute of Biological Information ProcessingBioelectronics IBI‐3Forschungszentrum JülichJülich52425Germany
| |
Collapse
|
11
|
Forro C, Caron D, Angotzi GN, Gallo V, Berdondini L, Santoro F, Palazzolo G, Panuccio G. Electrophysiology Read-Out Tools for Brain-on-Chip Biotechnology. MICROMACHINES 2021; 12:124. [PMID: 33498905 PMCID: PMC7912435 DOI: 10.3390/mi12020124] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 01/18/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023]
Abstract
Brain-on-Chip (BoC) biotechnology is emerging as a promising tool for biomedical and pharmaceutical research applied to the neurosciences. At the convergence between lab-on-chip and cell biology, BoC couples in vitro three-dimensional brain-like systems to an engineered microfluidics platform designed to provide an in vivo-like extrinsic microenvironment with the aim of replicating tissue- or organ-level physiological functions. BoC therefore offers the advantage of an in vitro reproduction of brain structures that is more faithful to the native correlate than what is obtained with conventional cell culture techniques. As brain function ultimately results in the generation of electrical signals, electrophysiology techniques are paramount for studying brain activity in health and disease. However, as BoC is still in its infancy, the availability of combined BoC-electrophysiology platforms is still limited. Here, we summarize the available biological substrates for BoC, starting with a historical perspective. We then describe the available tools enabling BoC electrophysiology studies, detailing their fabrication process and technical features, along with their advantages and limitations. We discuss the current and future applications of BoC electrophysiology, also expanding to complementary approaches. We conclude with an evaluation of the potential translational applications and prospective technology developments.
Collapse
Affiliation(s)
- Csaba Forro
- Tissue Electronics, Fondazione Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, 53-80125 Naples, Italy; (C.F.); (F.S.)
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| | - Davide Caron
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (D.C.); (V.G.)
| | - Gian Nicola Angotzi
- Microtechnology for Neuroelectronics, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (G.N.A.); (L.B.)
| | - Vincenzo Gallo
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (D.C.); (V.G.)
| | - Luca Berdondini
- Microtechnology for Neuroelectronics, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (G.N.A.); (L.B.)
| | - Francesca Santoro
- Tissue Electronics, Fondazione Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci, 53-80125 Naples, Italy; (C.F.); (F.S.)
| | - Gemma Palazzolo
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (D.C.); (V.G.)
| | - Gabriella Panuccio
- Enhanced Regenerative Medicine, Fondazione Istituto Italiano di Tecnologia, Via Morego, 30-16163 Genova, Italy; (D.C.); (V.G.)
| |
Collapse
|